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The loss mechanisms associated with the combined effects of magnetic unbalance and
hysteretic damping in a superconducting flywheel system have been modelled under the
assumption that the dynamic characteristics of the bearing can be approximated by a linear,
elastic isotropic spring with structural damping. The theoretical rundown equation of
motion of such systems has been obtained by a Lagrangian approach, neglecting the effects
of angular acceleration. The unknown parameters of the theoretical model have been
determined by two different identification procedures starting from experimental time
versus rotational speed curves obtained during rundown tests performed on a plastic
flywheel with embedded permanent magnet, suspended on a high Tc superconducting
stator. In addition to magnetic friction and eddy current losses, the hysteretic nature of
the superconducting magnetic bearing gives a significant contribution to the overall losses.
Accordingly, the efficiency of the system can be increased by minimizing the unbalance of
the rotor.
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1. INTRODUCTION

The application of magnetic bearings based on high critical temperature (Tc )
superconductors seems very promising for the levitation of flywheels designed for a variety
of applications requiring long-term storage of mechanical energy. The autostable
behaviour of these bearings is one of their main advantages over active magnetic bearings,
especially in applications which are exceptionally critical concerning friction losses and
safety of operation. Low friction losses and safety of operation are crucial aspects in view
of the high amount of kinetic energy that can be stored in the flywheel.

At present, practical bearing designs have been made possible by the development of
the melt texturation process leading to a considerable improvement in the interaction
forces that can be developed between YBa2Cu3O7 (YBCO) based high Tc superconductor
(HTS) bulk components and permanent magnets. The need of cryogenic temperatures for
their operation does not seem to constitute a major drawback due to both the low cost
of liquid nitrogen and to the standard technology involved in its management.

Studying the mechanical interaction between a type II superconductor and a permanent
magnet, Brandt [1] gives evidence that if the amplitude of the motion remains smaller than
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a given threshold, the system performs in a basically conservative manner. Whenever the
amplitude of the motion overcomes the threshold, the restoring forces become hysteretic
and an amount of energy is dissipated at each cycle. The transition between conservative
and dissipative behaviour seems to be a function of the critical current and the flux pinning
capability of the superconductor, and of the gradient of the magnetic field. From a
macroscopic point of view, the transition from conservative to dissipative behaviour is
analogous to the transition between ‘‘elastic’’ to ‘‘plastic’’ behaviour and can be modelled
as suggested by Hull et al. [2] in terms of a linear spring connected in series with an ideal
dry friction element.

For applications such as long-term kinetic energy storage within a flywheel, a
detailed analysis of the energy dissipating mechanisms occurring in the bearings is
very important for the optimization of the system. Although the dissipative behaviour
of the bearing forces is very useful to limit the high whirling amplitudes when corssing
the critical speeds and to increase the instability thresholds [3], it is a drawback
during non-critical operating conditions because of non-negligible kinetic energy
dissipation.

The influence of dissipations within the bearings due to the whirling of the rotor on its
rotating speed has been measured by Genta et al. [4], during a rundown test performed
on a small rotor supported by superconducting magnetic bearings. The sharp deceleration
observed when crossing the critical speed has been ascribed to the effects of unbalance and
to the damping properties of the bearings.

Investigating other sources of dissipations such as aerodynamic drag and eddy current
losses in small rotating permanent magnets suspended in vacuum conditions above a
cylindrical HTS stator, Weinberger et al. [5] demonstrate the existence of a frequency
independent drag torque that is assigned to ‘‘slight magnetic asymmetries’’ in the
permanent magnet.

The aim of the present paper is to investigate the energy dissipation occurring in a
superconducting flywheel due to the combined effects of unbalance and hysteretic
damping. The whirling motion of the flywheel is modelled using a simple Jeffcott rotor.
A complex stiffness approach is adopted to take into account the hysteretic characteristics
of the bearings. The rundown equation of motion of the system is then obtained by a
Lagrangian approach assuming negligible effects of the angular acceleration. Due to the
lack of a direct measurement at the operating conditions of rotating speed and whirling
amplitude [6, 7], the unknown parameters of the theoretical model are identified from the
experimental data measured during rundown tests performed on the flywheel. The
identified parameters are the critical speed, the bearing loss factor and the unbalance. To
reduce the losses due to eddy currents and to aerodynamic drag, the tests were performed
in high vacuum with a plastic flywheel disc.

2. EXPERIMENTAL SET-UP

The flywheel system employed during the experimental tests is shown in Figure 1. It was
built at Forschungszentrum Karlsruhe and is made of an unpierced Plexiglass disc (FD)
with an outer diameter of 190 mm, and a Nd–Fe–B ring shaped permanent magnet fitted
in a groove so that the resulting assembly has a constant thickness of 30 mm. The outer
and inner diameters of the permanent magnet are 90 mm and 60 mm respectively, and its
thickness is 15 mm [8].

Taking into account that the aim of the set-up is to investigate the loss mechanisms
within the flywheel system rather than that of optimizing the centrifugal stress distribution
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and the kinetic energy density, the constant overall thickness configuration had been
chosen to simplify the analysis and construction as much as possible.

Six melt-textured YBa2Cu3O7 pellets (SC) with a diameter of 34 mm and a thickness of
18 mm, mounted in a closed cryostat cooled by a continuous flow of liquid nitrogen,
constitute the stator of the superconducting magnetic bearing. A non-conductive fibreglass
cryostat was employed to differentiate the losses due to the eddy currents induced by the
asymmetries in the field of the ring magnet from any other losses inherent to the bearing
system. A special gluing and sealing technique suitable to withstand the high vacuum and
low temperature during operation was developed for this application. To reduce the gap
between rotor and stator of the bearing, the lid of the cryostat is only 0·4 mm thick.
Thin-walled, stainless steel bellows are used as LN2 feed lines.

The driving unit consists of a drive shaft connecting the flywheel to a high speed
asynchronous motor/generator (M/G) via a mechanical clutch. A flexible coupling was
placed at the drive shaft–motor interface to compensate for any runout between the axes
of rotation of the flywheel and of the motor and to reduce the first critical speed of the
flywheel during operation of the motor.

At the beginning of the test, the flywheel is connected to the drive shaft; after it has been
spun up to the desired speed, the motor is moved up by a spring-loaded mechanism. The
mechanical clutch at the lower end of the drive shaft is thus disengaged and the flywheel
disc is freely rotating. Even though this configuration makes it impossible to re-connect
the flywheel before it has come to a complete stop, it has been chosen because it allows
one to test rotors of different materials and shapes, avoiding any interaction with the
driving unit during the rundown.

To allow an easy see-through operation, the vacuum-proof flywheel housing was
made of Plexiglass. The pressure within the vacuum chamber and the temperature of
the stator of the motor are monitored continuously during the tests. The rotating
speed of the flywheel is measured by a non-contacting optical sensor and stored in
a PC.

Figure 1. A schematic of the superconducting flywheel system. M/G, motor/generator; FD, flywheel disk; SC,
superconducting pellets.
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3. ANALYSIS OF THE BEARING LOSSES

3.1.   

Eddy current losses are induced in any conducting material that is subject to a time
varying magnetic field. No eddy currents can then be induced within the Plexiglass part
of the flywheel and the fibreglass lid of the cryostat. Therefore the main part of these losses
can take place only within the ring magnet.

The magnetic flux density trapped by one of the six pellets of the bearing stator has been
measured after field cooling at a distance of 1·6 mm from the surface of a
30 mm×30 mm×6 mm Nd–Fe–B permanent magnet developing a maximum magnetic
flux of 0·2 T at the centre of its main faces. The trapped flux measured at a distance of
0·5 mm from the surface of the sample in a direction parallel to its axis shows a maximum
value of about 0·1 T at the centre of the pellet, while it is nearly null on its edges. Even
in the ideal case when the same field is trapped by each pellet, the arrangement of six
discrete pellets within the bearing stator will give way to a varying circumferential field
distribution.

When the ring magnet is rotating at a speed v over the bearing stator, it is subject to
a magnetic field varying with an angular frequency 6v. Due to the conducting nature of
the magnet, eddy currents are induced.

The quantitative evaluation of the eddy current losses within the rotating magnet is far
from being straightforward. Nevertheless, the dissipated power is proportional to the
square of the rotating speed v and to the gradient Ba of the magnetic flux density in
circumferential direction:

PecA
1
r

v2Ba (1)

where r is the electric resistivity of the material of the ring magnet. The dissipated power
Pec corresponds to a drag torque Gec :

Pec =vGec c GecA
1
r

vBa . (2)

The eddy currents in the ring magnet induce a drag torque proportional to the rotating
speed, contributing to the so-called ‘‘frequency dependent losses’’ [9, 10]. The drag torque
Gec can be reduced by increasing the resistivity of the permanent magnet, or by reducing
the inhomogeneities of the magnetic field in circumferential direction.

3.2.  

In the 10−4 torr pressure range, the aerodynamic losses are determined by the interaction
between the residual gas molecules and the flywheel surface. The drag torque resulting
from this interaction was found to be proportional to the rotating speed v [10, 11].

3.3.  

As shown previously [2, 5, 12], a torque independent of rotating speed is needed to rotate
a permanent magnet over a superconductor. This torque is due to the asymmetries in the
field of the permanent magnet and can be viewed as a sort of dry friction.

3.4.      

It is well known that the typical force–displacement characteristics of a permanent
magnet moving with respect to a superconducting pellet are irreversible. This results in a
hysteresis cycle the shape of which depends strongly upon the amplitude of displacement
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[2, 4, 7, 12, 14–17]. If the displacements between the superconducting pellet and the magnet
are small relative to their size, the force–displacement characteristics are to a good
approximation elliptical, and the bearing can then be modelled as a spring affected by
structural damping.

At a microscopic level, hysteresis occurs whenever the displacement of a type II
superconductor in an inhomogeneous magnetic field is large enough to induce ‘‘unpinning’’
of the flux lines [1]. Only in the limiting case, when displacements are small enough, does
unpinning not occur and the interaction force become conservative.

In the case of harmonic displacements, the mechanical characteristic of a spring affected
by structural damping can be represented in terms of a complex stiffness of amplitude K
and loss factor h [3]. Due to the small angular accelerations measured during a rundown
test, the flywheel is subject to a circular synchronous whirling that can be decomposed in
harmonic displacements along the x and y directions lying on its mid-plane. The bearing
force can then be approximated using the complex stiffness notation as

Fbrg =K e−ıhz, (3)

where ı=z−1 and the x and y displacements have been assembled in the complex
displacement z= x+ıy. The real and imaginary parts of Fbrg represent the components
of the bearing force along the x and y directions respectively.

Due to the unavoidable presence of an unbalance, the rotating flywheel is subject to a
whirling motion. Assuming the amplitude of the whirling motion to be large enough to
induce unpinning of flux lines, the bearing restoring forces are hysteretic and energy is
dissipated during each cycle. The dissipation is referred to as ‘‘unbalance losses’’.

If the flywheel is subject to a whirling motion of amplitude Z0 and phase 8,

z=Z0 eı(vt+8), (4)

and assuming that the loss factor h is small enough so that sin h= h, the energy dissipated
by hysteresis at each cycle 2p/v is

Wdiss =G F · dz=g
2p/v

0

K e−ıhzz�
.

dt1−2pKZ2
0hE 0, (5)

where z̄ is the conjugate of z. Wdiss is a function of the amplitude of the whirling motion
and of the loss factor h but not of the rotating speed v. If the losses within the bearing
had been modelled by means of a linear viscous damping model, the energy dissipated in
a cycle would have been also a function of the rotating speed.

Due to the high unbalances that usually affect rotors suspended by superconducting
bearings, the energy dissipated during whirling motions must be taken into account to
describe the flywheel behaviour during a rundown test or to determine the power needed
to keep it at constant rotating speed.

A simple model commonly used to analyze the unbalance losses in a rotor–bearing
system is the so called Jeffcott rotor (Figure 2). It consists of a rigid disc with mass m which
has an eccentricity e from point C, where both the elastic and the damping forces developed
by the bearing act.

The Jeffcott model can be used to describe the rundown behaviour of the flywheel system
under the following assumptions. (i) The gyroscopic effects are negligible: even if this
assumption is not exactly valid in the present case, the flywheel is thin enough to reduce
the errors to a minimum. (ii) Angular accelerations are small: since a typical rundown test,
starting from 5500 rpm, lasts for several hours, the flywheel can be thought to reach steady
state conditions at each rotating speed during the rundown. (iii) The behaviour of the
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Figure 2. The Jeffcott rotor. Oxyz, inertial reference frame; C, point at which the elastic and the damping
forces of the bearing act; m, mass of the disc located at the centre of gravity; e, eccentricity.

bearing is linear: this is valid if the displacements remain small. (iv) The restoring force is
axis symmetric: this holds both for what the elastic and the damping characteristics of the
bearing is concerned and is justified by the symmetrical arrangement of the
superconducting pellets, their rather homogeneous characteristics and by the symmetry of
the ring magnet.

The flexural behaviour of such a system can be described by the following equation of
motion:

mz̈+K e−ıhz=mev2 eıvt. (6)

The steady state solution of the above equation is a circular synchronous whirling [3]:

z= e
v2

z(v2
c −v2)2 + h2v4

c

eı(vt+8), (7)

where vc =zK/m .
In principle, equation (7) is a solution of the equation of motion (6) only in the case

of a constant rotating speed v. However, owing to the assumption of small angular
accelerations, it is valid also in the case of a rundown test.

The coupling between lateral motion and rotating speed during a rundown test can be
determined using a Lagrangian approach. With the flywheel being the only part included
in the system, the magnetic bearing forces and the drag torques are accounted for as
external forces acting on it. The circular whirling (7) has been considered as a constraint
acting on the x and y displacements. The only remaining degree of freedom of the rotor
is then the rotation q=vt+8, which is considered as the Lagrangian co-ordinate of the
system. With the assumption of small angular acceleration, the kinetic energy of the rotor
can be expressed as

T= 1
2(mZ2

0 + Ip )v2, v= q� . (8)

In practical operating conditions the whirling amplitude is such that the contribution mZ2
0

to the polar inertia of the rotor can be neglected compared to Ip . The kinetic energy can
then be approximated as

T1 1
2Ipv

2. (9)
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The Lagrangian generalized force Qq has been computed taking into account the
contributions given by the bearing lateral force Fbrg , the aerodynamic drag, the eddy
current and the magnetic friction:

Qq = c0 + c1v+Fbrg ·
1z
1q

. (10)

The constant c0 accounts for the frequency independent losses due to magnetic friction,
while c1 accounts for the combined effects of eddy current losses and molecular drag.

Substituting the bearing force (3) and the whirling motion (7) in (10), the Lagrangian
component Qq can be written as

Qq = c0 + c1v− h
(mevc )2

m[(v2
c −v2)2 + h2v4

c ]
v4. (11)

Due to the choice of considering the flywheel as the only part included in the expression
of the Lagrangian function, the only potential energy of the system is stored in
gravitational form. The elastic potential of the bearing is not included in the Lagrangian,
as the bearing forces are considered as external forces and their contribution is taken into
account through the generalized force Qq . During the experiments the vertical
displacements of the flywheel are negligible: the gravitation energy is constant and
therefore does not contribute to the system dynamics.

Lagrange’s equation of motion becomes

d
dt 01T

1q� 1−
1T
1q

=Qq . (12)

Substituting equations (9) and (11) in equation (12), the rundown equation of motion turns
out to be

Ipv̇= c0 + c1v− h
(mevc )2

m[(v2
c −v2)2 + h2v4

c ]
v4. (13)

The subcritical and the supercritical speed ranges are characterized by substantially
different forms of behaviour. (i) In subcritical conditions (v�vc ) the Lagrangian force
due to the rotor whirling motion is negligible compared to those due to the aerodynamic,
the eddy current and the magnetic drag. In this case the angular acceleration is a linear
function of the rotational speed v:

v�vc c Ipv̇1 c0 + c1v. (14)

(ii) In supercritical conditions (v�vc ) the unbalance losses become independent of the
rotational speed. They contribute to the frequency independent losses:

v�vc c Ipv̇1 c0 −
h(mevc )2

m
+ c1v. (15)

In high supercritical conditions, the amplitude of the whirling tends to be independent
of the rotational speed v. Then the power dissipated by the hysteretic nature of the bearing
becomes proportional to the number of whirling cycles per unit time, and thus to the
rotating speed. In other words, at constant v a dissipated power proportional to the
rotating speed is equivalent to a constant drag torque acting on the flywheel.

Unless the rotor unbalance me is negligible, the losses due to the rotor unbalance give
a substantial contribution to the overall dissipation. In the supercritical speed range they
can overcome those due to eddy currents, aerodynamic drag and magnetic friction. Due
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to the low stiffness values usually obtained in a superconducting magnetic suspension, the
rotor is operated in supercritical conditions most of the time. Accurate balancing is then
necessary to reduce the losses within it.

While for conventional bearings the axis of the geometric centre is also the elastic axis
of the rotor, in superconducting bearings the elastic axis C of the suspension is related to
the magnetic symmetry axis of the bearing. In this case, the eccentricity e is the distance
between the rotor centre of gravity and the magnetic axis. The unbalance is closely related
to the difficulty in producing permanent magnets and superconducting stators with highly
symmetrical field distributions. For our experiments, balancing was achieved by shifting
the centre of gravity into the elastic axis.

4. IDENTIFICATION OF THE SYSTEM PARAMETERS

Since not all of the parameters included in the mathematical model (13) can be easily
isolated and measured, equation (13) was employed to identify the five unknown
parameters c0, c1, me, vc and h representing the frequency independent and the frequency
dependent losses, the unbalance, the critical speed and the hysteretic damping coefficient.

The mass m was measured, while the polar inertia Ip was evaluated analytically starting
from the geometrical dimensions and the material characteristics giving

m=1·36 kg, Ip =5·1×10−3 kg m2.

Experimental data obtained under different operating conditions of unbalance and
cooling distance were analyzed using the identification procedure.

Experimental rundown data were obtained in a vacuum by accelerating the rotor up to
a speed of about 5500 rpm. The rotor was then decoupled and the speed of the freely
rotating disk was measured as a function of time.

Two different identification procedures were used: (i) identification from the angular
acceleration curves—performed by minimizing the distance between the theoretical and
experimental (v, v̇) curves; (ii) identification from the angular speed curves—performed by
minimizing the distance between the theoretical and experimental (t, v) curves.

4.1.      

The angular acceleration was evaluated as the slope of a linear best fit to the (t, v(t))
curves obtained during rundown experiments. The computation was done within a ‘‘time
window’’ of amplitude Dt sliding from the beginning to the end of the test record. The
errors of this method are small if the angular acceleration is constant within the time
window Dt. The linear data fitting with a constant value of Dt was then adopted only for
rotor speeds far from the critical, so that the angular acceleration was low and slowly
varying with time.

At speeds close to vc , the changes in the angular acceleration are faster. In this case,
v̇ was evaluated as the slope of a straight line connecting consecutive measurements at
times tk and tk+1:

v̇(tk )=
v(tk+1)−v(tk )

tk+1 − tk
. (16)

This is equivalent to a reduction of Dt to its minimum value.
The frequency independent and the frequency dependent loss coefficients c0 and c1 were

identified by a linear approximation of the (v, v̇) curve at speeds much lower than the
critical, where the rundown equation (13) reduces to equation (14).
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Taking equation (13) into account, the maximum value of the contribution to the
angular acceleration due to the unbalance is reached at a value vpk :

vpk =vcz1+ h2, (17)

such that

(Ipv̇− c0 − c1v)pk =−
1
m

v2
pk(me)2 1

h
. (18)

The left side of equation (18) can be determined from the experimental curves and from
parameters c0 and c1, previously identified. The value of the damping parameter is then

h=−
v2

pk(me)2

m(Ipv̇− c0 − c1v)pk
. (19)

Substituting equations (19) and (17) into equation (13), the unbalance can be obtained
as a function of the rotational speed. The nearly constant value of the unbalance identified
in the speed range 2000–5000 rpm was considered as a proof of the identification method.

In Table 1 are shown the parameters identified from experimental data obtained for
different values of the unbalance and of the cooling distance. While the critical speed vc ,
=c0= and =c1= are found to decrease with increasing cooling distance, the hysteretic damping
coefficient h was practically constant. As expected, all balanced configurations show an
identified unbalance that is considerably lower than the unbalanced ones. The variation
of the unbalance with the cooling distance can be due to slight changes in the location
of the elastic axis of the bearing from experiment to experiment when the cooling distance
was changed.

The continuous curves of Figure 3 show the experimental (t, v) data obtained with a
cooling distance of 4 mm, while the dashed ones were obtained by numerical integration
of equation (13) using the estimated parameters of Table 1. The value of the rotating speed
measured at the beginning of the test has been assumed as initial condition for the
integration.

4.2.       

In the previous identification procedure, equation (13) is considered as an explicit link
between angular acceleration and angular speed and is based on a data fitting procedure
of (v, v̇) curves derived directly from the experimental (t, v) rundown curves. In the

T 1

Parameters identified from the angular acceleration curves

c0/Ip c1/Ip

Cooling
distance Balancing Pressure vc me2 sme010−3 rad

s2 1 010−6 1
s1(mm) (y/n) (10−4 torr) (rad/s) (g mm) h

1·6 n 7 −19·0 −60·0 133·0 640·0 2 9·0 0·16
4·0 n 5 −2·8 −44·0 85·0 650·0 2 16·0 0·17
6·0 n 2 −2·2 −36·0 71·0 560·0 2 36·0 0·12
1·6 y 9·02 1·0 −29·0 −60·0 140·0 220·0 2 5·0 0·08
4·0 y 7·02 1·0 −4·9 −44·0 92·0 290·0 2 4·0 0·11
6·0 y 4 −2·2 −36·0 71·0 313·0 2 10·0 0·11
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Figure 3. Experimental (continuous) versus simulated rundown curves (dashed), identified from the angular
acceleration: 4 mm cooling distance. The upper curves are for the balanced rotor and the lower curves for the
unbalanced rotor.

following, equation (13) is considered as a differential equation that is numerically
integrated within the time interval t0, tend corresponding to the duration of the test.

The value of the maximum rotating speed v0 at the beginning of a test is assumed as
initial condition at time t0 for the numerical integration, performed using a standard second
or third order Runge–Kutta routine. This leads to a theoretical rundown curve vth (ti )
evaluated at discrete time steps ti . The theoretical rundown curve is considered as a
function of the system parameters c0, c1, h, vc and me.

The identified set of the system parameters is computed as that which minimizes the
error function E(c0, c1, h, vc , me), defined as the mean square of the relative error between
the experimental (subscript exp) and the theoretical (subscript th) values of the rotating
speed at times ti :

E(c0, c1, h, vc , me)=
1
nXs

n

i=1 0vth (ti )−vexp (ti )
vexp (ti ) 1

2

. (20)

The identification routine is based on the following step-wise procedure. (1) For a given
set of the system parameters, the theoretical rundown curve vth (ti ) is computed by
numerical integration of equation (13) within the time interval t0, tend . (2) The error
function E(c0, c1, h, vc , me) is computed. (3) A new set of parameters c0, c1, h, vc , me is
determined to minimize the error E.

Points (1), (2) and (3) are iterated until the error function of equation 20 converges to
a minimum value within a given tolerance. The minimum search routine exploits the
functions implemented in the optimization toolbox of the Matlab software [18] and is
based on a Levenberg–Marquardt method with a mixed quadratic and cubic search
procedure.

The parameters of Table 1 have been adopted as starting guess for the minimization
algorithm. This choice has shown to be the less prone to make the routine converge to
physically meaningless parameter sets.
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T 2

Parameters identified from the angular speed curves

c0/Ip c1/Ip

Cooling
distance Balancing Pressure vc me010−3 rad

s2 1 010−6 1
s1(mm) (y/n) (10−4 torr) (rad/s) (g mm) h

1·6 n 7 −28·0 76·0 123·0 655·0 0·16
4·0 n 5 −6·7 −52·0 90·0 652·0 0·17
6·0 n 2 −5·4 52·0 74·0 761·0 0·13
1·6 y 9·02 1·0 −33·0 −27·0 136·0 215·0 0·14
4·0 y 7·02 1·0 −6·6 −33·0 88·0 239·0 0·14
6·0 y 4 −2·3 −35·0 65·0 307·0 0·14

The values obtained from the identification procedure are reported in Table 2 as a
function of cooling distance and balancing conditions. Physically, both parameters c0 and
c1 have to be positive as they represent the drag torques due to the frequency dependent
and the frequency independent loss mechanisms. The positive signs of c1/Ip for the
unbalanced rotor and cooling distances of 1·6 and 6 mm are probably due to numerical
inaccuracies in the identification procedure due to the small relevance of the aerodynamic,
eddy current and magnetic friction losses compared to the losses from magnetic unbalance.

All of the curves of Figure 4 are relative to a cooling distance of 4 mm; the continuous
curves show the experimental rundown data for the balanced and the unbalanced rotor.
The dashed curves are obtained by numerical integration of equation (13) with the
identified parameters listed in Table 2. The upper dashed curve is obtained from the
theoretical model with the parameter values of the balanced configuration except for the
unbalance which was reduced by 50% to 118 g mm.

Figure 4. Experimental (continuous) versus identified rundown curves (dashed) identified by relative error
minimization: 4 mm cooling distance. The upper curves are relative to the balanced rotor and the lower curves
are for the unbalanced rotor. The upper dashed curve was calculated using the theoretical model with parameters
of the balanced configuration and an unbalance reduced by 50%.
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From the analysis of Figure 4, it is clear that in supercritical conditions the main source
of energy dissipation is due to the combined effects of the flywheel unbalance and of the
hysteretic characteristic of the superconducting bearing. This energy dissipation occurs not
only in the vicinity of the critical speeds but also above it. Good balancing of the
rotor–bearing system can therefore be very effective to reduce the long-term energy losses
in the system.

5. CONCLUSIONS

We have investigated the loss mechanisms in a superconducting flywheel system due to
the combined effects of magnetic unbalance and hysteretic damping. The analysis was
performed under the assumption that the bearing characteristics can be modelled as a
linear, elastic, isotropic spring with structural damping.

The parameters of the system were identified in two different ways: (1) by the analysis
of the rotational speed–angular acceleration curves; and (2) by minimizing the mean square
value of the relative error between theoretical model and the time–speed experimental data.
The good approximation that can be obtained by the theoretical model, and the reasonable
consistency of the parameters identified by two different methods, is considered as a
validation of the modelling procedure.

In addition to magnetic friction and eddy current losses, the hysteretic nature of the
superconducting bearing makes a significant contribution to the overall losses, as it
dissipates energy whenever the rotor is subject to a whirling motion on a plane
perpendicular to its axis. The amplitude of this whirling motion is a function of the
unavoidable eccentricity between the flywheel centre of gravity and the elastic axis of the
magnetic suspension. Due to the low stiffness values that are usually obtained for
superconducting bearings and the need to operate at high speeds to optimize the kinetic
energy stored in the flywheel, these systems are usually operated in supercritical conditions.
In order to increase the efficiency of the system, it is of crucial importance to reduce the
unbalance of the rotor supported by the bearings. This is achieved by minimizing the
distance between centre of gravity and the elastic axis of the rotor.
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APPENDIX: NOMENCLATURE

c0 coefficient of the frequency independent losses
c1 coefficient of the frequency dependent losses
n number of samples during the rundown tests
m flywheel mass
t time
x, y displacements of the elastic axis of the flywheel
z complex co-ordinate
B magnetic flux density
Ba gradient of B in circumferential direction
C bearing elastic axis
E mean square of the error between experimental and theoretical rundown curves
F bearing force
HTS high Tc superconductor
K bearing stiffness
Ip flywheel polar inertia moment about its axis
LN2 liquid nitrogen
P dissipated power
Qq Lagrangian component of the forces about the axis of the flywheel
W dissipated power
T kinetic energy
Tc critical temperature
Z0 whirling amplitude
e flywheel eccentricity
8 whirling phase angle
r electric resistivity
q rotation angle about the flywheel axis
v flywheel rotating speed
vc flywheel critical speed
G drag torque
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Subscripts

brg bearing
ec eddy current
diss dissipated
k kth time step
pk peak
th theoretical
a circumferential direction
exp experimental


