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A method for determining critical power spectral density matrix models for earthquake
excitations which maximize steady response variance of linear multiply supported extended
structures and which also satisfy constraints on input variance, zero crossing rates,
frequency content and transmission time lag has been developed. The optimization problem
is shown to be non-linear in nature and solutions are obtained by using an iterative
technique which is based on linear programming method. A constraint on entropy rate as
a measure of uncertainty which can be expected in realistic earthquake ground motions is
proposed which makes the critical excitations more realistic. Two special cases are also
considered. Firstly, when knowledge of autospectral densities is available, the critical
response is shown to be produced by fully coherent excitations which are neither in-phase
nor out-of-phase. The critical phase between the excitation components depends on
structural parameters, but independent of the auto-spectral densities of the excitations.
Secondly, when the knowledge of autospectral densities and phase spectrum of the
excitations is available, the critical response is shown to be produced by a system dependent
coherence function representing neither fully coherent nor fully incoherent ground motions.
The applications of these special cases are discussed in the context of land-based extended
structures and secondary systems such as nuclear piping assembly. Illustrative examples on
critical inputs and response of sdof and a long-span suspended cable which demonstrated
the various features of the approach developed are presented.
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1. INTRODUCTION

Design earthquake ground motions for engineering structures are specified in terms of time
histories, response spectra or random processes which typically include the definition of
a deterministic envelope and a psd function [1]. These three methods of seismic load
specification are not mutually independent in the sense that exchange of one form of
specification compatible with any other is possible. The accuracy and robustness of these
seismic input models are open to question in view of significant uncertainties which are
present in the earthquake excitation mechanism on the one hand, and the scarcity of the
data on the other. Given this ill-posed nature of the problem, it is natural to ask what
is the worst that might happen to a given structure under a set of incompletely specified
seismic loading conditions. The method of critical excitations has been developed to
answer this question, these excitations being defined as those which produce the highest
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damage to a given structure and at the same time satisfy a set of constraints reflecting some
of the well known features of earthquake time histories. Thus, the critical excitations, by
definition, depend upon the system under consideration, nature of partial information
available and the damage variable chosen for optimization and their determination
constitutes an inverse problem in structural dynamics.

In the past, critical excitations have been derived for all the three forms of seismic load
specifications, namely, time histories [2–6], response spectra [4, 5, 7, 8] and random process
models [7, 9–12]. In recent work the authors [11] considered non-stationary Gaussian
random process models for critical excitations. The systems considered are linear
single-degree-of-freedom (sdof) or multi-degree-of-freedom (mdof) systems, and the
damage variable chosen is the highest response variance. The excitations are constrained
to have a given non-stationarity trend, duration, frequency content, total average energy
and average zero crossing rate. The variable of optimization is the power spectral density
(psd) function of the stationary component of the excitation and the problem is solved with
the framework of linear programming. The critical excitations conforming to this
definition have been shown to be strongly resonant and narrow-banded. This clearly
indicates a major shortcoming in the definition of the critical excitations in the sense that
they fail to capture the random nature of the recorded accelerograms. To overcome this
limitation, we have proposed that the entropy rate of the ground acceleration process be
considered as a quantitative measure of randomness in seismic loads and that it be
considered as an additional constraint in the definition of critical excitation.

A notable feature of the existing literature on critical excitations has been the fact that
in all the studies seismic loads have been considered as single point excitations: that is,
the same excitation is assumed to act at all the supports. This assumption becomes
questionable if interest is focused on extended land-based structures such as long-span
bridges, pipelines, dams and power transmission systems or multiply supported secondary
systems such as pipings in nuclear power installations. In the case of land-based extended
structures, the supports can be expected to suffer differential ground motions which are
caused due to phase lag and coherency loss effects. Spurred by the availability of densely
spaced seismic array data, several studies have been conducted in the recent past on the
effects of spatial variability and wave propagation on the earthquake responses of large
or multiply supported structures [13–21]. A detailed theoretical treatment of modeling the
coherency function for spatially varying ground motion has been presented by Der
Kiureghian [22]. A comprehensive review of the relevant issues can be found in the recent
paper by Banerjee [23].

The present study is concerned with the extension of methods developed in reference
[11] to the problem of determination of critical vector random process models for
earthquake loads acting on extended structures supported discretely at two points. The
excitation here is modelled as a partially specified stationary vector Gaussian random
process with a given variance, frequency content and average zero crossing rate and an
unknown psd matrix. The input psd matrix is found such that the steady state response
variance of a given linear system is maximized. It turns out that the optimization problem
in this case becomes non-linear in nature, which is in contrast with the critical single point
excitation problem, wherein the problem remains linear [11]. In this study, an iterative
method of nonlinear optimization which converts the problem at every iteration into a
linear programming problem is developed. Two special cases which would arise if the
knowledge of the autospectral density functions is available but the knowledge of the
cross-power spectrum is lacking are also considered. Specifically, when the autospectra are
known and the wave passage effect is explicitly modelled through a known phase spectrum,
it is shown that it is neither the fully coherent nor the fully incoherent excitations which



    527

produce the highest response: instead, there exists a special form of cross-spectral density
function which produces the highest response. This cross-spectrum is determined in terms
of the system characteristics, damage variable and the known autospectral densities. The
question of developing optimally disordered critical excitations by the use of entropy rate
considerations is also discussed. A computational scheme which incorporates entropy rates
as measures of disorder and enables the solution within the framework of iterative linear
programming method is outlined. Illustrative examples on single-degee-of-freedom systems
and a 1620 m suspended cable are presented.

2. MULTI-SUPPORT EXCITATIONS

2.1.  

In Figure 1 is shown a sdof system supported at two points and subjected to support
accelerations ẍ and ÿ which are modelled as a pair of stationary Gaussian band-limited
random processes with psd matrix given

S(v)=0Sxx (v)
Syx (v)

Sxy (v)
Syy (v)1. (1)

The diagonal terms in this matrix represent the auto-psd functions while the off-diagonal
terms are the cross-psd functions. The latter functions are in general complex valued and
can be represented as

Sxy (v)= =Sxy (v) = exp[−ifxy (v)]. (2)

Alternatively, the function can be normalized with respect to the auto-psd functions which
leads to the definition of the coherency function given by

gxy (v)=Sxy (v)/zSxx (v)Syy (v). (3)

It can be shown that 0E =gxy (v) =E 1, with =gxy (v) ==0 representing the case of complete
lack of linear dependence, which, for Gaussian random processes, also implies statistical
independence and, =gxy (v) ==1 denoting the condition for the two processes to be linearly
dependent. Several features of spatial variability of earthquake ground motion get reflected
through =gxy (v) = and fxy (v); these include the incoherence effect, wave-passage effect and
the site-response effect. The incoherence effect arises due to loss of statistical dependence
of the ground motion at different points from scattering of waves in heterogeneous ground
medium and differential superpositions of the waves arriving from extended source. The
wave passage effect is due to the transmission time lag of the seismic wave propagation
at different locations. The varying local soil conditions give rise to the site response
effect. The wave passage and the site response effects give rise only to phase lag in
the ground motions at different locations. The incoherence and wave passage effects
are usually significant for long-span flexible structures, whereas the site-response

Figure 1. An sdof system with double support excitations.
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effect is important for short-span stiff structures situated in the regions of varying soil
properties [22]. Several models for =gxy (v) = and fxy (v) have proposed in the existing
literature based on recorded earthquake data [19–21, 23] and also based on theoretical
considerations [22]. In many of the studies reported in the literature so far, the phase
spectrum is taken to be of the form

fxy (v)=vt, (4)

where t=L/V is the seismic transmission time lag over a span L with an apparent velocity
of propagation V. This model for the phase spectrum is based on the assumption that (a)
the phase differences arise due to the wave passage effect caused due to plane waves
arriving at a single incident angle at the two stations, and (b) the contributions to the phase
due to the differences in local soil conditions is considered negligible. This assumption is
considered acceptable for modelling earthquake inputs to long-span structures [13, 14, 22].

2.2.    

With reference to Figure 1, the governing equation of motion for the total displacement
zt (t) is

mz̈t + c6żt −
ẋ+ ẏ

2 7+ k6zt −
x+ y

2 7=0. (5)

In terms of the dynamic displacement z= zt − 1
2(x+ y) one obtains

z̈+2hvn ż+v2
n z=−1

2 (ẍ+ ÿ) (6)

Let the force F in the left spring be considered as the response variable of interest. This
is proportional to the relative displacement between the mass and the left support. The
steady state variance of the quantity 4F/K can be shown to be given by

s2 =g
v2

v1

{Sxx (v)H1 (v)+Syy (v)H2 (v)+ =Sxy (v) =H3 (v)} dv. (7)

Here (v1, v2) is the frequency bandwidth and the transfer functions H1, H2 and H3 are given
by

H1 (v)=6 1
v4 +

1
(v2 −v2

0 )2 + (2hvv0)2 +
2(v2 −v2

0 )
v2[(v2 −v2

0 )2 + (2hvv0)2]7=Hf (v) =2, (8)

H2 (v)=6 1
v4 +

1
(v2 −v2

0 )2 + (2hvv0)2 −
2(v2 −v2

0 )
v2[(v2 −v2

0 )2 + (2hvv0)2]7=Hf (v) =2, (9)

H3 (v)=6−2 cos [fxy (v)]
v4 +

2 cos [fxy (v)]
(v2 −v2

0 )2 + (2hvv0)2

+
8hvv0 sin [fxy (v)]

v2[(v2 −v2
0 )2 + (2hvv0)2]7=Hf (v) =2. (10)



    529

The filter function Hf (v) appearing in these equations is given by

=Hf (v) =2 = (v/vf )4

[1− (v/vf )2]2 + [4z2
f (v/vf )2]

, (11)

this being an artifact to remove the singularity in the support displacement at v=0 which
would otherwise be present [24]. It may be noted that the functions H1 and H2 can also
be written in the forms

H1 (v)=
(2v2 −v2

0 )2 + (2hvv0)2

v4[(v2 −v2
0 )2 + (2hvv0)2]

=Hf (v) =2, (12)

and

H2 (v)=
v2

0 (v2
0 +4h2v2)

v4[(v2 −v2
0 )2 + (2hvv0)2]

=Hf (v) =2, (13)

from which it follows that the functions H1 and H2 are non-negative. It can however be
noted that, depending on the value of fxy (v), H3 (v) can take either negative or positive
values.

2.3.     

The formulation presented above can be easily extended to mdof systems. For a
structure with two supports, the expression for the steady state response variance at any
point a0 can again be expressed in the form of equation (7). The expressions for the
generalized transfer functions H1, H2 and H3 will now be also dependent on a0. For the
purpose of illustration consider a damped cable element shown in Figure 2. The dynamic
stiffness coefficient Dij (v), i, j=1, . . . , 4, is defined as the amplitude of harmonic force
at node j due to a harmonic displacement of unit amplitude and frequency v at node i
with all other nodes being held fixed [24]. For a damped cable element, these coefficients
are complex in nature and consequently, it is useful to separate the real and imaginary
parts of nodal displacements and forces as shown in Figure 2. In this figure, the D’s
represent displacements, the p’s the forces and the subscripts R and I denote, respectively,
the real and imaginary parts. Introducing a displacement vector D and a force vector P
defined, respectively, by

D*= [DR1, DI1, DR2, DI2, DR3, DI3, DR4, DI4]

p*= [pR1, pI1, pR2, pI2, pR3, pI3, pR4, pI4], (14)

where the asterisk denotes matrix transposition, one can define a generalized dynamic
stiffness matrix K of size 8×8 which relates the vectors D and p through the relation

p=KD. (15)

The elements Kij , i, j=1, . . . 8, are all real and can be evaluated either in terms of the
system eigensolutions or, alternatively, by direct integration in space of an associated set

Figure 2. A cable element.
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of boundary value problems. In this study, we take the latter approach and compute the
stiffness coefficients using a numerical integration scheme detailed elsewhere [28].

Two cases are now considered: firstly, when the seismic excitations act in the vertical
direction, that is along directions 1 and 3, and the damage variable of interest be the
steady state variance of vertical force transmitted to the left end support, and,
secondly, let the excitations be along directions 2 and 4 and the response variable of interest
be the horizontal component of the force transmitted to the left support. In both these
cases, the response variance can again be expressed in the form of equation (7). The
expressions for H1, H2 and H3 differ for each case. Thus, for the first case it can be shown
that

H1 =
=Hf (v) =2

v4 [K2
11 +K2

12], H2 =
=Hf (v) =2

v4 [K2
15 +K2

16],

H3 =
2=Hf (v) =2

v4 {cos [fxy (v)] (K11 K15 +K12 K16)− sin [fxy (v)] (K11 K16 −K12 K15)}, (16)

and, similarly, for the second case,

H1 =
=Hf (v) =2

v4 [K2
31 +K2

32], H2 =
=Hf (v) =2

v4 [K2
35 +K2

36],

H3 =
2=Hf (v) =2

v4 {cos [fxy (v)] (K31 K35 +K32 K36)+ sin [fxy (v)] (K31 K36 −K32 K35)}, (17)

Again, notice that H1 (v) and H2 (v) are always non-negative, while H3 (v) can take either
negative or positive values. As has been already noted, the critical psd matrix depends upon
the system properties and this dependence, as will be shown in the next section, is pivoted
on the nature of the functions H1 (v), H2 (v) and H3 (v).

3. CRITICAL INPUT PSD MATRIX

As has been pointed out in the introduction, critical excitations, by definition, are
dependent on the system properties, damage variable chosen for maximization and the
constraints imposed on the class of allowable inputs. We consider three classes of
problems: (A) to find the critical =Sxy (v) = and fxy (v) given the knowledge of Sxx (v) and
Syy (v); (B) to find the critical =Sxy (v) = given the knowledge of Sxx (v), Syy (v) and fxy (v);
(C) to find the critical =Sxy (v) =, Sxx (v) and Syy (v) given the knowledge of fxy (v).

3.1.  ():  -   - 

Here we consider the special case in which the knowledge for Sxx (v) and Syy (v) is
available, while =Sxy (v) = and fxy (v) are unknown functions. This situation can be easily
conceived, since information from densely spaced seismic arrays is more scarce than data
from single point ground acceleration measurements. In this case, the problem of critical
excitations consists of findings =Sxy (v) = and fxy (v) which maximize s2 as given by
equation (7) under the constraint that 0E =Sxy (v) =EzSxx (v)Syy (v). It can be easily
observed from equation (7) that the contribution from the third term in the integrand at
any frequency v can be either positive or negative depending on the sign of the function
H3 (v). We re-write the function H3 (v) as

H3 (v)=R(v) cos [fxy (v)− a(v)], (18)
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where

R(v)=z[g2
1 (v)+ g2

2 (v)], a(v)= tan−1 {g2 (v)/g1 (v)},

g1 (v)=6−2
v4 +

2
(v2 −v2

0 )2 + (2hvv0)27 =Hf (v) =2,

g2 (v)=6 8hvv0

v2[(v2 −v2
0 )2 + (2hvv0)2]7 =Hf (v) =2. 19)

It clearly follows that, for s2 to be the maximum, it is required that

=Sxy ==zSxx Syy and cos (f− a)=1. (20)

This would mean that

fxy (v)= a(v)= tan−1 {g2 (v)/g1 (v)}. (21)

Similarly, it is of interest to note that the least response is produced when

=Sxy ==zSxx Syy and cos (f− a)=−1, (22)

which, in turn, means

fxy (v)= p+ a(v)= p+tan−1 {g2 (v)/g1 (v)}. (23)

It thus follows that the highest and lowest response are produced by coherent motions
(=gxy (v) ==1), but the phase spectrum differs for the two cases. It is also evident that the
critical responses are produced by neither in-phase nor out-of-phase motions. The critical
fxy (v) is a non-linear function of frequency v and system parameters v0 and h and does
not depend on Sxx (v) and Syy (v). This model of the critical Sxy (v) may be suitable for
ground motions where the spatial variability is mainly dominated by the site-response
effect, the information about which is considered unknown. This essentially implies that
this model can be used to study the critical response of short-span structures founded on
rapidly varying local soil conditions.

This model is also suitable for studying the response bounds of secondary structures such
as piping assembly in nuclear power plants subject to multi-support seismic excitations.
In the current analysis and design procedures, the support inputs of a piping system
supported at different locations in the primary structure are specified in terms of floor
response spectra. Since the floor response spectra do not contain any phasing information
of the different support motions, various approximate techniques are used to obtain
conservative estimates of the response to compensate for the phase information neglected
in the analysis [30]. The conservatism obtained by these approximate methods is neither
uniform nor assured. In this situation, the present formulation, being exact in producing
the upper bound of the response, can be used to study the validity and rationale of the
existing design practice.

3.2.  ():  -   -   



In this case we assume that the prior knowledge about the input is available not only
on the auto-psd functions but also on the phase spectrum fxy (v). Specifically, we take
the phase spectrum to be as given in equation (4). This case is considered relevant to
problems in which the major contribution to fxy (v) comes from the wave passage effect
which can be reasonably modelled through the time lag t, such as long-span structures
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Figure 3. Transfer function H1 for an sdof system; vn =6·1 rad/s, h=0·05. ——, Filter included; ----, filters— —,
filter excluded.

[22]. Here information about the coherency loss of the excitations is taken to be unknown.
In this case, the problem of critical excitations consists of finding =Sxy (v) = which maximizes
s2 as given by equation (7) under the constraint that 0E =Sxy (v) =EzSxx (v)Syy (v).
Again, it may be observed from equation (7) that the contribution from the third term
in the integrand at any frequency v can be either positive or negative depending on the
sign of the function H3 (v, t). Consequently, it can be easily deduced that the optimal
=Sxy (v) = which produces the highest response variance must be of the form

=Sxy (v) ==0 if H3 (v, t)Q 0,

=Sxy (v) ==zSxx (v)Syy (v) if H3 (v, t)q 0. (24)

Thus, the critical cross-psd depends upon the transfer function H3 (v, t), Sxx (v) and
Syy (v) and the highest response occurs neither when ẍ(t) and ÿ(t) are fully coherent nor
when they are fully incoherent but, instead, when the two processes have the specific
correlation properties as given above. This special class of problems has been recently
discussed in greater detail in the authors’ recent paper [29], in which structures with more
than two supports and also presence of multi-component excitations have been studied.

3.3.  ():  -  -    

Here we consider the more general case when Sxx (v), Syy (v) and =Sxy (v) = are unknown
while it is assumed that the variance and the average zero crossing rate of the processes

Figure 4. Transfer function H1 for an sdof system; h=0·05. Natural frequency (rad/s): ——, 6·1; ·····, 10·0; — —,
17·0; ----, 25·1.
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Figure 5. Transfer function H2 for sdof systems; h=0·05. Key as Figure 4.

ẍ(t) and ÿ(t) are known. That is, the knowledge of E0x , E0y , n+
0x and n+

0y , given, respectively,
by

E0x =g
v2

v1

Sxx (v) dv, E0y =g
v2

v1

Syy (v) dv,

n+
0x =E2x /2pE0x , n+

0y =E2y /2pE0y , (25)

is taken to be available. Here, E2x and E2y are given by

E2x =g
v2

v1

v2Sxx (v) dv, E2y =g
v2

v1

v2Syy (v) dv. (26)

Additionally, it is assumed that fxy (v) is as given by equation (4). From equations (25)
and (26) it is clear that the knowledge of variance and average zero crossing rate essentially
implies the knowledge of the zeroth and second spectral moments of Sxx (v) and Syy (v).
The critical psd matrix is defined as the S(v) which maximize s2 given by equation (7)
under the constraints of equations (25) and (26) and the additional constraint

0E =Sxy (v) =EzSxx (v)Syy (v). (27)

Figure 6. Transfer function H1 for the vertical force transmitted to the left support for the 1620 m span cable
with vertical support motions.
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To solve this optimization problem, we first discretize the psd functions as follows:

Sxx (v)= s
N

n=1

an d(v− ln ), Syy (v)= s
N

n=1

bn d(v− ln ),

=Sxy (v) == s
N

n=1

cn d(v− ln ), (28)

where d( · ) is the Dirac delta function and ln = nl0.
It may be noted that this scheme of discretization of the psd functions is similar to the

one followed in digital simulation of random processes when using Fourier series
representations [1]. The optimization problem can now be stated as to find an, bn and cn

which maximize

s2 = s
N

n=1

an H1 (ln )+ bn H2 (ln )+ cn H3 (ln , t), (29)

under the constraints

E0x = s
N

n=1

an , E0y = s
N

n=1

bn , E2x = s
N

n=1

l2
n an , E2y = s

N

n=1

l2
n bn , (30)

an e 0, bn e 0, cn e 0, (31)

c2
n E an bn , n=1, 2, . . . , N. (32)

Notice that the objective function, and all the contraints except the inequalities c2
n E an bn ,

are linear functions of an , bn and cn . The problem is, therefore, non-linear in nature.
Furthermore, it can also be shown that the problem is non-convex in nature. The solution
of this problem is proposed to be sought by using the method of approximate
programming which is an iterative method based on the use of linear programming [25].
This consists of linearizing the non-linear constraints about a feasible starting solution and
solving the resulting linear problem by using the linear programming method. Thus, at the
jth step, the problem is to find aj+1,n , bj+1,n and cj+1,n which maximize

s2
j = s

N

n=1

aj+1,n H1 (ln )+ bj+1,n H2 (ln )+ cj+1,n H3 (ln , t) (33)

Figure 7. Transfer function H1 for the horizontal force transmitted to the left support for the 1620 m span cable
with horizontal support motions.
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Figure 8. (a) g1 (——) and g2 (–·–·–) for vn =20 rad/s, h=0·05; (b) critical fxy for vn =20 rad/s. h=0·05
and (c) response psd of 4F/K for different cases of fully coherent ground motions in (1) critical phase (—), (2)
in-phase (----), (3) out-of-phase (–·–·–) and (4) independent (· · · · · · ·) motions.

under the constraints

E0x = s
N

n=1

aj+1,n , E0y = s
N

n=1

bj+1,n , E2x = s
N

n=1

l2
n aj+1,n , E2y = s

N

n=1

l2
n bj+1,n , (34)

aj+1,n e 0, bj+1,n e 0, cj+1,n e 0, (35)

aj+1,n bj,n + aj,n bj+1,n −2cj,n cj+1,n e aj,n bj,n − c2
j,n . (36)

This problem, being linear in nature, can be easily solved by using the linear programming
method. The iterations are repeated until no significant improvement occurs in the
objective function and all the constraints are satisfied within desirable accuracy. The
mathematical basis for this method can be found in the book by Jacoby et al. [25].

4. NUMERICAL RESULTS AND DISCUSSION

We illustrate the formulation developed in the preceeding sections by considering the
nature of the transfer functions H1 (v), H2 (v) and H3 (v) and their relation to the critical

Figure 9. Transfer function H3 for an sdof system; h=0·05, vn =6·1 rad/s. Time lag (s): —, 0; ·····, 1; ----, 3.
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Figure 10. Transfer function H3 for vertical force transmitted to the left support for the 1620 m span cable
with vertical support motions; t=1 s.

psd matrix S(v) for sdof systems and for a more realistic mdof system; namely, a 1620 m
span elastic cable fixed at the two ends, which is typical of a suspended cable of a long
span bridge [16]. The cable is assumed to have Young’s modulus E=8·76×1010 N/m2,
area of cross-section A=14·5×10−4 m2, mass per unit length r=6·35 kg/m and applied
tension H0 =368·3 kN. The role played by the filter function Hf (v) in suppressing the
singularity in H1 (v) at v=0 is shown in Figure 3. The variations of H1 (v) and H2 (v)
for sdof systems are shown in Figures 4 and 5, and those for the cable structure are shown
in Figures 6 and 7.

In Figures 8(a–c) are shown the features associated with the critical input and response
as defined in section 3.1. The variation of g1 and g2 in equation (19) for a sdof system is
shown in Figure 6(a). A typical critical fxy (v) in equation (21) is plotted in Figure 6(b).
In Figure 6(c) is shown the response psd of the quantity 4F/K for different cases of fully
coherent excitations: motions in critical-phase (from equation 21 in section 3.1); motions
in-phase; motions out-of-phase and independent motions.

Next we consider the special class of problems described in section 3.2. The typical
variations of H3 (v, t) are shown in Figure 9 for a sdof system and Figure 10 for the cable
structure. The Sxx (v) and Syy (v) here are taken to be of the form

S0 (v)=
f0 [1+4zg (v/vg)2]

[1− (v/vg )2]2 +4z2
g (v/vg )2. (37)

It is assumed in the numerical work that for Sxx (v), vg =18·8 rad/s and zg =0·60 and
for Syy (v), vg =31·41 rad/s and zg =0·60, which lead to E0x /g2 =0·94, E0y /g2 =0·82,
n+

0x =3·0 Hz and n+
0y =5·0 Hz. The critical cross-psds obtained by using equation (24) in

Figure 11. Critical =Sxy (v)= for sdof system when Sxx and Syy are known; vn =6·1 rad/s, h=0·05.
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Figure 12. Critical =Sxy (v)= for the 1620 m cable when Sxx and Syy are known; support motions are vertical
and response variable is the vertical force transmitted to the support.

section 3.2 are shown for the sdof system in Figure 11 and for the cable structure in
Figure 12.

For the more general case discussed in section 3.3, the results obtained on critical psd
functions are shown in Figures 13–16. In these results, it is assumed that E0x /g2 =0·94,
E0y /g2 =0·82, n+

0x =3·0 Hz, n+
0y =5·0 Hz, v1 =1 rad/s and v2 =100 rad/s. The linear

programming at every iteration stage is solved by using the IMSL routine DDLPRS.
From a careful study of the numerical results obtained, the following points emerge.
1. The functions H1 and H2 for sdof systems show a maximum near the frequency of

the filter function Hf (v), that is, near v=vf =5·5 rad/s and another peak near the system
natural frequency. The relative magnitudes of these two peaks play a significant role in
deciding the qualitative nature of the critical psd functions. Naturally, one can conceive
a specific system for which the two peaks in the transfer function are equal; the natural
frequency of this system serving as a transition frequency to demarcate ‘‘low’’ and ‘‘high’’
frequency systems. For the results shown in Figures 4 and 5, this transition frequency is
about 17·0 rad/s. For low frequency systems the dominant peak appears at the system
natural frequency while for high frequency system the highest peak lies near the filter
frequency.

2. For the cable structure studied, the H1 and H2 functions given by equation (16) which
correspond to the transverse response, clearly show the packing of densely spaced
dominantly transverse modes between the more sparsely spaced dominantly longitudinal
modes. On the other hand, the function given by equation (17) for the horizontal force
transmitted to the support the longitudinal modes dominates.

3. While H1 and H2 are non-negative and independent of the time lag parameter t, the
function H3, on the other hand, depends on t and can take both positive and negative
values. For fixed value of v, this function is periodic in t with frequency v/2p. The
variations in v for a given t is more complicated with rapid variations occurring near the
system natural frequencies and filter frequency.

Figure 13. Critical power spectra for sdof system; vn =6·1 rad/s, h=0·05, t=1 s, E0x /g2 =0·94,
E0y /g2 =0·82. n+

0x =3·0 Hz and n+
0y =5·0 Hz: (a) Sxx ; (b) Syy ; (c) =Sxy =.
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4. While g2 in equation (19) is always positive, g1 can have either positive and negative
values. In Figure 8(a), the region where pseudo-static component dominates, g1 is negative
while it is positive around the natural frequency of the system, the region where dynamic
component dominates. In Figure 8(b) it is shown that the critical phase fxy undergoes a
sharp change at the zero of g1 which demarcates the frequency regions in which
pseudo-static and dynamic components dominate. In Figure 8(c) it is shown that in the
region where the pseudo-static effect dominates, the critical psd follows the spectrum
produced by out-of-phase motions. In the region in which the dynamic effect dominates,
the critical psd merges with the spectrum produced by in-phase excitations. However, the
fully coherent critical cross-psd from section 3.1 represents neither in-phase nor out-of
phase excitations. These critical coherent ground motions have a specific phasing which
entirely depends on system parameters.

5. The critical =Sxy (v) = functions derived as per equation (24) consist of an alternating
sequence of frequency windows in which the function takes its extreme admissible values;
namely, zero and zSxx (v)Syy (v), respectively. The spacing of these windows is governed
by the zeros of transfer function H3, which, for a given system, shows significant variations
with respect to t. The overall shape of the cross spectra is observed to be governed by
the shape of Sxx (v) and Syy (v); see Figures 11 and 12.

6. The critical psd functions obtained using the iterative linear programming
formulation presented in equations (29)–(36) (see Figures 13–16) display strong resonant
characteristics with most of the average power concentrated near a single frequency which
correspond to the location of highest peak in H1 and H2. For low frequency sdof systems,
most of the power is concentrated at the system natural frequency, and thus the response
is dominated by resonant behavior. On the other hand, for high frequency sdof systems,
power is concentrated near the filter frequency vf , with the exact location being at the point
near vf at which H3 has the highest positive peak. The critical ẍ(t) and ÿ(t) here are fully
coherent if H3 (v, t) is positive at the frequency at which Sxx and Syy peak; otherwise, they
are incoherent. Thus, for a given system, the critical ẍ(t) and ÿ(t) could be either fully
coherent or incoherent depending on value of t.

7. For the cable structure, the critical psd functions shown in Figures 15 and 16 again
show a highly narrow-banded nature, notwithstanding the fact that the system has densely
spaced modes. The frequency at which the power is concentrated again depends upon the
point at which the transfer functions H1 and H2 have the highest peak and whether H3 is
positive at this frequency. For the two cases considered this frequency is observed to lie
close to the frequency of the first dominant longitudinal mode.

8. In the critical psd functions shown in Figures 13–16, the constraints on the zero
crossing rates n+

0x and n+
0y are satisfied through the presence of a barely perceptible peak

at the higher end of frequency range; namely, at v2 =100 rad/s, with no peak appearing
in the psd function at the dominant ground frequency as one might intuitively expect.

Figure 14. Critical power spectra for sdof system; vn =25·1 rad/s, h=0·05, t=1 s, E0x /g2 =0·94,
E0y /g2 =0·82, n+

0x =3·0 and n+
0y =5·0 Hz; (a) Sxx ; (b) Syy ; (c) =Sxy =.
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Figure 15. Critical power spectra for 1620 m span cable; t=1 s, E0x /g2 =0·94, E0y /g2 =0·82, n+
0x =3·0 Hz and

n+
0y =5·0 Hz; support motions are vertical and response variable is the vertical force transmitted to the support:

(a) Sxx ; (b) Syy ; (c) =Sxy =.

9. The critical response obtained for the different systems considered is shown in
Table 1. As might be expected, for a given system, the critical response is the highest when
the prior information on the input is the least. Thus, the response obtained with the
critical-psd model of equation (24), in which knowledge of Sxx and Syy is assumed, is always
less than the results given by using the linear programming formulations of equations
(29–36), in which constraints are imposed only on the spectral moments of Sxx and Syy .

10. The critical response shows an interesting dependence on the time lag t; see
Figure 17. The response at t=0 represents one of the maxima for low frequency systems,
while for high frequency systems it represents a minimum. The lowest responses in this
figure were observed to occur when ẍ and ÿ were incoherent. For mdof systems the
variation of critical response with t showed a fairly complicated structure with no easily
discernible features.

11. The optimization iterations were generally observed to converge within about four
to five cycles of iterations. No matter how the solution was started, the same optimal
solutions were obtained. This is illustrated in Figure 18, in which the critical responses at
different stages of iterations for three different starting solutions are shown. It may be
observed that one of the sequence of solutions produces an intermediate response higher
than the eventual optimal solution. However, it must be noted that the intermediate higher
responses are not produced by feasible solutions: that is, even though the iterations were
initiated with a feasible solution, the intermediate solutions exited the feasible region
temporarily, this in turn arising due to the approximate manner in which the non-linear
constraint (32) is satisfied at every iteration.

5. ENTROPY RATE AS A MEASURE OF DISORDER IN CRITICAL EXCITATIONS

The critical psd models developed by using the iterative linear programming scheme
outlined in section 3.3 indeed lead to the determination of the highest response possible

Figure 16. Critical power spectra for 1620 m span cable; t=1 s, E0x /g2 =0·94, E0y /g2 =0·82, n+
0x =3·0 Hz and

n+
0y =5·0 Hz; support motions are horizontal and response variable is the horizontal force transmitted to the

support: (a) Sxx ; (b) Syy ; (c) =Sxy =.
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T 1

Stationary response standard deviation of different systems

zs2/g2

ZXXXXXXXXXCXXXXXXXXXV
Case A Case B Case C Case D

No. Basis of solution s2 s2 kN m−1 s2 kN m−1 s2

1 As in section 3.2, 0·044 0·014 0·604 17·71
Sxx and Syy as in equation (37)

2 As in section 3.3, 0·472 0·070 5·901 70·68
E0x/g2 =0·94, E0y /g2 =0·82,
n+

0x =3·0 Hz, n+
0y =5·0 Hz

3 As in section 5, 0·296 0·041 3·570 44·30
E0x/g2 =0·94, E0y /g2 =0·82,
n+

0x =3·0 Hz, n+
0y =5·0 Hz, M=12

4 Sxx and Sxx as per 0·034 0·012 0·514 12·74
equation (37); ẍ and ÿ
fully incoherent

5 Sxx and Sxx as per 0·043 0·012 0·552 16·95
equation (37); ẍ and ÿ
fully coherent

Case A: sdof system; vn =6·1 rad/s; h=0·05; t=1 s.
Case B: sdof system; vn =25·1 rad/s; h=0·05; t=1 s.
Case C: cable structure; t=1 s; support motions are vertical and response variable is the vertical force
transmitted to the left support.
Case D: cable structure; t=1 s; support motions are horizontal and response variable is the horizontal force
transmitted to the left support.

under the action of partially specified excitations; however, they fail to be
acceptable models for possible earthquake excitations because of their nearly deterministic
nature. This points towards the fact that the prior knowledge of earthquake records as
being random in nature has not been made total use of in defining critical excitations. The
question thus would arise as how to quantify this prior knowledge and incorporate it into
the definition of critical excitations. Such a measure can be included into the framework
of critical excitation modelling either by modifying the objectives or by imposing new
constraints. It is expected out of such an exercise that it enforces redistribution of seismic
energy to frequencies other than those associated with the structure or the singularity
suppressing filter functions. This, of course, would bring down the magnitude of structural
damage but would make the critical seismic excitations more realistic.

In this context, it may be noted that the principle of maximum entropy has been widely
used in stochastic modeling in science in engineering; see, for example, the comprehensive
monograph on this topic by Kapur [26]. This principle provides a powerful means to
handle problems involving incompletely specified probability space. Given that the concept
of random critical excitation primarily deals with incompletely specified random processes,
it is of interest to explore the relevance of entropy rate considerations in defining critical
excitations. Thus it would be of interest to define critical excitations which satisfy an
additional constraint that they possess entropy rates which are commensurate with those
associated with accepted models for earthquake excitations. Motivated by this
consideration, the present authors have recently examined the consequences of
incorporating entropy rate considerations in characterizing the critical psd functions for
single point excitations [11]. A feature which was observed during this study was that
excitations with higher entropy rates produce lower responses. We reiterate here the
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arguments used in our previous paper but set them in the context of multiple support
excitations.

We begin by considering the proposal that the definition of random critical excitations
be modified to incorporate an additional objective that the excitations not only maximize
system response but also produce the highest entropy rate consistent with the partial
information available: the aim being to produce optimally disordered critical excitations.
Briefly stated, the problem now consists of finding the input psd matrix which would not
only maximize the response variance given by equation (7) under the constraints of
equations (25) and (26), but also, maximize the entropy rates of the processes ẍ(t) and ÿ(t)
given, respectively, by

H�x =loge z2pe+
1

2(v2 −v1) g
v2

v1

loge Sxx (v) dv (38)

and

H�y =loge z2pe+
1

2(v2 −v1) g
v2

v1

loge Syy (v) dv (39)

It may be noted that this definition of entropy rate assumes that the random processes
ẍ and ÿ are Gaussian [27]. Now the problem not only has multiple objectives but, also,
additional non-linearities have been introduced through the new objective functions. One
way in which to solve this problem is to maximize separately the functions H�x and H�y under
the constraints of equation (25) and (26) and subsequently impose the resulting maximum
entropy rates as additional constraints in maximizing the response variance. The first level
of optimization can be carried out within the framework of calculus of variations in
conjunction with Lagrangian multipliers. This consists of, for example, finding the
maximum of the Lagrangian

Lx (Sxx , n1, n2)= loge z2pe+
1

2(v2 −v1) g
v2

v1

loge Sxx (v) dv

+n1 $−E0x +g
v2

v1

Sxx (v) dv%+ n2 $−E2x +g
v2

v1

v2Sxx (v) dv%, (40)

where n1 and n2 are Lagrangian multipliers. This leads to the maximum entropy psd
function

S̃xx (v)=−2(v2 −v1)/(n1 +v2n2), (41)

from which one can find the maximum entropy H�*x . By using a similar procedure, H�*y can
also be determined. The next step is to maximize s2 under the constraints of equations (25)
and (26) and the additional constraints

H�*x =loge z2pe+
1

2(v2 −v1) g
v2

v1

loge Sxx (v) dv (42)

and

H�*y =loge z2pe+
1

2(v2 −v1) g
v2

v1

loge Syy (v) dv (43)
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Figure 17. Critical response for sdof system; h=0·05. Natural frequency (rad/s), M: —, 6·1, 1; ----,
6·1, 5; — —, 6·1, 12, (—(, 25·1, 1; P—P, 25·1, 5; W—W, 25·1, 12.

The previous studies which we have carried out on single point excitations [11] have shown
that this approach has the following two drawbacks.

(a) The approach results in very low response levels, which is indicative of loss of sense
of criticality. In fact, the response obtained was found to be lower than what would be
produced by a Kanai–Tajimi earthquake model with comparable variance zero crossing
rate.

(b) The resulting input entropy rates were much higher that those associated with valid
earthquake random process models such as the Kanai–Tajimi stationary random process
model.

To circumvent these difficulties two measures were considered.
(a) Define a utility function which is a weighted sum of system response and the input

entropy rate and find the optimal psd function which maximize the utility function.
(b) Relax the maximum entropy constraint by requiring that the critical psd functions

need not have the highest entropy rate as imposed above but, instead, resemble the
maximum entropy psd functions S̃xx (v) and S̃yy (v) only partially. This can be achieved
by calculating the spectral moments of S̃xx (v) and S̃yy (v) and impose them as additional
constraints in maximizing the response variance.

Of these two options, the last option was found to be feasible from the point of view
of implementation. In the present problem, this latter option has the advantage that the

Figure 18. Convergence of critical response for sdof system with different feasible starting solutions; h=0·05;
vn =6·1 rad/s. Starting solution: (—(, 1; P—P, 2; R—R, 3.
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Figure 19. Critical power spectra for an sdof system with entropy rate constraints; vn =6·1 rad/s, h=0·05,
t=1 s, E0x /g2 =0·94, E0y /g2 =0·82, n+

0x =3·0 Hz and n+
0y =5·0 Hz and M=12: (a) Sxx ; (b) Syy ; (c) =Sxy =.

resulting problem can be solved within the framework of the iterative linear programming
method outlined in section 3.3. Thus, it is required to maximize the system response given
by equation (7) under the constraints (25) and (26) and the additional spectral moment
constraints given by

g
v2

v1

vkS̃xx (v) dv=g
v2

v1

vkSxx (v) dv, (44)

g
v2

v1

vkS̃yy (v) dv=g
v2

v1

vkSyy (v) dv, k=0, 1, 2, . . . , M. (45)

The resulting critical psd functions are now functions of the number of spectral moment
constraints imposed. An important feature which has been observed in our studies is that
with the increases in the value of M, the entropy rate increases monotonically and the
response on the other hand is reduced monotonically [11]. This would mean that, the
parameter M can be used to control the level of disorder that might be expected in the
critical excitation.

In Figures 19 and 20 are shown the critical psd obtained by using the above formulation
with M=12 for the sdof and the cable structures studied previously. The critical response
variance obtained is listed in Table 1. The consideration of entropy rate as a measure of
uncertainty has been observed to bring down the critical response (see Figure 17) and make
the critical excitations rich in frequency content. In Figure 21 are shown Gaussian samples
of critical excitations generated compatible with the psd shown in Figure 20, which
corroborate the latter observation. As has been already noted, the critical psd and the
response are now dependent on M and, consequently, the question of choosing M becomes

Figure 20. Critical power spectra for 1620 m cable with entropy rate constraints; t=1 s, E0x /g2 =0·94,
E0y /g2 =0·82, n+

0x =3·0 Hz and n+
0y =5·0 Hz and M=12; support motions are vertical and response variable is

the vertical force transmitted to the support: (a) Sxx ; (b) Syy ; (c) =Sxy =.
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Figure 21. Sample critical excitations compatible with psd functions of Figures 22 and 23 with
E0x =9.4×10−3 g2 and E0y =8.2×10−3 g2: (a) ẍ for 1620 m span cable; (b) ÿ for 1620 m span cable.

important. This requires further studies on entropy rate as a descriptor of disorder in
random process models for earthquake loads.

6. CONCLUSIONS

Specification of the seismic inputs with account taken of their multi-component and
spatial variability effects requires the characterization of the input as a vector of
excitations. This characterization must encapsulate not only the time and frequency
characteristics of individual components, but also, the cross-correlations among the
distinct components. Design methods employing the traditional response spectrum
philosophy are at a disadvantage in this context. This is because, the response spectra, by
definition, deal only with a single excitation component. The concept of critical
cross-power spectral density functions, developed in this paper, aims to establish the
optimal cross-correlation amongst the distinct excitation components, which, in turn, leads
to the highest response in a given structure, and provides a counterpoint in
multi-components/multi-support earthquake input modelling.

This paper introduces the definition of critical seismic psd matrices for extended
structures supported discretely at two points and outlines an iterative optimization
procedure based on linear programming method for the determination of the critical psd
functions. These functions produce highest steady state response variance in a given linear
structure and at the same time satisfy constraints on variance, average zero crossing rates,
frequency content and transmission time lag. The usefulness of imposing constraint in
terms of entropy rate as a quantitative measure of uncertainty is also discussed. In the
special case in which knowledge of auto-spectral densities is available, the critical
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cross-spectral density function represents fully coherent motions which are produced by
neither in-phase nor out-of-phase support motions. This model of critical excitations can
be useful to study the critical response of short-span stiff structures based on rapidly varying
local soil conditions. In this case, the main source of spatial variability of the ground motions
is due to the site-response effect, which can be modelled by the phase spectrum alone.
Moreover, this model can be used to obtain the exact upper bounds of response of multiply
supported secondary systems such as piping networks in nuclear industry. The upper bounds
of the response obtained can be utilized to study the validity of the existing design practice.
In the other case where, in addition to the knowledge of auto-spectral densities, the phase
spectrum of excitations is also taken to be known, the critical response is produced by a
specific form of coherent motions which represents neither fully coherent nor fully
incoherent ground motions. This model of excitations is suitable for long-span structures
where the variability of the ground motions is primarily influenced by coherency loss and
wave-passage effects. Extension of the approach discussed here is to include nonstationary
random excitations and to develop random field excitation models is currently being studied
by the present authors.
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