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CONSIDERED AS TRIDIMENSIONAL SOLIDS

C. P. F

Mechanical Systems Analysis Group, Universidad Tecnológica Nacional and Department of
Engineering, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina



M. B. R  P. M. B́

Department of Engineering, Universidad Nacional del Sur, Alem 1253, 8000 Bahı́a Blanca,
Argentina

(Received 26 February 1997, and in final form 29 October 1997)

A variational method developed by the authors (named WEM) for one- and
two-dimensional boundary value problems is extended to three dimensions. The availability
of a classical solution obtained through the inverse method, which is briefly included in
an appendix, allows the confirmation of the exactness of the alternative solution herein
presented. A prismatic solid supported by shear diaphragms at four consecutive faces is
analysed in particular. The numerical values of natural transversal frequencies enable the
evaluation of the degree of approximation involved in using Mindlin’s theory for thick
plates. Also, comparison is made with results from a three-dimensional Ritz formulation.
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1. INTRODUCTION

The variational method to be developed in what follows for three-dimensional problems
(as an extension of one and two dimensions [1–3]) is based essentially on solving a wide
range of differential boundary value problems—ordinary or not, linear or not—by means
of ‘‘extremizing’’ a proper functional, and using suitable sequences. The authors have
named it WEM (Whole Element Method) since the domain is considered as a single
element despite the existence of discontinuities such as intermediate supports, springs,
masses, etc.

The variational approach is well-known [4, 5] for linear problems involving positive and
symmetric (energetic) functionals and it should be mentioned that such type of functional
will be used herein to solve the title problem. The authors have extended the functional
pattern to almost any type of boundary value problems. Another innovation consists in
the fact that WEM is not a Ritz method as traditionally known. In effect, in the present
approach, extended Fourier series are used. The functions to be linearly combined do not
satisfy—in general—by themselves the essential boundary conditions (BC) and at the same
time belong to a (a priori) complete set.

In the present paper the theorems and corollaries justifying the exactness of the proposal,
are briefly included and demonstrated. It is worth noting that it has been theoretically
shown that the usage of WEM in any differential boundary value problem consists in
applying a pseudo-theorem of virtual work to the proposed ‘‘extremizing’’ sequences.
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Extensive investigations of the vibration of thick plates have been carried out taking into
account various shapes and boundary conditions. A thorough and comprehensive
literature survey on this subject was published by Liew et al. [6]. It is worth mentioning
the important work of Srinivas et al. [7, 8] in which three-dimensional theory is used to
study the vibration of simply supported homogeneous and laminated thick rectangular
plates. Liew et al. [9] report a continuum Ritz formulation and comparisons with results
from both classical and Mindlin’s plate theory. In addition, the authors include numerous
sets of deflection contour plots and three-dimensional deformed mode shapes which
contribute highly to the understanding of the vibration of these structural elements.

The plate is herein assumed as a rectangular prism of arbitrary aspect ratio with four
consecutive sides supported by shear diaphragms (SD). Values of frequency parameters
are calculated in case of transverse vibrational modes. Other modes such as axial-breathing
ones are not considered here though calculation of them offers no inconvenience. The
transverse frequencies are compared with an existing classical solution [10] obtained by
means of Saint-Venant’s inverse method and which is briefly described in Appendix A. It
should be noted that these results are coincident with the ones reported in reference [8].

Additionally, a comparison is also made with the solution by Mindlin’s theory for thick
plane plates [12]. In doing so, one is able to bound the range of validity of this theory,
specially regarding the shear factor. The thick simply supported plate is addressed in this
paper as a three-dimensional solid with SD, plates with other BC being studied. Also the
application of this variational methodology to the rectangular beam in order to compare
Bernoulli and Timoshenko beam theories is at present under study.

2. ENERGY FUNCTIONAL

For tridimensional, isotropic, motion problems the classical elasticity yields a differential
equations system, known as Lamé equations, in the components of the displacement vector
u, v and w (functions of space and time) which is, in rectangular Cartesian co-ordinates
(x,y, z) and using classical notation,

(m/2)92u+(l/2n)1I/1x= r 12u/1t2 +F*x ,

(m/2)92v+(l/2n) 1I/1y= r 12v/1t2 +F*y ,

(m/2)92w+(l/2n) 1I/1z= r 12w/1t2 +F*z , (1)

where r is the mass density of the body at the considered point; m=E/(1+ n) and
l= mn/(1−2n) are Lamé constants; n is Poisson’s coefficient; E is the modulus of
elasticity; F*x , F*y and F*z are functions proportional to the mass force components;
I= ex + ey + ez is the linear strain invariant, ex , ey and ez are the specific axial strains and
t is the temporal co-ordinate. Admitting normal modes of vibration with circular frequency
v, i.e., F*x =F*y =F*z =0 and

u= û(x, y, z, t)= u(x, y, z, t) cos vt, v= v̂(x, y, z, t)= v(x, y, z, t) cos vt,

w=ŵ(x, y, z, t)=w(x, y, z, t) cos vt, (2)

the following system of equations is obtained:

(m/2)92u+(l/2n) 1I/1x− rv2u=0, (m/2)92v+(l/2n) 1I/1y− rv2v=0,

(m/2)92w+(l/2n) 1I/1z− rv2w=0. (3)

The energy functional F corresponding to equation (3) (three-dimensional strain energy)
is easily obtained as
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F0F[u, v, w]= (l/2)>ex + ey + ez>2 + (m/4)(>ex>2 + >ey>2 + >ez>2)

+ m(>gxy>2 + >gyz>2 + >gzx>2)− (rv2/2)(>u>2 + >v>2 + >w>2), (4)

where by means of the kinematic relationships it is known that

ex = 1u/1x, ey = 1v/1y, ez = 1w/1z, gxy = gyx = 1u/1y+ 1v/1x,

gyz = gzy = 1v/1z+ 1w/1y, gzx = gxz = 1w/1x+ 1u/1z. (5)

In equation (4), functional analysis notation has been introduced. If P=P(x, y, z) and
Q=Q(x, y, z) are two square integrable functions in the domain D of interest, the
following definitions apply:

(P, Q)0g g g P(p, q, r)Q(p, q, r) dp dq dr;

>P>2 0g g g P2(p, q, r) dp dq drQa. (6)

3. ‘‘EXTREMIZING’’ SEQUENCES

Since in this problem the functional F is symmetrical and positive definite [5] the
sequences will be, strictly speaking, minimizing. The Fourier series for rectangular,
prismatic domains {D : 0E xE 1, 0E yE 1, 0E zE 1} which can be used are of the
form aaa f1 f2 f3 where f1 f2 f3 is any of the following combinations:

sisjsk , sisjck , sicjsk , sicjck , cisjsk , cisjck , cicjsk , cicjck , (7)

where the following notation has been used: ai 0 ip, bj 0 jp, gk 0 kp, si 0 sin aix,
sj 0 sin bjy, sk 0 sin gkz, ci 0 cos aix, cj 0 cos bjy, ck 0 cos gkz, (i, j, k=0, 1, 2, . . .).

Such series guarantee, as is known, the convergence in the mean of any square integrable
function. However, the methodology herein proposed requires also the uniform
convergence of the so-called continuous essential functions, which in this problem are u,
v and w. In what follows it will be briefly shown how those tridimensional series are
generated to represent a continuous function.

By starting from a continuous function 8=8(x, y, z) of three variables for which one
requires uniform convergence in D, the following two expansions are chosen as an example
of possible sequences:

8M (x, y, z)= s
M

i

Bi (y, z) sin aix+ xB0(y, z)+ b0(y, z),

8M (x, y, z)= s
M

i

Ai (y, z) cos aix+A0(y, z), (8)

from which, it will suffice, in order to achieve uniform convergence, that (Fourier theory):

Bi (y, z)=2 g
1

0

8(h, y, z) sin aih dh, (9)

B0(y, z)=8(1, y, z)−8(0, y, z); b0(y, z)=8(0, y, z) (10)
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Instead,

Ai (y, z)=2 g
1

0

8(h, y, z) cos aih dh, A0(y, z)=g
1

0

8(h, y, z) dh. (11)

Equations (8), with the support function xB0(y, z)+ b0(y, z) give, as can be easily
demonstrated, uniform convergence for 8. Now, if any of the functions of (y, z) involved
in equations (8) are expanded in an analogous form in the variable y, and then and in
a similar fashion, the functions of z, one obtains all possible combinations.

By selecting the mode shapes, corresponding to the transversal (bending) type, of a
rectangular prism with shear diaphragms in x=0,1 and y=0,1 (see Figure 1), the essential
boundary conditions of the problem are

x=0, 1: w=0, v=0; y=0, 1: w=0, u=0. (12)

Non-dimensionalized co-ordinates have been used. Additionally, it is required that

w(x, y, z)=w(x, y, 1− z), u(x, y, z)=−u(x, y, 1− z), v(x, y, z)=−v(x, y, 1−z).

(13)

In such a way the tridimensional, complete, Fourier series generated as explained at the
beginning of the section, and yielding uniform convergence for u, v and w, are reduced to

uLMN (x, y, z)= s
L

i

s
M

j

s
N

k

Aijkcisjck + s
M

j

s
N

k

A0jksjck ,

vLMN (x, y, z)= s
L

i

s
M

j

s
N

k

Bijksicjck + s
L

i

s
N

k

Bi0ksick ,

wLMN (x, y, z)= s
L

i

s
M

j

s
N

k

Cijksisjsk + s
L

i

s
M

j

dijsisj , (14)

where k should be odd (k=1, 3, 5, . . . ).

Figure 1. Prismatic solid supported by shear diaphragms on faces (x, z) (y=0 and y= b) and (y, z) (x=0
and x= a).
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4. THEOREMS, COROLLARY AND APPLICATION

The selected sequences give uniform convergence for u, v and w which are assumed
continuous. But for some derivatives of these functions only convergence in the mean (in
L2) is achieved. However, this will be enough to demonstrate that the sought frequencies
converge to the exact value. Then, one has, at least,

>1Du/1xm>0 >1uLMN /1xm − 1u/1xm>:0, L, M, N:a,

>1Dv/1xm>0 >1vLMN /1xm − 1v/1xm>:0, L, M, N:a,

>1Dw/1xm>0 >1wLMN /1xm − 1w/1xm>:0, L, M, N:a, (15)

where m=1, 2, 3 and x1 = x, x2 = y, x3 = z and also

=Du=0 =uLMN − u=:0, L, M, N:a, [x, y, z;

=Dv=0 =vLMN − v=:0, L, M, N:a, [x, y, z;

=Dw=0 =wLMN −w=:0, L, M, N:a, [x, y, z. (16)

As was mentioned before, although this is not the case, the derivatives of u, v and w are
required to be square integrables and not necessarily continuous.
Theorem 1. The functional F0F[u, v, w] is an extreme among FLMN 0
F[uLMN , vLMN , wLMN ], where uLMN , vLMN and wLMN are ‘‘extremizing’’ sequences.

It should be noted that u, v and w are not required, for the time being, to satisfy the
differential system (3).
Demonstration: based upon definition (4):

DF0FLMN −F=(l/2)[>DI>2 +2(I, DI)]+ (m/4)[>Dex>2 + >Dey>2 + >Dez>2

+2(ex , Dex )+2(ey , Dey )+2(ez , Dez )]+ m[>Dgxy>2 + >Dgxz>2

+ >Dgyz>2 +2(gxy , Dgxy )+2(gxz , Dgxz )+2(gyz , Dgyz )]

−(rv2/2)[>Du>2 + >Dv>2 + >Dw>2 +2(u, Du)+2(v, Dv)+2(w, Dw)], (17)

where

DI0 (ILMN − I)= (1uLMN /1x+ 1vLMN /1y+ 1wLMN /1z)− I,

Dex 0 exLMN − ex = 1uLMN /1x− ex , etc.,

Dgxy 0 gxyLMN − gxy =01uLMN

1y
+

1vLMN

1x 1− gxy , etc. (18)

Now, recalling Hooke’s law for isotropic materials,

sx = mex + lI, sy = mey + lI, sz = mez + lI, txy = tyx =(m/2)gxy =(m/2)gyx ,

tyz = tzy =(m/2)gyz =(m/2)gzy , txz = tzx =(m/2)gxz =(m/2)gzx , (19)

the Cauchy–Schwartz theorem,

(P,Q)E >P>>Q>, (20)

and after making use of the divergence theorem in order to integrate by parts, it can be
observed that according to equation "15) and (16) the following statement is verified:

=DF==0, for L, M, N:a. (21)
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That is,

FLMN =F, for L, M, N:a. (22)

Corollary: it has been demonstrated that F is an extreme among FLMN but also equation
(22) indicates that FLMN is an extreme with an adequate selection of the sequence
constants.

Theorem 2. In order for F to be an extreme among the functionals FLMN being uLMN ,
vLMN , wLMN sequences (not necessarily ‘‘extremizing’’) which satisfy the eventual essential
boundary conditions (i.e., those involving u, v and w) then the functions u, v and w must
satisfy the differential system (3).
Demonstration: let one state F*0F[u+ puLMN , v+ qvLMN , w+ rwLMN ] (p, q and r$R)
and d�F that is,

d�F0 1F*/1p+ 1F*/1q+ 1F*/1r=p= q= r=0 =0, (23)

or which is equivalent, the three simultaneous conditions:

1F*/1p=p= q= r=0 =0, 1F*/1q=p= q= r=0 =0, 1F*/1r=p= q= r=0 =0. (24)

If the divergence theorem is applied, one concludes, by the first of equations (24), that the
following should be satisfied:

{[(m(1ex /1x)+ l(1I/1x))+ (m/2)(1gxy/1y+ 1gxz /1z)+ rv2u], uLMN}=0,

gg $(mex + lI)l+
m

2
(gxym+ gxzn)%uLMN dV=0, (25)

where l, m and n are the cosines of the normal to the surface surrounding the domain.
The other two conditions of equations (24) are worked out analogously. As can be seen,
accepting the equilibrium equations (1) and that the sequences satisfy the eventual nullity
conditions, theorem 2 is demonstrated.

4.1.  

When stating the extreme condition for FLMN (according to the previous corollary) one
obtains

dFLMN =0, (26)

where d denotes variation w.r.t. the sequence constants. The following expression results:

l(ILMN, dILMN )+ m[(exLMN , dexLMN )+ (eyLMN , deyLMN )+ (ezLMN , dezLMN )]+ (m/2)[(gxyLMN , dgxyLMN )

+(gyzLMN , dgyzLMN )+ (gxzLMN , dgxzLMN )]− rv2[(uLMN, duLMN )+ (vLMN, dvLMN )

+ (wLMN, dwLMN )]=0. (27)

This is no more than a pseudo-theorem of virtual work applied to the ‘‘extremizing’’
sequences.

5. RESULTS

After applying equation (27) and factoring (according to equations (14)), s
i
s

j
s

k
dAijk ,

s
i
s

j
s

k
dBijk , s

i
s

j
s

k
dCijk , s

j
s

k
dA0jk , s

i
s

k
dBi0k , s

i
s

j
ddij , the following equations

result:
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(l+2G)0a2
i

a2 Aijk1+ l0aibj

ab
Bijk −

aigk

ah
Cijk1+G$−gk

h 0ai

a
Cijk −

gk

h
Aijk +

2ai

a
dijIk1

+
bj

b 0bjAijk

b
+

aiBijk

a 1%−V*2Aijk =0, (28)

(l+2G)0b2
j

b2 Bijk1+ l0aibj

ab
Aijk −

bjgk

bh
Cijk1+G$−gk

h 0bj

b
Cijk −

gk

h
Bijk +

2bj

b
dijIk1

+
ai

a 0bjAijk

b
+

aiBijk

a 1%−V*2Bijk =0, (29)

(l+2G)0g2
k

h2 Cijk1− l0aigk

ah
Aijk +

bjgk

bh
Bijk1+G$bj

b 0bj

b
Cijk −

gk

h
Bijk +

2bj

b
dijIk1

+
ai

a 0aiCijk

a
−

gkAijk

h
+

2ai

a
dijIk1%−V*2[Cijk +2dijIk ]=0, (30)

G$b2
j

b2 dij +
b2

j

b2 s
l

CijlIl −
bj

bh
s
l

gijlIl +
a2

i

a2 dij +
a2

i

a2 s
l

CijlIl −
ai

ah
s
l

glAijlIl%
−V*2$dij + s

l

CijlIl%=0, (31)

A0jk [(r2b2
j +R2g2

k )−V*2/G]=0, Bi0k [(a2
i +R2g2

k )−V*2/G]=0, (32, 33)

in which V*2 0 rv2, Iq =(1, sin qz). The non-dimensionalization has been carried out
using the parameters

D=Eh3/12(1− n2), m=(1−2n)/12n(1− n), V=z(g/D)va2,

k*= (1−2n)/n, r= a/b, G= m/2, R= a/h, g= rh.

From equations (32) and (33) and for A0jk $ 0, Bi0k $ 0 and the resting coefficients with
null value, the frequency parameters arise as

V2
jk =(2k*R2/m)(r2b2

j +R2g2
k ), V2

ik =(2k*R2/m)(a2
j +R2g2

k ). (34)

These special ‘‘pure shear’’-like mode shapes result with i=1, 2, 3, . . . ;
j=1, 2, 3, . . . ; k= odd, and according with equation (14) for the frequencies (Vjk ) as

ujk
MN =A0jksjck , vLMN =wLMN =0, (35)

and for the frequencies Vik as

vik
LN =Bi0ksick , wLMN = uLMN =0. (36)

On the other hand, numerical results of the transverse frequency parameter V are
obtained by means of the procedure described in this section, assuming A0jk =Bi0k =0 and
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working out the equations (28) to (31). The values are compared with a classical solution
included in Appendix A and also with results reported in reference [12] obtained using
Mindlin’s theory. Table 1 depicts values of the frequency parameter for the case of square
prism (r= a/b=1) corresponding to the first mode of vibration (i= j=1) with
R= a/h=1, 10, 25, 45, 250 being n=1/3. The results obtained using the classical
solution (Appendix A) are compared with values from WEM using 100 000 terms in the
sums. Also, exact values in all the digits are shown. They were found by increasing the
number of terms (not necessarily the same for all columns) until the desired accuracy
was achieved. It should be noted that a larger number of terms is required to meet the
goal when R= a/b is increased (approaching thin plates). Notwithstanding, this is a
numerical obstacle since it may be theoretically shown that in the limit for R:a the
results are coincident with the Germain–Lagrange theory frequencies [13]. The authors
have developed an algorithm for thin rectangular plates that is more appropriate
(large R) [11]. Despite the fact that WEM yields exact values and the numerical
algorithm automatically gives the desired exact digits, a convergence study is included in
Table 2.

Also, a prism of ratio r= a/b=2/3 is solved for R= a/h=2·5, 250 (Table 3). (Shown
frequencies are not necessarily the lower ones). In the same table the limit case of
r= a/b:0 is presented. It should be noted that R:a indicates thin plates. The number
of terms is indicated for each thickness. Again when dealing with thin plates a large number
of terms is needed to attain the exact frequencies.

Tables 4 and 5 show a comparison between the method herein presented and results from
reference [12] in which Mindlin’s theory is used to solve thick plates with n=0·3 and a
shear coefficient of 0·823. Also, results from a continuum three-dimensional Ritz
formulation [14] are shown. It should be mentioned that only flexional-type modes are
included in the table. Table 4 depicts the values of the frequency parameters corresponding
to the first six transversal modes of prisms with r= a/b=1, R=5, 10. As is expected,
modes 2 and 3 correspond to the same frequency value. The same for modes 5 and 6. The
values corresponding to prisms with r=0·5, 2/3 are shown in Table 5. A number of terms
ranging from 105 to 106 has been used.

T 1

Transversal frequency parameter V of a prism with r= a/b=1; n=1/3; i= j=1.
Comparison with classical solution (Appendix A).

R= a/h
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Solution 1 10 25 45 250

WEM (100 000 terms) 7·5466 19·070 19·631 19·720 20·238
WEM (exact values) 7·5466 19·069 19·626 19·704 19·738

Classical 7·5466 19·0694 19·6261 19·7040 19·7380

T 2

Convergence study for the transversal frequency parameter V of a prism with r= a/b=1,
R= a/h=10, n=1/3, i= j=1. Classical solution (Appendix A): V=19·069.

Number of terms 250 500 103 104 105 106 2·106

Frequency parameter 19·392 19·231 19·151 19·078 19·070 19·069 19·069
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T 3

Transversal frequency parameter V of a prism with r= a/b=2/3, 0; n=1/3. Comparison
with classical solution (Appendix A).

r= a/b=2/3 r= a/b:0
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

R=2·5, R=250 R=2·5, R=250,
Solution i=1, j=2 i=2, j=1 i=1, j=1 i=2, j=1

WEM (number of terms) 17·6529(105) 43·8643(107) 7·9557(105) 39·4788(107)
Classical 17·6529 43·8593 7·9557 39·4738

T 4

Comparison of transversal frequency parameters V of a prism with r= a/b=1, n=0·3

R= a/h
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

5 10
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode (i, j) WEM Ref. [12] Ref. [14] WEM Ref. [12] Ref. [14]

1 (1, 1) 17·5261 17·4307 17·5264 19·0901 19·0592 19·0898
2, 3 (1, 2), (2, 1) 38·4827 38·0769 38·4826* 45·6193 45·4495 45·6193
4 (2, 2) 55·7872 55·0101 55·7869 70·1042 69·7209 70·1038

5, 6 (1, 3), (3, 1) 65·9960 64·9617 — 85·4876 84·9329 85·4875

*Corresponds to another mode shape in reference [13].

T 5

Transversal frequency parameter V of a prism with R= a/h=10, n=0·3. Comparison with
Mindlin’s theory

r= a/b
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0·5 2/3
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Mode (i, j) WEM Ref. [12] (i, j) WEM Ref. [12]

1 (1, 1) 12·0777 12·0646 (1, 1) 13·9118 13·8954
2 (1, 2) 19·0901 19·0592 (1, 2) 26·1917 26·1337
3 (1, 3) 30·4235 30·3461 (2, 1) 40·8747 40·7378
4 (2, 1) 39·1970 39·0708 (1, 3) 45·6194 45·4495
5 (2, 2) 45·6194 45·4495 (2, 2) 52·1456 51·9269
6 (1, 4) 45·6194 45·4495 (2, 3) 70·1042 69·7208

6. CONCLUSIONS

In this work the natural frequencies of a prism supported by shear diaphragms are found
by means of two exact solutions. Both are compared with the Mindlin theory results. The
exact solution developed in the main part of this work is founded on a variational method
which, in short, reduces the algorithm to the evaluation of summations in z. The smaller
the thickness h w.r.t. a (large values of R) the more terms should be taken in order to
achieve good accuracy. It is not included but can be simply verified, that in the limit as
R:a the exact solutions are coincident with the frequency values given by the
Germain–Lagrange theory.
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The shear diaphragms restraints imposed in the present work prevent the displacements
of these diaphragms in the corresponding planes (see equation (12)). When selecting (see
equation (13)) the ‘‘flexional’’-like mode shapes (k=odd), subsets of the whole set of
possible mode shapes are considered. Such subsets are also complete in L2 from which the
exactness of the frequencies and modal shapes depends.

On the other hand, Liew et al. [13] have taken into account modes caused by other types
of constraints which are not allowed in the present work for the reasons explained above.
Obviously, these modes could be considered in a simple way. Additionally it is worth
mentioning that due to equation (13) the breathing modes are not calculated either. At
last, it is important to point out that the subset considered herein ‘‘catches’’ pure shear
like-mode shapes (equations (35) and (36)) that in the work of Liew et al. [13] are not
presented. Obtaining the exact solution by means of this variational method obviously
allows one to correct shear coefficients used in Mindlin’s theory.

The authors are extending the methodology to prisms with arbitrary boundary
conditions. The classical solution is not available in these cases but can be approached
using the methodology presented here.
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APPENDIX A: CLASSICAL SOLUTION

The problem of the natural vibrations of a prismatic body is herein addressed with a
classical solution in the sense of the inverse method of Saint–Venant. More details may
be found in reference [10].

The following functions of x, y, z are proposed to solve the governing equations (3):

uMN (x, y, z)= s
N

j=1

s
M

i=1

Aij (z) cos aix sin bjy,

vMN (x, y, z)= s
N

j=1

s
M

i=1

Bij (z) sin aix cos bjy,

wMN (x, y, z)= s
N

j=1

s
M

i=1

Cij (z) sin aix sin bjy, (37)

where ai = ip, bj = jp and which satisfy the boundary conditions

sx = v=w=0, at x=0, 1; sy = u=w=0, at y=0, 1; (38)

where sx , sy are components of the stress tensor. After substituting equation (37) in
equations (3) the following system of equations in A(z)=Aij (z), B(z)=Bij (z),
C(z)=Cij (z) results, for each pair of values, i, j:

{−[i2p2t+ d]A+R2A��}− ijp2rtB+ iptRC�=0,

−ijp2rtA+ {−[j2p2r2t+ d]B+R2B��}+ jptrRC�=0,

iptRA�+ jprtRB�+ {dC−(1+ t)R2C��}=0. (39)

The following notation has been used:

r= a/b, R= a/h, g= rh, D=Eh3/12(1− n2),

V=zg/Dva2, V
 ij = p2[i2 + (rj)2], Q=V/s, d=V
 ij (1−Q),

s=2RV
 2
ijz3

2(1− n), t=1/(1−2n), ( . )
–

= 1( . )/1z, etc.

Note that V
 ij are the frequency parameter values of the thin plate (Germain–Lagrange)
theory. Now, the following functions of z are proposed as solution: A(z)=Feuz;
B(z)=Meuz; C(z)=Heuz. F, M, H are arbitrary constants and u the eigenvalues. Then
equations (39) become

[u2R2 − ti2p2 + d]F− ijp3rtM+ iptRuH=0,

ijp2rtF+[u2R2 − tj2p2r2 + d]M+ jptRuH=0,

iptRuF+ jptrRuM−[u2R2(1+ t)+ d]H=0. (40)

Six roots (not all distinct) are obtained from stating the nullity condition of the
determinant, that is,

D1,3 =2z(d+ tV
 2
ij )/(1+ t), D2,4 =2zd; D5,6 =2zd, (41)
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in which D0 ua. After replacing these roots in the proposed functions of z, the general
solution of the problem is obtained.

Finally, the boundary conditions for the planes z=0 and z= h should be imposed, i.e.,

tzx =0, tzy =0, sz =0. (42)

After some algebraic steps the characteristic equation for the transversal mode of vibration
of a prismatic body, yields

U/V=1, U=tanh D1/R/tanh D2/R,

V=z[(1−Q2)(1−Q2/(1+ k))]/(1−0·5Q2)2 , (43)

from which the frequency parameters V are evaluated.


