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1. INTRODUCTION

Continuous, rectangular plates executing transverse vibrations have been studied by
several investigators [1, 2]. The case of a solid circular plate with internal circular or secant
supports has been treated in reference [3].

The present study deals with the determination of the fundamental frequency of
transverse vibration of the structural system shown in Figure 1. Three different approaches
are used in order to obtain approximate values of the fundamental frequency coefficients:
the optimized Rayleigh—Ritz (R—R) method [4-6]; the finite element method using a
standard, well-known code [7]; the differential quadrature (DQ) method [§].

The optimized R—R method is formulated taking into account the existence of an outer
edge elastically restrained against rotation (Figure 1) but the numerical results are obtained
for the clamped or simply supported limiting cases.

2. ANALYTICAL SOLUTION BY MEANS OF THE OPTIMIZED RAYLEIGH—RITZ METHOD

Following previous studies [6], it is convenient to approximate the fundamental mode
shape of the structural element shown in Figure 1 using the expression

W(r): Wa (r): C] (OCPVP-}—OCQ}’Q‘}—O(Z}’Z—'— 1)+ Cz(ﬁprP+l+ﬁQrQ+l+ﬁ3r3+ 1), (1)

where P and Q are Rayleigh’s optimization parameters and where the «’s and f’s are
determined substituting each co-ordinate function in the boundary conditions

_ _ awi _ &ew  pdw
W(a) - W(C) - Oa dr "_a - ¢D< d’,z + r dV >,.a (237 b)
The natural boundary conditions are r = b are not satisfied.
For the present case they are
M. (b) = Q. (b) =0, 3)

where M, (b) is the radial bending moment and Q, (b) is the shear force.

This is certainly a legitimate procedure, since use will be made of the classical
Rayleigh—Ritz method. On the other hand, since the condition that the shear force is null,
is not used, the present procedure possesses the additional advantage that it is valid for
the situation where b = ¢ or, in other words, the plate is simply supported at r = b = c.
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Figure 1. The vibrating system under study: free edge at r = b, ¢ = flexibility coefficient.
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Substituting equation (1) in the governing functional

D[ (™ (/&w 1dwY &EwN\/1dw
=2 | {(aF 1) -0 o ()G ) Jrore

— pzhwlj J W dr do @)
b 0

and requiring that

-0 =12, 5)
one obtains an homogeneous, linear system of equations in the C;’s. The non-triviality
condition yields a determinantal equation the lowest root of which constitutes the
fundamental frequency coefficient of the structural system shown in Figure 1,
Q, = ./ph/Dw, a’.

Since the method yields upper bounds, one can minimize €2, with respect to P and Q
(either independently keeping constant one of them or with respect to both parameters
simultaneously). The value of , is then optimized.

3. APPLICATION OF THE DQ METHOD

As it is well known, the classical treatment of transverse vibrations of the system
depicted in Figure 1 constitutes satisfying the differential system,

D<W‘V+2W; —I/l_/z+l/rz>—phw2W=0, ©6)
ry ceelgees |
12 3 4 g N-2 N-1 N
—>| J|e— —>{ §|e—

Figure 2. Partition of the domain when using the differential quadrature technique.
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TABLE 1

Values of Qi in the case in which the inner boundary is simply supported
(b = ¢): comparison of results

bla
Boundary - A N
condition Method 0-1 02 0-3 04 0-5
Simply [10]* 14-5 — 21-1 — 40-00
supported FE 14-44 16:73 21-04 28-09 40-02
outer [91F 14-44 17-39 21-31 28:25 40-01
boundary R-R 14-52 16:80 21-08 2815 40-33
Clamped [1071* 22:6 — 33-7 — 639
outer FE 22-58 26-62 33-66 4494 63-87
boundary [91F 22-61 26-57 33-66 44-89 64-06
R-R 2293 26-74 33-79 4521 64-90

* References [10] states that the eigenfrequency is independent of the Poisson ratio. This
does not appear to be a correct statement.
T Determined for v = 1/3.

W)+ Wy =0, w50 O o e =0 (ao)
W(a) =0, W'(a) =0, (clamped outer edge); (7d, e)

W(a) =0, W"(a) + 2 W'a)=0 (simply supported outer edge). (8a, b)

Introducing the dimensionless variable r = 7/a and substituting in equation (6), one
obtains

v wrwr W , _ pha‘w’
ww 42 . Pl QW =0 Q—iD . 9
The boundary conditions become
W"(r) +~ Wry) = 0, W"(ry) + W) _ W) (fh) =0; (10a, b)
Ty Ty iy
W(r.) =0, r,=>bla, r.=cla; (10c)
w(l) =0, w'(1) =0, (clamped outer edge); (10d, e)

w(1) =0, wra)y+vw’(1) =0, (simply supported outer edge). (11a, b)

Using Bert’s well-established notation [8] one denotes by Ax, Bi, Cix and Dy the coefficients
of the linear combinations of first, second, third and fourth order derivatives, respectively.
Application of the DQ method leads, then, to the following linear system of homogeneous
equations in the discrete values of the displacement amplitude, W (see Figure 2):
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N=1
z<Dm+fc,-k—EB,-k+1A,-k>Wk—92W;=0, i=3,... N—2 i#i, (2a)

N—-1
> <Bik+;}1Alk>Wk=Oa (12b)
k=1
N—-1 1 1
Y C2/<+7232k_7§142/< Wi =0, (12¢)
k=1
NoT N
Y <B(Nl)k+rA1A(N1)k>Wk:0, (12d)
k=1 /=

when the plate is simply supported at the outer edge. A similar system of linear,
homogeneous equations is obtained when the plate is clamped at the outer edge. Following
reference [8] the calculations performed in the present study have been performed making
0 =10~ (Figure 2).

4. NUMERICAL RESULTS

All calculations have been performed for v (the Poisson ratio) = 0-3. The frequency
determinations carried out by means of the DQ method have been concerned with the
configurations b/a = 0-2 and 0-4 of Figure 1 (N = 10 and 15 respectively). For the finite

TABLE 2

Values of €, in the case of an annular plate of dimensions bla as the
concentric inner support varies its position (c/a): comparison of results

(v=203)
cla

Boundary ‘ A \

condition bla Method 0-3 0-4 05 0-6

Simply 0-2 DQ 20-06 2542 34-85 —
supported FE 22:03 28-52 30-70 23-87
outer edge R-R 22-17 28-96 30-93 24-42
0-4 DQ — — 3578 52-80
FE — — 39-97 46-39
R-R — — 40-28 46-56

Clamped 0-2 DQ 31-78 40-81 — —
outer FE 34-70 42:63 3592 25-50
edge R-R 3491 43-01 36-47 26-20

0-4 DQ — — 57-53 —
FE — — 62-60 56-63

R-R — — 63-32 57-64
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TABLE 3

Fundamental frequency coefficients Q, in the case of a solid circular
plate with a concentric circular support at r = ¢: comparison of results

(v =0-30)
Clamped Simply supported
A A
r N A
cla Reference [3] DQ Reference [3] DQ
0-1 25-03 24-13 16:22 15-67
0-2 30-02 27-31 19-34 17-62
0-3 36-99 32:69 23-96 20-84
0-4 39:60 42-35 2895 26-28

element determinations 6400 elements were considered (some cases were tested with an
8000-element modelling and no significant differences were noticed).

Table 1 depicts a comparison of fundamental eigenvalues for the case where b/c = 1 or,
in other words, where the inner boundary is simply supported. The agreement between the
eigenfrequencies determined by the R—R and FE approaches is quite satisfactory. In
general the R—R method yields results which are, at most, 2% higher than the values
obtained by means of the finite element technique.

Table 2 shows a comparison of values of Q, for b/a = 0-2 and 0-4. For the first case
the parameter ¢/a was taken equal to 0-3, 0-4, 0-5 and 0-6, while for the second c¢/a = 0-5
and 0-6.

It is observed that for ¢/a = 0-5 the DQ results differ by approximately 10% from the
values obtained by means of the R—R and finite element methods which, on the other hand,
are in very good agreement from an engineering viewpoint.

For c¢/a =06 the eigenfrequencies determined using the DQ technique were not
satisfactory.

The DQ method has also been applied in the present study to the case of solid circular
plates of radius @ and a concentric circular support at r = c.

A comparison with the results obtained in reference [3] is presented in Table 3. The
maximum differences with the values available in the literature are of the order of 10%
and occur for ¢/a = 0-3.

For ¢/a > 0-4 the DQ technique did not provide satisfactory accuracy.

Tables 4 and 5 depict fundamental frequency coefficients for simply supported and
clamped outer boundaries, respectively. The tables allow for the evaluation of the
following:

(1) The convergence of the procedure as one and two polynomial co-ordinate functions
are used, column (A).

(2) The effect of optimizing Q, with respect to the exponential parameter P, as Q is kept
constant, column (B), when two co-ordinate functions are used.

(3) The effect of optimizing €, with respect to Q, as P is kept constant, when two
co-ordinate functions are used.

It is observed that in some instances (2) is more effective than (3); in others the situation
reverses, and in some cases they are equivalent.

It is interesting to notice the fact that as c¢/a approaches unity the value of Q; is
practically the same, regardless the type of boundary condition at the outer boundary (see,
for instance, the case in which b/a = 0-5, ¢/a = 0-9: Q, = 23-48, Table 4, and Q, = 24-23,
Table 5).
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TABLE 4

Circular anular plate with an outer simply supported boundary

(A) (B) ©)
ba ca P Q Qv o 1 o w a
o1 01 4 3 1595 1514 01 3 1451 4 12 1453
02 18:67 1848 08 18-44 27 1847
03 2356 2350 17 2344 12 2346
0-4 29-21 2899 22 2895 14 2888
05 28-56 2842 1 2819 07 2822
06 2265 261 12 22:47 73 2242
07 17-94 1778 21 17-75 14 1768
0-8 1516 1442 71 14:37 93 1437
09 13-71 1245 154 11:99 172 12:01
02 02 4 3 1758 1691 23 3 1680 4 19 1679
03 2224 220 87 2217 39 2220
0-4 29-13 2901 23 28:99 15 2896
05 3122 3106 1 3093 07 3094
06 2475 2449 89 24-42 27 2448
07 1892 1891 16 18-83 1 1876
0-8 1555 1523 102 1512 149 1517
09 13-85 1311 197 12:52 219 1260
03 03 4 3 2126 2008 52 3 2108 4 35 2107
0-4 2910 2893 13 28-88 07 2891
0-5 3718 3690 32 36:89 127 3683
06 3160 3153 97 31-38 61 3134
07 2284 2280 10°1 2276 127 2264
0-8 17-87 1741 96 17:33 152 1735
09 1546 1454 206 1391 233 1399
04 04 4 3 2831 2827 01 3 2817 4 82 2815
0-5 42:37 4039 19 40-28 12 4031
06 47-44 4670 11 4656 106 4656
07 3313 3265 06 3248 01 3253
0-8 2401 2:60 56 2258 85 2258
09 19-87 1772 179 17:05 197 17:08
05 05 4 3 4136 4038 01 3 4010 4 01 4017
06 6828 6078 29 6073 21 6074
07 59:00 5634 01 5571 01 5584
0-8 3818 3425 33 3424 21 3423
09 29-48 2422 151 2348 153 2348
06 06 4 3 6685 6265 01 3 6222 4 01 6230
07 1178 9970 36 9970 27 9970
0-8 7418 6452 08 6413 01 6416
09 5039 3817 1218 3737 119 3736
07 07 4 3 1238 110-7 o1 3 1101 4 01 1102
0-8 198:5 167:0 01 1664 01 1664
09 1037 7507 96 7450 81 7448
08 08 4 3 2908 2478 02 3 2472 4 02 2473
09 3192 240-2 18 239-4 18 2396
09 09 4 3 1210 988-1 01 3 9871 4 01 9872

Notes QO determined with one co-ordinate function; Q@ determined with two co-ordinate functions.
(A) results obtained without optimization; (B) results obtained optimizing with respect to P; (C) results obtained
optimizing with respect to Q.



570 LETTERS TO THE EDITOR

TABLE 5

Circular anular plate with an outer clamped boundary

(A) (B) ©
r N 4 A N r A-
bla ca P Q QU Qo oo aa oo &
01 01 4 3 2496 2344 01 3 228 4 15 2278
0-2 2923 2882 57 2877 37 2878
0-3 3637 3636 87 3613 69 3592
0-4 4018 4004 11 39-76 07 39-84
05 3256 3191 63 3176 42 3181
0-6 2410 2410 97 23-88 77 2374
0-7 1900 1858 33 18:57 124 1843
0-8 1608 1497 79 1481 92 1482
0-9 1434 1289 182 12:20 194 1222
02 02 4 3 278 2679 32 3 2675 4 25 2675
0-3 3518 3512 82 3493 53 3491
0-4 4318 4318 98 4301 61 4312
05 3747 3652 52 36:47 34 3649
0-6 2655 2640 91 2620 54 2628
0-7 2001 1989 23 19:86 14 1978
08 1648 1588 104 1565 141 1571
0-9 1449 1360 217 1275 233 1283
03 03 4 3 3413 3391 66 3 3379 4 47 3377
0-4 4650 4604 09 4575 91 4549
0-5 5085 5085 88 5063 61 5051
0-6 3539 3537 98 34-98 72 3474
0-7 2458 2428 25 2426 127 2404
0-8 1917 1824 97 18:05 138 1808
0-9 1632 1514 221 1421 241 1429
04 04 4 3 4579 4567 01 3 4529 4 86 4521
0-5 6772 6380 13 6332 05 6341
0-6 5910 5854 0 57-64 98 57-69
0-7 3692 3557 1 3529 124 3529
0-8 2639 2384 67 2374 72 2374
0-9 2133 1856 199 17:49 202 1752
05 05 4 3 6709 6510 01 3 6428 4 01 6455
0-6 105:9 9369 17 9322 08 9328
0-7 6943 6506 O 63-67 01 6401
08 4314 3651 42 36:50 34 3650
0-9 3231 2554 174 2424 174 2423
06 06 4 3 1084 1005 01 3 9932 4 01 9962
0-7 1669 1434 0-6 142-4 01 1425
08 8609 7047 14 70-10 08 70-16
0-9 5642 40-55 153 38:95 145 3892
07 07 4 3 2010 1765 01 3 1750 4 01 1753
08 2479 2065 0-1 2036 01 2042
0-9 119:0 8041 121 78:89 113 7882
08 08 4 3 4722 3928 02 3 3907 4 02 3912
0-9 3770 2632 29 2619 18 2619
09 09 4 3 1970 1544 01 3 1546 4 04 1548

Notes Q0 determined with one co-ordinate function; Q@ determined with two co-ordinate functions.
(A) results obtained without optimization; (B) results obtained optimizing with respect to P; (C) resubts obtained
optimizing with respect to Q.
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