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It is reported that when both sides of a plate radiate into a reverberant room, the
radiation resistance obtained experimentally is approximately half of the values obtained
using theoretical expression. Hence, it was suggested to use plate area as the radiating area
instead of using double the plate area as radiating area which is not logical. In this paper
the reasons for the above anomaly are investigated. It is found that the error is not in the
radiating area but in the expression for radiation resistance itself. New expressions for
radiation resistance are suggested. Experimental results compare well with the theoretical
results.
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1. INTRODUCTION

Radiation resistance is a measure of the sound power radiated by a structure for a given
vibration level. The response of a structure to acoustic excitation depends on the radiation
resistance of the structure. Hence, it is an important parameter in studying the
structure–acoustic interaction.

Analytical technique to obtain modal radiation characteristics of a structure, i.e., the
sound radiation at a particular frequency with a particular mode shape, is well established
[1–5]. This can be done either by the modal approach of the wave approach. Cremer et al.
[3] and Fahy [4] have described both the methods in detail.

For the radiation resistance of a structure radiating into a reverberant room, an
expression was derived by Lyon and Maidanik [6]. The above expression is based on the
power flow between linearly coupled multi-modal systems for a white noise excitation. For
Statistical Energy Analysis (SEA) applications expression derived in this fashion is quite
suitable. Maidanik [7] applied the above theory for simply supported plates and obtained
their radiation characteristics. Expressions for frequency averaged radiation resistance are
also derived [7–10]. The above equations for radiation resistance are still in use today
[11–13].

It is important to note that the above expressions give the radiation resistance of the
panel kept in infinite, plane and rigid baffle and radiating into a reverberant room by one
side of the panel. When both sides of the panel radiate sound, it is logical that the above
value of radiation resistance is multiplied by a factor of 2·0. In other words one can say
that the radiating area is twice the area of the plate.
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The above expressions are for the plate radiating into a reverberant room. If the room
is very small, at low frequencies the above expressions are not valid. In such a situation
one has to follow the method suggested by Fahy [14].

Consider a panel kept in a reverberant acoustic field. To obtain its response using
Statistical Energy Analysis (SEA), the coupling loss factor is obtained from its radiation
resistance. In such a situation it is logical to assume that both sides of the panel radiate
and hence a factor of 2·0 is used to obtain radiation resistance. This argument/theory is
followed by many authors [11, 15, 16].

Clarkson and Brown [11] conducted experiments to obtain acoustic radiation damping
of panels. A reasonably good match between the measured radiation loss factor and
theoretical estimates is reported. However the theoretical estimates are made without using
the factor 2·0 though both sides of the panel radiate sound. This means that the measured
radiation loss factor and theoretical estimates match only if the factor of 2·0 is not used
which does not seem to be logical.

In this paper the anomaly mentioned above regarding the factor 2·0 for radiation
resistance when both the sides of the panel radiate sound is investigated. New expressions
are suggested for radiation resistance. They are verified by experiments.

2. EXPRESSION FOR RADIATION RESISTANCE

By definition the sound power radiated, W, by a panel having a spatial mean square
value of velocity �v2�x , is related to the radiation resistance Rrad by the equation

W=Rrad�v2�x . (1)

Rrad is dependent on the frequency of excitation and the properties of the structure and
the medium into which the sound is radiated.

From power flow concepts Lyon and Maidanik [6] derived the following expression for
the radiation resistance of a plate.

Rrad =(16/p)rck2g
a

−a g
a

−a

C(x1, x2)F(x1, x2) dx1 dx2. (2)

In the above integral rc is the characteristic impedance of the medium in which sound is
radiated and k is the wavenumber. In equation (2), C(x1, x2)= � fr (x1)fr (x2)�r and
F(x1, x2)= � fm (x1)fm (x2)�m where fr (x) and fm (x) are the mode shapes of the acoustic
field and the structure, respectively.

Based on the above integral the frequency average radiation resistance of a plate into
a reverberant room is derived as follows [7–10].

For fQ fc and ka, kbq 2p,

Rrad =Arc{(lc la /A)2( f/fc )g1 + (plc /A)g2},

where

g1 = (4/p4){(1−2C2)/[C(1−C2)(1/2)]} for f/fc Q 0·5

=0 for f/fc q 0·5

g2 = (1/4p2){(1−C2) ln [(1+C)/(1−C)]+2C} {1/(1−C2)(3/2)}

C=( f/fc )(1/2).
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For fQ fc and ka, kbQ 2p,

Rrad =Arc(4/p4) (plc /A) ( f/fc )(1/2).

For f= fc ,

Rrad =Arc{(a/lc )(1/2) + (b/lc )(1/2)}.

For fq fc ,

Rrad =Arc{1− ( fc /f )−(1/2). (3)

The plate has dimensions a and b, area A, perimeter p and critical frequency fc . lc is the
wavelength corresponding to critical frequency and la is the wavelength in air at the given
frequency. The above expressions are for a simply supported plate kept in a rigid baffle
and radiating by one side of the plate into a reverberant room.

Now consider the derivation of equation (2) based on which equation (3) is derived. This
is based on power flow between two coupled multi-modal systems. The two multi-modal
systems are the structure and the acoustic field.

The power flowing from the mth mode having a frequency of vm of one system to the
rth mode having a frequency of vr of the other system, pm,r is given by [6, 17]

pm,r =Bm,r [Em −Er ], (4)

where Em and Er are the respective modal energies.

Bm,r = b2
m,r {bm v2

r + br v
2
m}/[{v2

m −v2
r }2 + (bm + br ){bm v2

r + br v
2
m}]. (5)

In equation (5), bm and br are the half-power bandwidths of the modes and b2
m,r depends

on the mode shapes of the two systems.
The power flowing from the first system to the other, p1,2, is the sum of the power flowing

from all the modes of the first system to all the modes of the second system. Hence,

p1,2 =N1 N2�Bm,r�[E1m −E2m]. (6)

N1 and N2 are the number of modes of the systems in the band of frequency Dv. E1m and
E2m are the modal energies of each system and constant modal energy is assumed for a
particular system. �Bm,r� is the average value of Bm,r over different modes.

To obtain �Bm,r�, let us examine the expression for Bm,r , i.e., equation (5). The expression
for Bm,r has two terms. The first term, b2

m,r , depends on the mode shapes. The rest of the
expression for Bm,r is basically a function of the difference between the natural frequencies.
Hence, if one uses b2

m,r averaged over different modes, denoted by �b2
m,r�, the averaging of

Bm,r reduces to the averaging of equation (5) after dropping the term b2
m,r .

Lyon [17] carries out the above averaging (averaging of equation (5) after dropping the
term b2

m,r ) in the following way. It is assumed that vm is a constant and vr is a random
variable. Variable vr can have any value in the band Dv with a uniform probability of
occurrence. The integration is done in the entire frequency band Dv. Now assume that
vm can have any value in the frequency band Dv . The integration yields

�Bm,r�=(p/2)�b2
m,r�/Dv. (7)

The procedure used for the above averaging is different in reference [6]. Here, Bm,r is
approximated by the expression

Bm,r = b2
m,r {p/(bm + br )}, (8)
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if the difference between the frequencies is less than half-power bandwidth and is zero
otherwise. The averaging thus leads to

�Bm,r�= p�B2
m,r�/Dv. (9)

Hence, in reference [17] the integration is performed on the exact expression which gives
a very high value when vm −vr is small and a very low value when vm −vr is large. In
reference [6] the integration is carried out on the expression which has a constant value
in the half-power bandwidth. One can see the difference in the results obtained by the two
methods of averaging. The value of �Bm,r� as per reference [6] is twice that of reference
[17].

Maidanik obtained the expression for radiation resistance using the integral given by
equation (2). The above integral is derived based on �Bm,r� given by equation (9). Since
equation (7) is based on the exact integral, it is suggested to use equation (7) for �Bm,r�.
Hence, the integral for radiation resistance becomes

Rrad =(8/p)rck2 g
a

−a g
a

−a

C(x1, x2)F(x1, x2) dx1 dx2. (10)

From equations (10) and (2) it can be seen that the suggested radiation resistance values
are half the values given by the existing expressions.

Using integral (10) the expressions for radiation resistance for a plate become as follows.

For fQ fc and ka, kbq 2p,

Rrad =Arc{(lc la /A)2( f/fc )g1 + (plc /A)g2}/2,

where

g1 = (4/p4){(1−2C2)/[C(1−C2)(1/2)]} for f/fc Q 0·5

=0 for f/fc q 0·5

g2 = (1/4p2){(1−C2) ln [(1+C)/(1−C)]+2C} {1/(1−C2)(3/2)}

C=( f/fc )(1/2).

For fQ fc and ka, kbQ 2p,

Rrad =Arc(4/p4) (plc /A) ( f/fc )(1/2)/2.

For f= fc ,

Rrad =Arc{(a/lc )(1/2) + (b/lc )(1/2)}/2.

For fq fc ,

Rrad =Arc{1− ( fc /f )}−(1/2). (11)

The difference between equation (11) and equation (3) is that a factor of 0·5 is added
for radiation resistance when fE fc . Radiation resistance for fq fc , is the same as that of
an infinite plate and is not derived based on the integrals discussed above and hence the
factor 0·5 is not used. But if one uses equation (10) and derives the above expression, it
will be half of the value given by equation (2).

Therefore, it is suggested that equation (11) be used for calculating radiation resistance
of panels. Also, when both sides of the panel radiate, the above expressions should be
multiplied by a factor of 2·0.
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As discussed earlier, Clarkson and Brown [11] used equation (3) to obtain the radiation
resistance of a panel when both sides radiate into a reverberant room. The experimental
results were lower than the theoretical estimates. They suggested using the plate area as
radiating area instead of using twice the plate area as the radiating area by which the results
match well. It is now clear that the differences seen in the experimental and the theoretical
estimates of radiation resistance are not due to the error in the factor used for radiating
area but the error in the expression for radiation resistance itself.

The above expressions for radiation resistance are for simply supported boundary
conditions. Boundary conditions do not affect radiation resistance at higher frequencies.
But at low frequencies boundary conditions do influence radiation resistance. In such cases
equation (11) can be multiplied by a factor depending on the boundary condition. These
factors are derived by Nikiforov [18] and a more general formulation is given in reference
[19]. This factor is equal to 1·0 for simply supported boundary conditions and 2·0 for
clamped boundary conditions except at very low frequencies. It is nearly zero for free edge
conditions. The above effects are dominant at low frequencies. The frequency range in
which these effects are significant are debatable. The logic could be that if the plate contains
a few bending waves, i.e., lb Q a, the effect of boundary conditions will not be significant.

Equation (11) is for the radiation resistance of a plate with a plane baffle. For the
radiation resistance of plates which have other types of nearby structures the results
obtained by equation (11) shall be multiplied by a factor. This factor can be obtained in
a way suggested by Lyon [20] and Price and Crocker [9] which is as follows. The sound
power radiated by a source kept on a rigid floor is twice the sound power radiated by the
same source when kept at the centre of the room. It is to be noted that the radiating area
is the same in both cases, although the sound power radiated is different depending on
the presence of rigid walls nearby. Discussion on the above factor, called the directivity
factor, for different configurations for the nearby rigid walls is available in the literature
[16, 21]. A similar logic can be used to obtain the radiation resistance of unbaffled panels.
For example, the above factor for a panel, which is a side wall of an enclosure, radiating
into the enclosure, is 2·0. Similarly if the panel is hanging in the chamber without any
baffle, the radiation resistance will be half the radiation resistance of the baffled panel.

The above effect is expected to be dominant for corner modes. In a frequency band both
corner modes and edge modes will be present at frequencies below critical frequency. At
low frequencies most of the modes will be corner modes and at higher frequencies most
of the modes will be edge modes. It can be shown that corner modes do not occur at
frequencies above 0·5fc . Hence, it is recommended to use the baffling effect up to 0·5fc .
Experimental results, which are given later, confirm the above behaviour.

For an unbaffled plate other than the factor suggested above the ‘‘short-circuiting’’
acoustic field around the free edges affects the radiation resistance. The free edge means
the edges without any baffle and not the boundary condition which could be simply
supported, clamped, free or any other type. Short-circuiting is due to the flow of air from
one side of the plate to the other without getting compressed. Consequently it reduces the
radiation resistance. The effect is more obvious at low frequencies when it gets more time
to escape from compression. The effect becomes very significant when the acoustic
wavelength is larger than the plate dimensions. Oppenheimer and Dubowsky [13] have
derived expressions for taking into account the short-circuiting effects. They have
suggested that for fQ fc

Rrad =Fplate {Fcorner Rrad,c +Fedge Rrad,e}. (12)

In equation (12) Fcorner and Fedge are the correction factors for corner as well as edge modes,
respectively. Fplate is the correction factor for the flow around the plate and Fedge and Fcorner



.   .588

are for the flow near the edges. Rrad,c and Rrad,e are the radiation resistance of corner and
edge modes, respectively. These correction factors are given below [13].

Fcorner =13( f/fc )/{1+13( f/fc )}, (13)

Fedge =49( f/fc )/{1+49( f/fc )}, (14)

Fplate =53f 4A2/c4/{1+53f 4A2/c4}. (15)

The corner and edge correction factors are significant only at low frequencies and the plate
correction factor is significant only when the acoustic wavelength is larger than the plate
dimensions.

In summary, it is suggested that equation (11) be used with a factor for boundary
conditions, effect of neighbouring structure and effect of inertial flows for obtaining
radiation resistance of plates.

3. EXPERIMENTAL RESULTS

To validate the above results, radiation resistance is obtained experimentally. A thin
plate kept in a reverberation chamber is excited using a shaker and the sound pressure
level (SPL) in the chamber is measured. Radiation resistance is obtained from the
measured SPL and the plate vibrations.

3.1. 

Consider a panel kept in a reverberation chamber excited mechanically. For SEA
modelling the acoustic field is taken as subsystem 1 and the vibration field of the plate
is taken as subsystem 2. The power balance of subsystem 1 becomes

p1 =v(h1 + h12)E1 −vh21 E2, (16)

where p1 is the power input and h1 is the dissipation loss factor of subsystem 1. h12 and
h21 are the coupling loss factors and E1 and E2 are the total mean energies of the subsystems.

Since the power input to subsystem 1 is zero, from equation (16) the energy of subsystem
1 is obtained as

E1 = {h21 /(h1 + h12)}E2. (17)

The energy of the plate is given by

E2 =mA�v2�x , (18)

where m is the mass of the plate per unit area. The energy of the acoustic field having a
volume of V1 and mean square value of acoustic pressure p2

rms is

E1 = (p2
rms /rc2)V1. (19)

The dissipation loss factor of the room can be shown to be

h1 = scā/(8pfV1), (20)

where

ā= {a+Md−(M2d2/2)}/{1− [a+Md−(M2d2/2)]}. (21)

In the above equation a is the sound power absorption coefficient of the walls. Sound
absorption due to air is represented by Md in which d is the mean free path of the room
and M depends on humidity and temperature of the air. The term M2d2/2 is significant
at very high frequencies, say, 8000 Hz.
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By definition

h21 =Rrad /(vmA). (22)

From the reciprocal relationship

h12 = h21 (n2 /n1). (23)

The modal density of the room is given by

n1 =4pf 2V1 /c3. (24)

Substituting equations (18)–(24) into equation (17) and with suitable mathematical
operations one can show that

Rrad = p2
rms sā/{4rc�v2�x −(n2 c2/pf 2mA)p2

rms}. (25)

Radiation resistance is obtained experimentally using equation (25).

3.2.  -

The test set-up is shown in Figure 1. The plate is hung in a reverberation chamber.
The plate is made of aluminium having dimensions 2·19×1·22 m. The thickness of the

plate is 4·95 mm. Young’s modulus of aluminium is taken as 7·2×1010 N/m2 and the
density as 2800 kg/m3. Modal density of the plate is calculated as 0·176 lHz. Critical
frequency of the plate is estimated to be 2512 Hz.

The reverberation chamber has dimensions of 10·33×8·2×13 m. The chamber has a
surface area of 651·2 m2. For the convenience of testing, the door of the chamber was kept
open for a length of 0·68 m. The medium of the chamber is air. The temperature of the
air was 25°C and the relative humidity was 51%. The above parameters are important in
obtaining the sound power absorption due to air. For the above conditions the speed of
sound in air is taken as 346 m/s. The density for the air is assumed to be 1·21 kg/m3.

Excitation at a single point does not produce statistically independent modes [22]. Bies
and Hamid [23] have suggested, from experimental results, to use a minimum of the three
randomly selected driving points to overcome the above problem. In the present
experiment the plate is excited at five randomly selected locations which are shown in
Figure 2. An electromagnetic shaker is used to excite the structure. The excitation scheme
is shown in Figure 3. The output of the random noise generator is fed through an amplifier
before being applied to the shaker. An aluminium block is bonded on the plate at the
point of excitation. The shaker is connected to the block through a stringer and impedance
head.

Vibration responses are measured at six randomly selected locations shown in Figure 2.
The mass of each accelerometer is approximately 0·5 g. The resonant frequency of the
accelerometer is 32 kHz with a useful frequency range of (25%) of 5–8000 Hz. The
estimated average impedance of the plate is 844 N s/m. Since the impedance due to
accelerometer mass is only 31·4 N s/m at 10 000 Hz, the mass loading of the accelerometer
on the measured response is very much negligible. Acceleration measurement set-up is
shown in Figure 3. The output signal of the accelerometer is conditioned using a charge
amplifier and the charge amplifier output is recorded on an FM tape recorder.

Sound pressure levels in the room are measured at three locations using condenser type
microphones. The sensitivity of these microphones is approximately 12·0 mV/Pa. The
resonant frequency of the microphone is about 15 000 Hz. This causes an errror of 0·2 dB
at 5000 Hz and 1 dB at 10 000 Hz. These correction factors are applied in obtaining the
correct sound pressure level. The microphone is fitted with suitable pre-amplifier and 200 V
polarization voltage is applied. The output of the microphone is recorded on an FM tape
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Figure 2. Driving point (w×) and response (W) measurement locations.

recorder. The block diagram showing the measurement of sound pressure level is given
in Figure 3.

The above data is analysed off-line using FFT based signal analysers. It can also be seen
that required care is taken in obtaining accurate data up to 10 000 Hz.

3.3.  

As can be seen from equation (25), the exprerimental determination of radiation
resistance is largely dependent on the sound power absorption by the chamber. This
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Figure 3. Block diagram of the measurement set-up.

absorption has two components, one the absorption by the wall and the other by air (refer
to equation (21)).

Absorption due to air depends on its temperature and relative humidity and these are
represented by M. These values for some standard conditions are available in the literature
[16, 21]. In this case, values of M for a temperature of 25°C and 50% relative humidity
are used. Absorption due to air is significant only at values above 2000 Hz. The mean free
path of acoustic wave in this chamber is 6·76 m.

Absorption due to walls is obtained experimentally. For this, the reverberation time of
the room is found experimentally using standard procedure. For brevity the details of the
experiments are not given here. The results are shown in Figure 4. The reverberation time
of the room, T, is given by

T=55·26(V/cs)/{ln (1− a)−1 +Md}. (26)

Figure 4. Reverberation time of the chamber.



0.1

0.01

0.001
1000100 10 000

Frequency (Hz)

A
b

so
rp

ti
o

n
 c

o
ef

fi
ci

en
t

1000

100

10
1000100 10 000

Frequency (Hz)

R
o

o
m

 a
b

so
rp

ti
o

n
 (

m
2 )

  593

Figure 5. Sound power absorption coefficient of the walls.

From the known values of reverberation time and the temperature and humidity of the
air, the sound power absorption coefficient of the walls is obtained. The results are shown
in Figure 5.

From the above results, room absorption, i.e., sā, is calculated. It is to be remembered
that during the present test the chamber is open for a length of 0·68 m and a height of

Figure 6. Room absorption of the chamber.
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Figure 7. Sound power radiated by the plate: ––––, total power; +, near field radiation.

10 m to facilitate some cable connections. This area (6·8 m2) will have an absorption
coefficient of unity at higher frequencies. This is taken into consideration in evaluating
room absorption. This has a significant effect at low frequencies where absorption by wall
and air is very low. Room absorption thus obtained is shown in Figure 6. The opening
has an absorption coefficient of unity only at higher frequencies, in this case above 250 Hz.

Figure 8. Radiation resistance of the plate: ––––, theory; +, experiment.



  595

T 1

Radiation resistance of a typical plate

Radiation resistance (W/(m/s)2)
1/3 Octave band ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
centre frequency Equation (3) with plate

(Hz) Experiment Present theory Equation (3) area as radiating area

315 3·13 7·49 35·62 7·49
400 1·54 8·94 40·96 8·94
500 3·95 10·81 48·03 10·81
630 4·24 13·26 57·61 13·26
800 11·57 16·77 71·53 16·77

1000 18·39 22·21 93·42 22·21
1250 32·14 50·67 132·4 50·67
1600 108·4 107·5 221·9 107·5
2000 314·9 298·6 612·1 298·6
2500 3339 3978 4268 2134
3150 4531 5000 5000 2500
4000 3496 3675 3675 1838
5000 4290 3158 3158 1579

At low frequencies it is lower than unity. Hence the results given here are higher than the
actual absorption at low frequencies.

3.4.   

Sound radiated by the near field for a mean square value of force F2(t) is estimated using
the equation [3, 4, 16]

W= rF2(t)/(2pcm2) for fQ fc . (27)

Total power radiated by the panel can be obtained from equations (25) and (1). Figure 7
gives a comparison of the total power radiated and the power radiated by the near field.
Power radiated by the near field is significant at low frequencies.

3.5.  

Sound power radiated by the far field is obtained from the total power radiated and
the near field radiation. The total power radiated is from the experiment and the near field
radiated power is obtained using theoretical expression. Experimental radiation resistance
obtained from the far field sound radiation is given in Figure 8 and Table 1. Results are
obtained in 1/3 octave bands.

4. DISCUSSION OF RESULTS

Radiation resistance estimated using the present expression can be compared with the
results obtained experimentally. They are given in Figure 8 and Table 1.

Theoretical estimates are made based on equation (11), considering twice the area of
the plate as radiating area. Since the panel is unbaffled, a factor of 0·5 is applied on the
radiation resistance obtained by equation (11) for frequencies up to half the critical
frequency. Factors for short-circuiting effects are used as per equations (12) to (15). The
boundary of the panel is assumed to be simply supported.

Experimental radiation resistance above 5000 Hz is not given here since it is expected
to be in error. This is because the measured vibration levels of the plate are very small
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in 8000 Hz and 10000 Hz frequency bands. Since �v2�x is in the denominator of equation
(25), the radiation resistance calculated is in large error. Also, the room absorption used
for calculating the radiation resistance seems to be in error at higher frequencies. It can
be seen from Figure 6 that the room absorption suddenly increases at higher frequencies.
Results are not expected to be very accurate at frequencies below 160 Hz since the number
of modes in those bands are less than six. The experimental radiation resistance below
250 Hz tends to be over-estimated since the room absorption estimated is higher than the
actual value. Hence, the results are given for 315 Hz and above only.

It can be seen that the experimental results and the theoretical estimates match very well
except at very low frequencies. In this frequency range the boundary conditions are
expected to play a significant role. For a plate with free edges this factor is very near to
zero and hence the measured radiation resistance is very small at low frequencies. The
experimental results validate the factor 0·5 suggested for unbaffled plate.

It is interesting to compare the experimental results with the theoretical estimates
obtained using the existing expression for radiation resistance (equation (3) without the
factor for baffle and short-circuiting effect). Above the critical frequency they match well
(above the critical frequency both equations (3) and (11) are the same). But below the
critical frequency radiation resistance values estimated using the existing expression are
very much higher than the experimental radiation resistance values.

If, as Clarkson and Brown [11] suggested, plate area is taken as the radiating area, the
experimental results match well with the theoretical estimates (equation (3) with effect of
baffle and short-circuiting) only up to the critical frequency. Above the critical frequency
experimental radiation resistance is twice that of theoretical estimates meaning that
radiating area should be twice the area of the plate.

5. CONCLUSIONS

A new expression for estimating the radiation resistance of panels is suggested.
Radiation resistance estimates using this expression are half the values estimated using the
existing expression up to and including the critical frequency. Above the critical frequency
they are the same. When both sides of the panel radiate, the radiating area is twice the
plate area. The effect of the presence of other structural elements should be considered in
the calculation of radiation resistance up to half the critical frequency. This factor is 0·5
for unbaffled panels. Apart from the above, factors for the effect of boundary conditions
and short-circuiting inertial flow from one side of the plate to the other side should be
used. The above results match very well with the experimental results. At low frequencies
the sound power radiated by the near field of the excitation is very significant.
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APPENDIX A: LIST OF SYMBOLS

a, b dimensions of the panel
A area of the panel
c speed of sound in air
d mean free path
E1, E2 mean energy of sybsystems 1 and 2
E1m , E2m mean modal energy of subsystems 1 and 2
f frequency in Hz
fc critical frequency
fm (x) mode shape of the structure
fr (x) mode shape of the acoustic space
Fcorner correction factor for corner mode
Fedge correction factor for edge mode
Fplate correction factor for plate
k wavenumber
m mass per unit area of the panel
n1, n2 modal density of subsystems 1 and 2
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N1, N2 number of modes of subsystems 1 and 2 in a frequency band
p perimeter
p2

rms mean square value of pressure
Rrad radiation resistance
Rrad,c radiation resistance of corner mode
Rrad,e radiation resistance of edge mode
s surface area of the chamber
v velocity of the plate
V1 volume of subsystem 1
W sound power radiated
a sound power absorption coefficient
h1, h2 dissipation loss factor of subsystems 1 and 2
h1,2 coupling loss factor for subsystems 1 to 2
Dv frequency band
la wavelength in air
lb wavelength of the bending wave in the plate
lc wavelength at critical frequency
v circular frequency in rad/s
p1 mean power input to subsystem 1
p1,2 mean power flowing from subsystem 1 to 2
r density of air
�� ensemble average


