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A methodology of bounds analysis based on the convex set of uncertainty is presented.
An infinitely long beam on an uncertain foundation is subjected to a moving force with
constant speed. The steady state vibration is analysed in the context of the finite element
method. Uncertainty variables representing the uncertain fluctuation of foundation stiffness
is confined within a convex hull given as a hyperellipse. The fluctuation of dynamic
responses of the beam, that is, the vertical deflection and the bending moment are
approximated to a first-order with respect to the uncertainty variables. The upper and lower
bounds of the response fluctuations are identified on the boundary of the convex model
by means of the Lagrange multiplier method. Numerical analysis demonstrates the validity
of the proposed formulation for various constant speeds of the moving force. The analysis
is summarized in terms of the worst response, which is the maximum absolute value of the
response within the identified bounds.
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1. INTRODUCTION

A railway track is frequently idealized by an infinitely long beam on an uncertain
foundation, which governs the uncertain response of a railway track [1–3]. The uncertainty
in a structural system has been dealt with by the stochastic methodology based on the
probabilistic theory [4]. The stochastic analysis of a dynamic railway track is attempted
by Frýba [5] by using approximate analytical methods, and that of the steady state
vibration was carried out by the authors [2] by means of the stochastic finite element
method.

If one can obtain an accurate stochastic property of the uncertainty, such as the
probabilistic density function, the stochastic methodology will give useful and reliable
information concerning the structural integrity. However, the identification of the
stochastic property is a difficult task, since the sources of the uncertainty are very complex
in reality [6, 7]. Even in case that one can completely identify the stochastic property, there
should be a trade-off between the information used for the analysis and the computational
labour required for the analysis, since the labour increases in accordance with the amount
of used information and becomes tremendous for real structures.

Recently, a few methods coping with uncertainty in structural systems have been newly
proposed based on quasi-probabilistic theories, where a part of the stochastic property is
neglected for the reason of incomplete identification or for the purpose of mitigation of
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the computational labour [6–10]. In these newly proposed methods, attention is only paid
to the boundary of the fluctuation of the uncertainty, so that the fluctuation of the
uncertain parameters is confined within a convex region [6–8, 10] or is handled by interval
algebra [9].

In this study, a method is proposed to identify the bounds of uncertain fluctuation of
a structural response based on a convex set of uncertainty variables applied to the problem
of the dynamic railway track on an uncertain foundation. The structural system is
discretized by finite elements developed by the authors [2], and uncertainty variables are
assigned to the foundation stiffness of all the elements. The fluctuation of uncertainty
variables is confined within a convex hull represented by a hyperellipse.

The uncertain change of structural responses, that is, the vertical deflection and the
bending moment of the beam are approximated to a first-order by means of the finite
element sensitivity analysis with respect to the uncertainty variables. The bounds of the
response fluctuation are identified by means of the Lagrange multiplier method within the
boundary of the convex model of the uncertainty variables. Numerical analysis for several
constant speeds of the moving force is demonstrated to show the validity of the proposed
method. The result of the bounds analysis is summarized in terms of the worst response,
that is, the maximum absolute value within the estimated bounds.

2. FINITE ELEMENT DISCRETIZATION WITH UNCERTAINTY VARIABLES

The Bernoulli–Euler differential equation (1) represents the equation of motion of an
infinitely long beam on a Winkler foundation subjected to a single moving force with
constant speed (see Figure 1),

EI
14v(x, t)

1x4 + m
12v(x, t)

1t2 +2mvb
1v(x, t)

1t
+ k(x)v(x, t)= d(x− ct)f, (1)

where EI is the bending stiffness, v(x, t) is the vertical deflection of the beam, x is the fixed
co-ordinate along beam, t represents the time, m is the mass per unit length, vb is the
coefficient of damping of Kelvin–Voigt type, k(x) is the stiffness of the Winkler foundation,
d( · ) is the Dirac delta function, c is the speed of moving force and f is the vertical force.

Assume that only the foundation stiffness k(x) varies uncertainly along the beam as
illustrated in Figure 1, and the uncertainty is represented in the form of equation (2) by
introducing an uncertainty variable o(x), such that

k(x)= k*[1+ o(x)]. (2)

Figure 1. Railway track idealized by infinitely long beam on Winkler foundation with uncertain foundation
stiffness.
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Figure 2. Finite element discretization of a beam on Winkler foundation.

The asterisk means a nominal value hereafter. In this study, the stochastic property is
neglected and attention paid only to the boundary of the uncertain fluctuation of o(x) and
an ellipsoidal convex model is employed to bound the fluctuation [11]. The nominal value
of o(x) is set equal to zero in the following formulation.

The governing equation (1) is transformed into the equation of steady state vibration
by the introduction of the normalized coordinate s, which moves with the force f at
constant speed c, irrespective of initial condition [5],

s= l(x− ct), (3)

where

l=[k*/(4EI)]1/4. (4)

Assuming that the steady state vibration depends only on the normalized co-ordinate s,
the vertical deflection v(x, t) and bending moment M(x, t) are normalized by the static
vertical deflection v0 and bending moment M0 at the loading point as

v(x, t)= v0v(s), (5)

M(x, t)=−EI
12v(x, t)

1x2 =M0M(s), (6)

where

v0 = f/(8l3EI)= fl/(2k*), (7)

M0 = f/(4l). (8)

The governing equation of steady state vibration on the normalized co-ordinate s is derived
as equation (9) after the substitution of equations (3), (4), (5) and (7) into the basic
equation (1),

d4v(s)
ds4 +4a2 d2v(s)

ds2 −8ab
dv(s)
ds

+4[1+ o(s)]v(s)=8d(s), (9)

where a is speed parameter and b damping parameter defined by the following equations,

a= c/ccr , (10)

b=vb (m/k*)1/2. (11)

ccr denotes critical speed of the moving force [5],

ccr =2l(EI/m)1/2. (12)

Discretizing the beam into N finite elements with length l, define nodal displacements
vi and ui , and nodal forces fi and Mi as shown in Figure 2 in the context of the conventional
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finite element method. Applying the principal of virtual work to the governing equation
(9) of steady state vibration, the stiffness equation for one element is obtained as

([K]−4a2[D]+8ab[V]+4[1+ on ][R]){U}= {F}, (13)

where {U} and {F} consist of nodal displacements and nodal forces, respectively,
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and [K], [D], [V] and [R] are called stiffness, dynamic, viscous and reaction matrices,
respectively,
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3. BOUNDS ANALYSIS BASED ON A CONVEX SET OF UNCERTAINTY

Conventional reliability analysis has been founded on the probabilistic variables
spreading from minus infinity to infinity. In this study, the fluctuation of uncertainty
variables are confined within a convex region and the probabilistic density of the inside
is neglected. Uncertainty variables on are assigned to the foundation stiffness of all the
elements discretized by the manner stated in the previous section,

kn = k*(1+ on ), (19)
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where k* is nominal value of the foundation stiffness, and the nominal value of on is set
equal to zero for all the elements. The fluctuation of the uncertainty variables is assumed
to be bounded by a convex region. There is a possibility of using several kinds of convex
models [11]. In this study, an ellipsoidal convex model given as,

{o}T[V]{o}E 1, (20)

is employed, where {o} consists of the uncertainty variables on . The symmetric and positive
definite matrix [V] is determined a priori so as to govern the extent and the boundary shape
of the hyperellipse.

In the context of bounds analysis, the problem is posed as follows: find the upper and
lower bounds of the response of a structural system caused by the fluctuation of the
uncertainty variables within a convex hull. The bounds of the vertical deflection and the
bending moment of the idealized beam are estimated in this study. The estimation along
the beam is carried out on the nodes for the deflection and on the mid-points of elements
for the moment. In the following formulation, the deflection and the moment under the
estimation are denoted by z and called structural response. For the bounds estimation, the
change of structural response z is approximated to a first-order with respect to the
uncertainty variables,

z= z*+ s
N

n=1

zI
non = z*+ {o}T{zI}, (21)

where zI
n is the rate of change of z with respect to on , and {zI} consists of the rate of change.

z* is evaluated by the nominal analysis, in which the nominal value of on , that is, on =0
is employed. The rate of change zI

n is analysed by the finite element sensitivity analysis [12].
The maximum and minimum values of the approximated structural response take place
on the boundary of the convex hull of equation (20), since equations (21) and (20) are linear
and quadratic functions, respectively, with respect to the uncertainty variables. The search
for both values is carried out by the Lagrange multiplier method employing the following
functional P,

P= {o}T{zI}+ j({o}T[V]{o}−1), (22)

where j is the Lagrange multiplier. The stationary condition of P with respect to the
uncertainty variables and the Lagrange multiplier gives rise to the simultaneous quadratic
equations:

1P

1{o}T = {zI}+2j[V]{o}= {0}, (23)

1P

1j
= {o}T[V]{o}−1=0. (24)

The solution of the above equations is as follows:

{o}=2
{r}

z{r}T[V]{r}
, (25)

where {r} is an abbreviation vector given as

{r}=[V]−1{zI}. (26)

The bounds of uncertain fluctuation of z are estimated by equation (27) within the sense
of the first-order approximation:

z= z*+ {o}T{zI}. (27)
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The above formulation is based on the first-order approximation of the structural response
change with respect to the uncertainty variables. The validity of the proposed formulation
is therefore limited within the case that the linearity of the response with respect to the
uncertainty variables is not violated much.

When the convex model is given as a hypersphere, that is, the matrix [V] is given as
a multiplied identity matrix, the uncertainty variables for the bounds, which are evaluated
by equations (25), become proportional to the rate of change of the response {zI}.

Making the observation point move along the beam, one can estimate the bounds of
z throughout the system. After the estimation, the maximum absolute value of z within
the estimated bounds is identified. The worst case is thus defined as the status which gives
rise to the maximum absolute value.

4. NUMERICAL ANALYSIS

The proposed bounds analysis is carried out for various constant speeds of a moving
force. The speed parameter a is changed from 0·0 to 2·0 with increments of 0·1. Damping
parameter b is fixed to 0·5. Employing normalized co-ordinate s and applying the load at
s=0·0, the system is analysed from s=−15 to s=15 until a=1·0, from s=−30 to
s=30 over a=1·0 to realize the boundary condition of an infinitely long beam on the
foundation. The length of one element l is set equal to 0·1 in every analysis. The convex
model of uncertain fluctuation of the foundation stiffness is given as a hypersphere with
radius 0·8. The observation points are set at all the nodes for the analysis of vertical
deflection, and at mid-points of all the elements for the bending moment. In this case the
value of a UIC 60 rail is used and the nominal value of the foundation stiffness taken as
k*=50·0 Mpa, the parameter l of equation (3) and the critical speed ccr become 1·18 l/m
and 772 m/s, respectively.

The results of a bound analysis for the vertical deflection and the bending moment are
shown in Figure 3 for a=0·0, that is, the static case. The solid and broken lines correspond
to the results for the deflection and the moment, respectively. The thick line indicates the
nominal value, and the thin lines give the estimated bounds in both results. Theoretically

Figure 3. Result of bounds analysis: a=0·0, b=0·5. ——, Vertical deflection; - - -, bending moment. Thick
line for nominal value and thin lines for bounds.
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Figure 4. Uncertainty variables raising the worst case: a=0·0, b=0·5. ——, Vertical deflection; - - -, bending
moment.

speaking, nominal vertical deflection and nominal bending moment at loading point
s=0·0 must be equal to 1·0 [5]. The result of the finite element analysis for vertical
deflection coincides with the theoretical analysis. On the other hand, nominal bending
moment at the loading point looks smaller than 1·0 in Figure 3, since the evaluation is
done at the mid-point of the element, which is located apart from the loading point by
l/2. The interval between upper and lower bounds is larger for the vertical deflection than
for the bending moment in this static problem. The worst cases, which give rise to the
maximum absolute value within the evaluated bounds, occur at loading point both for the
vertical deflection and the bending moment. The uncertainty variables raising these worst
cases are illustrated in Figure 4. The symmetry with respect to the loading point is kept
at the nominal value, the bounds and the uncertainty variables of the worst case for both
the vertical deflection and the bending moment.

Figure 5. Result of bounds analysis: a=0·8, b=0·5. ——, Vertical deflection; - - -, bending moment. Thick
line for nominal value and thin lines for bounds.
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Figure 6. Uncertainty variables raising the worst case: a=0·8, b=0·5. ——, Vertical deflection; - - -, bending
moment.

The maximum nominal value, the interval of bounds and consequently the worst value
increase with raising speed until a=0·8 both for the vertical deflection and the bending
moment. The bounds of the vertical deflection and the bending moment are illustrated in
Figure 5 for a=0·8. The interval of the bounds is larger for the deflection than that for
the moment also in this case. Different from the result of the static case, the worst deflection
occurs behind the loading point in dynamic problems, whereas the worst moment occurs
at the loading point until a=1·0. The uncertainty variables raising the worst cases are
indicated in Figure 6. The symmetry of the uncertainty variables is not violated so much
for the deflection as for the moment.

The maximum nominal value and the interval between bounds behind the loading point
decrease when the speed rises above a=0·8 both for the deflection and the moment. Above
a=1·0, the worst moment occurs before the loading point and maximizes at a=1·2. The
results of the bounds analyses for the deflection and the moment at a=1·2 are indicated

Figure 7. Result of bounds analysis: a=1·2, b=0·5. ——, Vertical deflection; - - -, bending moment. Thick
line for nominal value and thin lines for bounds.
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Figure 8. Uncertainty variables raising the worst case: a=1·2, b=0·5. ——, Vertical deflection; - - -, bending
moment.

in Figure 7. The interval between the bounds for the moment is larger than that for the
deflection in this case. The distributions of the uncertainty variables, which raise the worst
cases, are indicated in Figure 8. The symmetry of the distribution seems to be kept in the
uncertainty variables for the worst deflection.

The results of the bounds analyses are summarized in Figures 9 and 10 for the deflection
and the moment, respectively. In both figures, the solid line with blank squares indicates
the worst value, that is, the maximum absolute value within the estimated bounds, and
the solid line with blank circles corresponds to the nominal value. The worst moment
occurs before loading point over a=1·0. This change in location results in two maximum
worst values in Figure 10. The nominal value and the upper bound at the point of load
application is indicated by the broken line in Figure 10. The difference of the worst value

Figure 9. Variation of the worst vertical deflection with speed parameter: q, the worst value; w,
corresponding nominal value.
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Figure 10. Variation of the worst bending moment with speed parameter: q, the worst value; w,
corresponding nominal value; ---, values at the loading point.

from the nominal value decreases more in the deflection than in the moment with the rising
speed over a=0·8.

5. CONCLUSIONS

A methodology to evaluate the uncertain dynamic response of an infinitely long beam
on an uncertain foundation based on a convex set of uncertainty is presented. The beam
is discretized by finite elements and subjected to a moving force with constant speed. The
uncertainty variables are assigned to the foundation stiffness of the Winkler foundation,
and the fluctuation of the uncertainty variables are confined within a convex region given
by a hyperellipse. The change of dynamic response caused by the uncertainty variables is
approximated to a first-order by means of a finite element sensitivity analysis. The bounds
of the structural response caused by the fluctuation within the convex region of uncertainty
variables are evaluated by means of the Lagrange multiplier method.

Numerical analyses are carried out for various constant speeds by changing the speed
parameter from a=0·0 to a=2·0 with increments of 0·1. The results of the analyses are
summarized in terms of the worst value, which is the maximum absolute value within the
estimated bounds. The worst vertical deflection is maximized at one point with respect to
the speed parameter. On the other hand the worst bending moment holds two peaks. The
interval of the bounds decreases more for the deflection than for the moment when the
speed is raised over a=0·8.
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