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In this paper the steady state behaviour of a beam system with a periodically moving
support and an elastic stop is analysed both numerically and experimentally. In the
numerical analysis a continuous model for the elastic stop is used based on the contact force
law of Hertz. The beam is modelled using finite elements and subsequently reduced using
a component mode synthesis method leading to a non-linear six-degree-of-freedom model.
The steady state behaviour of this model is investigated by calculating periodic solutions
while varying the excitation frequency. This is done by solving two-point boundary value
problems using the multiple shooting method in combination with a path-following
method. Experimental research concerning periodic solutions is carried out to verify the
numerical results. The experimental results correspond very well with the numerical results.
It appears that the high eigenfrequencies of the linear beam system strongly influence the
low-frequency non-linear steady state response. This means that multi-degree-of-freedom
models are important for an accurate representation of the actual system behaviour,
although a single-degree-of-freedom model captures important first-order information
about a lot of the non-linear phenomena in the low-frequency range.

7 1998 Academic Press Limited

1. INTRODUCTION

In many practical engineering applications of mechanical systems, impacts at stops occur.
It is important to carry out a dynamical analysis of such systems, to identify and
subsequently reduce the noise and wear caused by repeated unacceptably large impacts.
Examples of such systems are gear rattle, heat exchanger tube wear in nuclear power
stations and ships colliding against fenders. Systems with stops are typical examples of
systems with local non-linearities. Although the non-linearity is local, the overall dynamic
response of the system in general changes drastically. A system with stops cannot be
linearized, so it is very difficult to predict the system response without a non-linear analysis.

In recent years, non-linear dynamical systems have been studied by many researchers.
For a general introduction to non-linear dynamics the reader is referred to Guckenheimer
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and Holmes [1], Thompson and Stewart [2], Parker and Chua [3] and Thompson [4]. The
long term behaviour of a non-linear system, which is excited by a periodic external load,
can be periodic, quasi-periodic, or chaotic. The period of a periodic attractor may be equal
to the excitation period (harmonic), but may also be a multiple of the excitation period
(subharmonic). As an example, a 1/2 subharmonic attractor has a period, which is twice
the excitation period. A quasi-periodic attractor is a geometrically defined object (a torus)
in the phase space that, when viewed in the time domain, appears to be composed of a
non-linear combination of two or more periodic signals with incommensurate frequencies.
A chaotic attractor is characterized by a broad band spectrum and by an extreme
sensitivity for initial conditions.

Generally, nth subharmonic solutions occur near excitation frequency n× f if at
excitation frequency f a resonance of the system exists. Then, in the nth subharmonic
solutions the frequency f appears. For instance, if a resonance frequency in a system exists
at 20 Hz, generally a 1/2 subharmonic solution exists near 2 ( 20=40 Hz, while a 1/3
subharmonic solution exists near 3 ( 20=60 Hz, etc. An nth superharmonic resonance
peak generally can be found at 1/n× f. In that resonance peak again the resonance
frequency f appears. For example, if at 20 Hz a resonance of the system exists, a 2nd
superharmonic resonance peak can be found near 20/2=10 Hz, while a 3rd
superharmonic resonance peak can be found at 20/3=6·7 Hz, etc. This means that if the
resonance frequencies of a system are known, one can easily predict the location of the
superharmonic and subharmonic resonances of the system. Of course, the existence of the
superharmonic and subharmonic resonances depends on the damping level and the type
of non-linearities in the system.

Most of the recent research concerning impact oscillators is based on single-degree-of-
freedom models. (An overview can be found in Bishop [5].) Single-degree-of-freedom
models capture important first-order information about a lot of the non-linear phenomena
in the low-frequency range, in particular the location of the most important resonance
zones. In Van de Vorst et al. [6] the need of adding more degrees of freedom (d.o.f.) (higher
eigenmodes) for an accurate low frequency response is investigated by analysing a
periodically driven beam system with an elastic stop at its middle. They concluded that
the eigenmodes corresponding to high eigenfrequencies can have a large influence on the
low frequency steady state response. In comparison to the response of a single-d.o.f.
system, the higher eigenmodes cause extra (superharmonic) resonance peaks and
disappearance of subharmonic solutions.

The objective of this paper is to investigate experimentally the influence of higher
eigenmodes on the low frequency system response of a system with an elastic stop.
Furthermore it is investigated whether an elastic stop can be modelled using the contact
force law of Hertz [7, 8]. The verification is mainly focused on comparing periodic
responses. Experiments are carried out using a clamped steel beam with a spherical
aluminum contact hitting a second aluminum contact if the relative displacement at the
contact point is negative. The whole system is base excited by a moving support.

As mentioned earlier, in the numerical analysis the elastic stop is modelled using Hertz’s
contact force law. Hence, the collision forces act in a continuous way. The beam system
can be divided into a linear and a non-linear component. The linear component (the beam)
is modelled by means of the finite element method and consequently has many more d.o.f.
than the non-linear one. Because the numerical analysis of the resulting non-linear system
is very expensive from a computational point of view, in particular for increasing number
of d.o.f., it is worthwhile to keep the number of d.o.f. as low as possible. This can be
achieved by applying a reduction method to the finite element model of the linear
component. The particular reduction method applied is the component mode synthesis
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Fig. 1. Experimental set-up of beam system: b=0·0298 m, h=0·0020 m, E =2·1×E11 N/m2,
p=7800 kg/m3.

method [9, 10] and offers the possibility for a considerable reduction of the d.o.f.
Moreover, the component mode synthesis method can easily be used for geometrically
more complex linear components. The component mode synthesis method used in this
paper is based upon free-interface eigenmodes up to a cut-off frequency and residual
flexibility modes to approximate the dynamic behaviour of the linear component. After
reduction of the linear component the non-linear elements are added, resulting in a reduced
non-linear system which will be valid for frequencies up to the cut-off frequency used in
the reduction procedure. Because generically in non-linear responses higher frequencies
than the excitation frequency are present, the cut-off frequency has to be chosen much
higher than the maximum excitation frequency. Periodic solutions of the reduced system
are calculated while varying the excitation frequency by solving two-point boundary value
problems using the multiple shooting method [11] in combination with a path-following
method [10].

In section 2 the experimental set-up of the beam system is given. In section 3 the steady
state behaviour of the beam system is investigated numerically by calculating periodic
solutions. In section 4 the experimental results for the beam system are compared with the
numerical results. Finally, in section 5 some conclusions are drawn.

2. BEAM SYSTEM WITH AN ELASTIC STOP

Figure 1 shows the beam system which is analysed both numerically and experimentally.
The beam is clamped on one side to a vibrating table and has a spherical elastic contact
on the other side. If the relative displacement (y− u) of the right-hand side of the beam
is negative, it hits another spherical elastic contact which is also connected to the vibrating
table. Using the vibrating table, which is driven by an electric motor, this spherical contact

Fig. 2. Calculated and measured amplitudes of prescribed acceleration of vibrating table for varying excitation
frequency fe , ——, calculated amplitude acceleration, q, measured amplitude acceleration.
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Fig. 3. Maximum displacements of periodic solutions of a six-d.o.f. model with jm =0·015: -----, unstable;
——, stable.

and the left-hand side of the beam are base excited with a prescribed vertical displacement
u(t)=0·5015 cos (2pfet) mm.

As mentioned in section 1, in the numerical analysis the system is divided into two
components: a linear component (the linear beam with periodically driven frictionless
sliding support in the y-direction on the left-hand side) and a non-linear component (the
elastic contact). The linear component is modelled using finite elements and subsequently
reduced. In the reduction two residual flexibility modes (one for the left end base excitation
and one for the elastic stop), one rigid body mode and four free-interface eigenmodes
(f1 =30·51 Hz, f2 =192·68 Hz, f3 =507·26 Hz and f4 =973·45 Hz) are included. This
results in a six-d.o.f. model for the reduced clamped beam with eigenfrequencies:
f1 =17·495 Hz, f2 =137·28 Hz, f3 =414·33 Hz, f4 =843·26 Hz, f5 =1538·8 Hz and
f6 =3940·9 Hz. The first six eigenfrequencies of the unreduced clamped linear beam are
f1 =17·495 Hz, f2 =137·28 Hz, f3 =414·33 Hz, f4 =842·91 Hz, f5 =1419·7 Hz and
f6 =2136·1 Hz, so the last three eigenfrequencies of the reduced system are 0·04, 8 and 84%
inaccurate, respectively, and the reduced model is accurate up to approximately 1000 Hz.
Compared to the maximum excitation frequency of 70 Hz this is very high. However,
because of the elastic stop, the frequencies generated by the system will be much higher
than the maximum excitation frequency.

As mentioned in section 1, the contact force Fs between two equal spherical elastic
contacts is modelled using Hertz’s law [7, 8], that is

Fs (y, u)=6ks (y− u)3/2,
0,

(y− u)e 0
(y− u)Q 0

. (1)
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In equation (1) the parameter ks is taken as 4·5×109 Nm2/3 for contact radii
r1 = r2 =15 mm and Young’s moduli E1 =E2 =7·0×1010 N/m2 of the aluminum spherical
contacts. The mass of the spherical contact (including the accelerometer) is m1 =37·56 g.

The damping in the system without elastic contact is estimated experimentally using
logarithmic decrement evaluation. According to this estimation, the damping in the model
can be taken into account by adding modal damping with a modal damping coefficient
of jm =0·003 for each eigenmode. Calculations using this damping level showed in some
frequency ranges such a complex path with periodic solutions that a very large number
of periodic solutions has to be calculated to follow the path. Furthermore almost all
calculated periodic solutions appeared to be unstable. In the real system, damping also is
present during the impact time. This is not modelled in the numerical analysis. Because
of this, branches of periodic solutions have also been calculated using a modal damping
coefficient of jm =0·015. Using this modal damping coefficient, all the branches can be
followed with a limited number of periodic solutions.

In the experiments two accelerometers are used. One is placed at the position of the
elastic contact on the beam measuring ÿ. The other one is placed at the vibrating table
measuring ü. The choice to measure accelerations instead of displacements or velocities
is due to the fact that it is simple to measure accelerations in a broad frequency band at
the tip of the beam by means of an accelerometer. It would have been possible, at least
in principle, to measure displacements with linear variable differential transformers
(LVDT’s). However, the LVDT’s available in the authors’ laboratory are accurate only
up to +/−0·6 cm, whereas during the experiments the displacements mounted up to 4 cm
in one direction. It would also be possible to measure displacements with
laser-interferrometry. This complicates the measurements considerably and also makes
them very expensive.

Fig. 4. Maximum accelerations of periodic solutions of a six-d.o.f. model with jm =0·015; -----, unstable; ——,
stable.
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Fig. 5. Maximum accelerations of periodic solutions of a six-d.o.f. model with jm =0·003; -----, unstable; ——,
stable.

Because of the limited power of the electric motor, the maximum excitation frequency
which can be used in the experiment is 70 Hz. Acceleration measurements showed that the
prescribed displacement is practically sinusoidal between 20 and 70 Hz. For frequencies
lower than 20 Hz, high frequencies occur on top of the sinusoidal signal due to the
eigenfrequencies of the driving mechanism. As mentioned in section 2, the amplitude of
the prescribed displacement of the vibrating table is 0·5015 mm. Figure 2 shows the
amplitudes of the measured and numerical accelerations (0·5015(2pfe )2) of the vibrating
table for varying excitation frequency. The results in the figure indicate that the difference
between calculated and measured amplitudes increases for increasing excitation frequency
to about 23% for fe =70 Hz. This is due to the mass of the vibrating table and the
flexibility of the drive. Numerical simulations showed that the amplitude of the
acceleration does not strongly influence the qualitative behaviour of the system.

In the acceleration measurements of ÿ many high frequencies are present due to the low
damping in the system. In order to be able to assess the measured accelerations, the
measurement data is filtered by a low pass filter with a bandwidth of 850 Hz.

The elastic contacts did not show any plastic deformation after the experiments. This
is important because plastic deformation will result in a change of the contact radius of
the spherical contacts and hence also in a change of the Hertzian constant. It was observed
that the surface at the area of elastic contacts became black after carrying out some
experiments probably due to oxidation of the aluminum. The measurements in the
frequency range 20–70 Hz were carried out twice. In both measurements, the same
results were obtained and this also indicates the absence of plastic deformation in the
contact area and also that the oxidation of the aluminum does not affect the experimental
results.
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3. NUMERICAL ANALYSIS

Figure 3 shows the maximum absolute displacements y (the position of the elastic
contact on the beam) occurring in the calculated periodic solutions for varying excitation
frequency fe for jm =0·015. The results depicted in Figure 3 have been obtained from
42 000 computed periodic solutions.

Figure 3 shows a harmonic branch with periodic solutions and also a 1/2 and a 1/3
subharmonic branch with periodic solutions. Near 34 Hz two harmonic resonance peaks
occur on the harmonic branch. These two harmonic resonance peaks are related to the
first eigenmode of the linear system (f1 =17·495 Hz) and the second eigenmode of the
linear system (f2 =137·28 Hz). Due to the very stiff elastic contact, the stiffness of the
system as a whole increases and the first resonance frequency shifts from 17 Hz in the linear
system to approximately 34 Hz in the non-linear system. The fourth superharmonic
resonance peak of the second resonance frequency of the system is located near this
resonance frequency because f4/4=137·28/41 34 Hz. In the periodic solutions indeed in
this frequency range the frequency of 137 Hz becomes more dominant. Apparently, the
fourth superharmonic resonance causes an anti-resonance which splits the first harmonic
resonance peak into two peaks.

Furthermore, on the harmonic branch superharmonic resonance peaks occur. Figure 3
shows a second (near 70 Hz), a third (near 47 Hz), a fifth (near 29 Hz), a sixth (near 24 Hz)
and a seventh (near 20 Hz) superharmonic resonance peak related to the second resonance
frequency (f2 1 137 Hz) of the system. The superharmonic resonance peaks related to the
third resonance frequency (f3 1 414 Hz) of the system are much smaller but can still be

Fig. 6. Numerical and shifted experimental maximum accelerations of periodic solutions of a six-d.o.f. model
with jm =0·015; -----, numerical (unstable); ——, numerical (stable); q, experimental (periodic); Q,
experimental (aperiodic).
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Fig. 7. (a) Experimental ( fe =31·0 Hz) and (b,c) numerical ( fe =32·34 Hz) harmonic signals.

seen on the harmonic branch in Figure 3 (for instance the tenth superharmonic resonance
peak occurs near 41 Hz).

The 1/2 subharmonic and 1/3 subharmonic branches shown in Figure 3 are related to
the first resonance frequency of the system. Notice that they are higher than the first
resonance peak. This is due to the increasing amplitude of the prescribed acceleration for
higher frequencies. Just like the first resonance peak on the harmonic branch, the
resonance peaks on the 1/2 subharmonic branch and 1/3 subharmonic branch are split into
two peaks. It seems that the harmonic branch is projected on the 1/2 subharmonic and
1/3 subharmonic branches. Near 93 Hz on the 1/2 subharmonic branch a superharmonic
resonance peak occurs which is related to the third superharmonic resonance peak related
to the second resonance frequency of the system on the harmonic branch.

In the frequency ranges 41–65 and 78–95 Hz only a few stable periodic solutions were
found. In these frequency ranges mainly chaotic behaviour was found. Also between the
highest resonance peaks on the harmonic and 1/2 subharmonic branches chaotic behaviour
was found.

Figures 4 and 5 show the maximum absolute accelerations =ÿ=max of the beam at the elastic
contact occurring in the periodic solutions for varying excitation frequency for the model
with jm =0·015 and jm =0·003. A part of the 1/2 subharmonic branch of the model with
jm =0·003 was not calculated near 53 Hz due to the complexity of the branch (see also
earlier discussion in section 2). For the same reason a part of the (unstable) 1/3
subharmonic branch was not calculated in the frequency range 85–104 Hz. For
determining the response of the system with jm =0·003, 71 000 periodic solutions were
calculated.
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Figure 5 indicates that the model with jm =0·003 shows much more superharmonic
resonance peaks related to high resonance frequencies on the harmonic branch. Due to
the low modal damping of these resonance frequencies, the corresponding eigenmodes are
more strongly excited. Furthermore, the model with jm =0·003 shows higher harmonic,
1/2 subharmonic and 1/3 subharmonic resonance peaks in comparison to the model with
jm =0·015. Also more superharmonic resonance peaks occur on top of these resonance
peaks in the case jm =0·003. Calculations using a model reduced to eight d.o.f. instead
of six and jm =0·003 showed that adding more d.o.f. results in more (small) superharmonic
resonance peaks on top of the harmonic, 1/2 subharmonic and 1/3 subharmonic resonance
peaks. Apparently numerous eigenmodes are excited near these resonance peaks. Apart
from the resonance peaks, the branches of the models with jm =0·003 and 0·015 have the
same maximum acceleration level. Notice that near 53 Hz the maximum acceleration of
the model with jm =0·015 is very low. This is described in more detail in the next section.

4. EXPERIMENTAL ANALYSIS

Measurements using the linear beam system without elastic contact showed that the first
three eigenfrequencies of the linear beam are 17·2, 128·9 and 378·9 Hz which are
approximately 2, 6 and 9% lower than the calculated eigenfrequencies f1 =17·495 Hz,
f2 =137·28 Hz, f3 =414·33 Hz. Apparently, the system parameter values in the
experimental set-up (E, r, mass of elastic contact, etc.) differ from the system parameter
values in the numerical model. Because of this the experimental results of the non-linear
system are shifted to a lower frequency.

Fig. 8. (a) Experimental ( fe =31·5 Hz) and (b,c) numerical ( fe =33·6 Hz) harmonic signals.
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Fig. 9. (a) Experimental ( fe =33·6 Hz) and (b,c) numerical ( fe =36·2 Hz) harmonic signals.

As mentioned in section 2 the measured accelerations are filtered by a low pass filter
with a bandwidth of 850 Hz. Some experiments were carried out without a low pass filter.
The maximum accelerations obtained without a low pass filter showed a shift compared
to the experimental results obtained using the filter. Without a low pass filter, the
experimental maximum accelerations resemble the numerical maximum accelerations.
Hence, the low pass filter causes a maximum acceleration shift. The highest accelerations
occur at the moment when the beam hits the elastic contact. At that moment in a very
small time interval the accelerations are much larger than the accelerations of the beam
if it does not make contact with the elastic stop. Because of this, the low pass filter reduces
the maximum accelerations.

Figure 6 shows the measured maximum absolute acceleration occurring in the signals
for varying excitation frequency (symbols) together with the calculated branches for
jm =0·015 (lines). In order to compare the experimental and numerical results, the
experimental maximum accelerations are shifted in the positive frequency direction 6%
and are shifted in the positive maximum acceleration direction by 600%. Apart from a
frequency shift and a maximum acceleration reduction, the experimental and numerical
results for the beam system with elastic contact agree very well.

The measured accelerations are divided into two categories, namely periodic signals and
aperiodic signals. As far as the aperiodic signals are concerned, in Figure 6 the maximum
absolute accelerations are plotted. Note that because of this the experimental and
numerical results cannot be compared entirely, since in the calculated response only
periodic signals (stable and unstable) are used. Most of the aperiodic signals are chaotic
signals. This can be checked by calculating Lyapunov exponents of these signals [12, 13].
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This paper is focused on the measured periodic signals since these can be more easily
compared to numerically obtained periodic signals.

In Figure 6 the experimental results agree very well with the numerical results. Just as
in the numerical results, two harmonic resonance peaks occur near 34 Hz in the
experiments. However, the right harmonic resonance peak has a dip in the experiment and
this was not found in the numerical results. Due to the limited power of the electric motor,
it could not be investigated whether the right 1/2 subharmonic resonance peak on the 1/2
subharmonic branch also has a dip. As mentioned in the previous section, all peaks on
top of the harmonic resonance peaks are projected to the 1/2 subharmonic resonance
peaks. In the numerical response a dip exists for fe =37·65 Hz. However, this dip does not
exist on top of the right harmonic resonance peak as in the experimental results.

In Figures 7–10 some experimental and numerical periodic signals are shown which
occur near the first harmonic resonance peak. In the figures the measured and numerical
contact point acceleration, the numerical contact displacement and the prescribed
foundation displacement are shown. Because of the earlier mentioned frequency shift
between the numerical and experimental results, the periodic signals are compared for
different frequencies for which the signals show the best agreement. The measured
accelerations which are shown in the figures, are filtered by the earlier mentioned low pass
filter with a bandwidth of 850 Hz. In Figures 7–9 the experimental and numerical results
agree well. Notice that in the figures the maximum acceleration in the numerical signals
is lower than can be expected from Figure 6 (Figure 6 gives the maximum absolute
accelerations occurring in the signals). This is caused by the fact that the maximum

Fig. 10. (a) Experimental ( fe =34·5 Hz) and (b,c) numerical ( fe =37·64 Hz) harmonic signals.
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Fig. 11. (a) Experimental ( fe =50·8 Hz) and (b,c) numerical ( fe =53·0 Hz) 1/2 subharmonic signals.

acceleration occurs in a very small time interval and because of time discretization in
Figures 7–9, the maximum acceleration occurring in the plotted calculated signals is lower.

In Figure 10 the experimental and numerical acceleration signals are compared for
fe =34·5 and 37·64 Hz, respectively. At fe =34·5 Hz the experimental results show a dip
(Figure 6) in the right first harmonic resonance peak. As mentioned earlier, in the
numerical results a dip exists for fe =37·64 Hz, for which the value is 2 Hz higher than
expected if the experimental results have a 6% frequency shift. Figure 10 shows that apart
from the largest acceleration, the experimental and numerical signals agree well. The
acceleration dip in the numerical results is related to the eleventh superharmonic resonance
peak of the third resonance frequency of the non-linear system (11×37·64=414 Hz1 f3).
Apparently, the third eigenfrequency in the experiment is about 11×34·5=379·5 Hz. As
mentioned earlier the third eigenfrequency of the linear beam was experimentally
determined to be 378·9 Hz, so this confirms that the acceleration dip is caused by the
eleventh superharmonic of the third eigenfrequency. Because the third eigenfrequency of
the numerical linear model differs approximately 9% from the eigenfrequency of the
experimental linear beam, in the numerical analysis the dip related to the third
eigenfrequency does not occur on top of the right harmonic resonance peak but at
fe =37·64 Hz.

Near fe =53·0 Hz the maximum acceleration in both the numerical and experimental
results is very low. Figure 11 shows the experimental and numerical periodic signals for
fe =50·8 and 53 Hz, respectively. Both signals agree very well and the numerical
time–displacement plot shows why the acceleration is so small in this frequency range: if
the elastic stop hits the beam, both the elastic stop and beam have approximately the same
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Fig. 12. (a) Experimental ( fe =61·65 Hz) and (b,c) numerical ( fe =61·65 Hz) 1/2 subharmonic signals.

velocity and this holds for the entire contact time. In the experiment, for this frequency
range the noise produced by the experimental set-up was surprisingly low.

In Figures 12–14 some experimental and numerical periodic signals are shown which
occur near the 1/2 subharmonic resonance peak. Again the experimental and numerical
results agree very well. Notice that for fe =67·8 Hz also a considerable high frequency
component is present in the time–displacement plot. This high frequency component fh has
four periods per two excitation periods: fh =(67·8/2)×4=135·6 Hz1 f2 =137·28 Hz.
This confirms that the dip between the two harmonic and 1/2 subharmonic resonance
peaks is related to the fourth superharmonic resonance peak of the second resonance
frequency of the system. Notice also the similarity of the periodic solutions near the first
harmonic resonance peak (Figures 7–9) and the 1/2 subharmonic resonance peak (Figures
12–14).

5. CONCLUSIONS

In this paper, a periodically driven beam system with an elastic contact was investigated
both experimentally and numerically. Apart from a frequency shift and a maximum
acceleration reduction, the experimental and numerical results agree very well. The results
indicate that higher eigenmodes of the beam play an important role in the low frequency
response of the system. Especially near the harmonic and 1/2 subharmonic resonance
peaks, many high frequency eigenmodes are excited. The experimental results indicate that
the elastic contact can be modelled using the contact force law of Hertz.
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Fig. 13. (a) Experimental ( fe =63·7 Hz) and (b,c) numerical ( fe =67·8 Hz) 1/2 subharmonic signals.

The damping in the linear system was experimentally determined to be approximately
jm =0·003. However, section 4 shows that the results obtained using a modal damping
coefficient of jm =0·015 correspond much better. Apparently, the dissipation in the
non-linear system is much higher due to the elastic contact. This energy dissipation was
not modelled in the numerical model. One has to take into account that by increasing the
modal damping coefficient, the damping of all eigenmodes is increased. In the actual
system, the energy dissipation caused by the elastic contact is concentrated on one position
of the beam (at the contact area). At this point the numerical model can be improved by
using a hysterestic damping model in Hertz’s law, for instance the model of Lankarani
and Nikravesh [14].

In the experiments a low pass filter was used in order to get a better comparison between
experimental and numerical results. A disadvantage of this filter is that the maximum
accelerations which occur in the measured signals are reduced considerably. As mentioned
before, near the resonance peaks, the numerical model which is valid up to 1000 Hz is not
accurate enough for approximating the actual system. For these frequency ranges, a filter
bandwidth of above 1000 Hz should be used instead of the filter bandwidth of 850 Hz used
in this paper. Also it would be preferable to measure displacements instead of accelerations
in future experiments, since displacement signals do not show as many high frequencies
as acceleration measurements. Because of this, the experimental and numerical
displacement signals can be compared more easily, probably even without using a low pass
filter.
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Fig. 14. (a) Experimental ( fe =66·5 Hz) and (b,c) numerical ( fe =71·5 Hz) 1/2 subharmonic signals.

ACKNOWLEDGMENTS

This work was supported by the Centre for Mechanical Engineering of TNO Building
and Construction Research, Delft, The Netherlands. All calculations presented in this
paper were carried out using a development release of the finite element package DIANA
[15]. The authors are much indebted to useful comments by the anonymous reviewers.

REFERENCES

1. J. G and P. H 1983 Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 42. Berlin: Springer.

2. J. M. T. T and H. B. S 1986 Nonlinear Dynamics and Chaos. New York.
3. T. S. P and L. O. C 1989 Practical Numerical Algorithms for Chaotic Systems. Berlin:

Springer.
4. J. M. T. T 1994 in Nonlinearity and Chaos in Engineering Dynamics (M. T. Thompson

and S. R. Bishop, editors). Proceedings of the IUTAM Symposium, London. New York: Wiley.
Basic concepts of nonlinear dynamics.

5. S. R. B 1994 Philosophical Transactions of the Royal Society of London 347, 345–448.
Impact oscillators.

6. E. L. B.   V, D. H.  C, R. H. B. F and A. K 1996 Journal of
Sound and Vibration 192, 913–925. Periodic solutions of a multi-dof beam system with impact.

7. H. H 1895 Gesammelte Werke, Vol. 1: Schriften vermischten inhalts. Leipzig, Germany.
8. W. G 1960 Impact: The Theory and Physical Behaviour of Colliding Solids. London:

E. Arnold Ltd.



. . .     .336

9. R. R. C J. 1985 in Combined Experimental/Analytical Modeling of Dynamic Structural
Systems Using Substructure Synthesis (D. R. Martinez and A. K. Miller, editors) 1–31. New
York: ASME Applied Mechanics AMD-67. A review of time-domain and frequency-domain
component mode synthesis methods.

10. R. H. B. F 1992 PhD Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
Steady-state behaviour of reduced dynamic systems with local non-linearities.

11. U. M. A, R. M. M. M and R. D. R 1988 Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations. Englewood Cliffs, NJ: Prentice-Hall.

12. A. W, J. B. S, H. L. S and J. A. V 1985 Physica 16D, 285–317.
Determining Lyapunov exponents from a time series.

13. E. L. B.   V, F. H. A, A.  K, R. H. B. F and D. H.  C
1996 Experimental Mechanics 36, 159–165. Experimental verification of the steady-state
behaviour of a beam system with discontinuous support.

14. H. M. L and P. E. N 1994 Nonlinear Dynamics 5, 193–207. Continuous
contact force models for impact analysis in multibody systems.

15. DIANA User’s Manual, 6.0 edition, 1996. Delft, The Netherlands: DIANA, TNO Building and
Construction Research.


