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SELF-EXCITED VIBRATIONS OF THE VARIABLE
MASS ROTOR/FLUID SYSTEM
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Faculty of Technical Sciences, Novi Sad, Yugoslavia

(Received 22 August 1996, and in final form 8 December 1997)

In this paper the variable mass rotor/fluid system is considered. A rotor with variable
mass is settled in hydrodynamic bearings. The dynamic properties of the rotor on which
the fluid force and the impact force (due to mass variation) act are analyzed. The conditions
of stable rotation are obtained applying the direct Lyapunov theorem. The self-excited
vibrations are determined analytically. The Krylov–Bogolubov method is extended for
solving the second order differential equation with a complex deflection function, small
non-linearity and time variable parameters and a significant damping term. Analyzing the
amplitude of self-excited vibrations, the conditions of unstable motion are defined. Special
attention is given to the effect of interactive influence of the inertial fluid force and the
impact force on the stability of rotation of the rotor. For the rotor on which the band winds
up, the vibrations are obtained analytically. The results are compared with numerical ones.
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1. INTRODUCTION

Dynamic phenomena induced by interaction between the rotor motion and bearing or seal
fluid motion have been recognized for more than 70 years [1], before the first work about
oil whip was published by Newirk and Taylor. After that, hundreds of papers present
results of experimental investigations, discuss theoretical models of these dynamic
phenomena and give specific recommendations of how to avoid vibrations that can
seriously perturb the rotating machine normal operation. Many controversial results have
appeared, and Hori [2] was the first to give a comprehensive theory that explained the facts
consistently. The starting point for the theoretical consideration of a hydrodynamically
generated oil film in a journal bearing is the well-known Reynolds equation for
incompressible fluids in the laminar regime. The solution of this equation gives the pressure
distribution in the journal bearing oil film. By integrating the pressures, the radial and
transverse components of the force exerted by the oil film on the journal are obtained. Hori
divided the vibrations of the rotor into small and large by comparing their amplitudes with
the eccentricity of the bearing center. For large vibrations, a procedure is established for
rapid estimation of the size and dispositions of amplitudes resulting from the combined
action of rotating and static forces in the rotor assembly incorporating oil film bearings
and damping [3]. The steady state journal centre orbit as a function of unbalance, gravity
parameter and bearing parameter is analyzed for rigid [4] and flexible [5] rotors. Whirl orbit
of a shaft in a finite journal bearing lubricated by micropolar fluid is predicted by
numerical computation of the generalized Reynolds equation and the equations of the
shaft motion [6]. The mentioned rotors are symmetric and the hydrodynamic bearings are
equal. The results are extended to the vibrations of asymmetric flexible rotors supported
by asymmetric bearings [7] and [8]. In the papers [9] and [10], the necessary conditions for
backward whirling motion of a Jeffcott rotor supported on journal bearings are given.
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In the aforementioned papers and papers [11] and [12], the inertial effects of the fluid are
omitted.

In the past ten years many theoretical and experimental investigations have been carried
out at Bently Rotor Dynamics Research Corporation in the U.S.A., analyzing the stability
of motion due to fluid/solid interaction. The results of the investigations show that some
correction of the previous model is necessary. A new model of the fluid forces in seals and
lightly loaded, fully lubricated bearings [13–15] is introduced. The inertia effects of the fluid
film are included for lightly loaded high speed rotors. The fluid force model is based on
the fluid circumferential average velocity of the flow. It proves to be an adequate way in
which to represent the solid/fluid dynamic forces [16]. Using this model of fluid force the
rotor/fluid model is formed and the instability conditions for rotors with constant mass
are obtained [17–21].

The aim of this paper is to extend previous investigations and to analyze the self-excited
vibrations of the rotor/fluid model where the mass of the rotor varies in time. The fluid
force model based on the fluid circumferential average velocity of the flow is applied.
Rotors with variable masses are very often the working elements of machines in the process
industry. In those machines, mass is being added or separated from the rotor during its
rotation.

In this paper, the threshold of the stable rotation of the rotor is defined. The direct
Lyapunov method is applied for stability analysis of pure rotation motion of the rotor.
The self-excited vibrations of the rotor are obtained analytically. The Krylov–Bogolubov
method (the method of variable amplitude and phase) is extended and adopted for solving
the second order differential equations with a complex function and slow time variable
parameters where the damping terms are significant. The analytically obtained results are
used to define the instability conditions of motion. Special attention is given to the case
when the inertial fluid force acts. This component is usually omitted. The interaction
between this component and the parameter of impact force on the stability of motion is
analyzed in detail.

2. ROTOR/FLUID MODEL

The physical model of the system is a rigid rotor supported on journal bearings. The
rotor is a shaft–disc system. The mass of the disc is varying over time. The shaft is
supported on journal bearings. The connection between the shaft and the bearing is
modelled as a system of two cylinders: one softly supported and rotating inside the other
which is fixed. The clearance between them is relatively small and filled with fluid
(Figure 1).

Figure 1. A model of the variable mass rotor/fluid system.
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As mentioned in the introduction, various types of fluid force model have been
developed. All of them can be divided into two groups: one based on the Reynolds
equation for incompressible fluids in the laminar regime [2–12], and the other on the model
in the form of a dashpot and a spring [13–21].

The starting point for the theoretical consideration of a hydrodynamically generated oil
film in a journal bearing is the well known Reynolds equation for incompressible fluids
in a laminar regime [2–12]. The usual Reynolds assumptions are: (a) the oil film is thin
enough and the effect of its curvature may be neglected; (b) there is no pressure change
across the film thickness; (c) the inertia force of the oil may be neglected; (d) the oil pressure
in the unloaded region is zero; and (e) the pressure distribution is two-dimensional. The
assumption for many journal bearings is that they are short in relation to their diameter.
If only the first order movement of the oil film around the bearing circumference is
considered, it produces only a first order change in pressure. For these small motions, the
oil forces are (see [2–12])

F1 = mRl0 l
c1

2

[−ṙg2 + (1
2V− u� )rg1],

F2 = mRl0 l
c1

2

[−ṙg1 + (1
2V− u� )rg3],

where

g1 =−
2p

(1− r2)2 , g2 =
1+2r2

(1− r2)5/2

p

2
, g3 =

p

2
1

(1− r2)3/2 ,

r= e/c is the eccentricity ratio, c is the radial clearance, e is the eccentricity of the journal
in the bearing, l is the bearing or squeeze-film land length, R is the bearing radius, m is
the lubricant viscosity and V is the angular velocity of the rotor. In relation to a stationary
co-ordinate system, the oil force is

Fz =F1 eiu +iF2 eiu.

Assuming only the quasi-linear terms, it is

Fz =−[(K0 +c(=z=)]z−[D+cD (=z=)](ż− lVzi), (1)

where =z== r,

K0 = pmRl0 l
c1

2

V, c(=z=)=2pmRl0 l
c1

2

V=z=2,

D= 1
2pmRl0 l

c1
2

, cD (=z=)= 3
4pmRl0 l

c1
2

=z=2, l= 1
2.

The main deficiency of the model (1) is that the inertia force of the oil is dropped.
In this paper, the second model of fluid forces suggested by investigators from the Bently

Rotor Dynamics Research Corporation in the U.S.A. is accepted. The advantage of the
second model is its simplicity due to some assumptions that follow. The fluid dynamic
forces in the clearance are modelled in the form of a mass which is connected with dashpot
and a spring in the radial direction [13]. As stated in the paper of Muszynska and Bently
[16], due to the rotation of the inner cylinder and the friction, the shaft rotating inside the
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clearance drags the fluid into rotative circumferential motion. It means that the fluid film
related mass, dashpot and spring are not stationary, but rotate. In the fluid velocity profile
inside the clearance, the angular velocity of the fluid boundary layer next to the shaft is
the same as the shaft rotative speed V and the fluid layer next to the stator has zero
velocity. It is assumed that when the journal is rotating, centered, fully developed fluid flow
is established in the circumferential direction. To simplify the consideration, a function
describing the fluid circumferential averge velocity ratio l is introduced. Then the vital
assumption is that the fluid force that results from averaging the circumferential flow, is
rotating with angular velocity lV. It is supposed that shaft lateral vibrations are small
enough to make modifications of this pattern negligible (see [14]). In the previous model
it is assumed that the value of l is 1/2. According to [13–21], the fluid force in stationary
co-ordinates can, therefore, be expressed by

F=[K0 +c(=z=)]z+[D+cD (=z=)][ż−il(=z=)Vz]

+ Mf [z̈−2il(=z=)Vż− l2(=z=)V2z], (2)

where z= x+iy is the rotor lateral complex deflection, K0 is the fluid film radial stiffness,
c(=z=) is the non-linear rigidity function, D is the fluid viscous damping, cD (=z=) is the
non-linear damping function, Mf is the fluid inertial effect, V is the rotative speed, l(=z=)
is the fluid circumferential average velocity ratio and =z==zx2 + y2, in which x and y are
horizontal and vertical components of the rotor lateral displacement in stationary
co-ordinates. The fluid film inertia is included in this model. The inertia effects become
important for lightly loaded high speed rotors. The properties of the suggested model are
deeply investigated and experimentally proved in papers [13–21]. Comparing with the
model (1), it is evident that the inertia force is taken into consideration and the fluid
circumferential average velocity ratio is introduced.

Using the suggested model of the fluid force, the model of the rotor/fluid system is
formed. The mathematical model of the rotor/fluid system is as follows:

F=m(t)z̈+DSż+Kz+Mf [z̈−2il(=z=)Vż− l2(=z=)V2z]

+ [D+cD (=z=)][ż−il(=z=)Vz]+ [K0 +c(=z=)]z, (3)

where m(t), K and DS are the mass, stiffness and damping parameters, respectively, t= et
is the slow time, e is a small parameter and F is the impact force. The impact force F

appears due to the mass variation of the rotor. As defined by Meshcherski [22], it is the
product of adding or separating mass and its relative velocity,

F=−e
dm(t)

dt
(ż− vz ), (4)

where vz is the absolute velocity of adding or separating mass and ż is the absolute velocity
of the rotor. Usually, the relative velocity of adding mass is given as the fraction of the
rotor velocity (Bessonov, [23]) and it is

F=−ep
dm(t)

dt
ż,

where p=0−1. For p=0, the relative velocity of mass separation or addition is zero.
This means that the absolute velocity of the rotor and the absolute velocity of separated
mass are the same. Then, the impact force is zero and the separation of the mass is without
impact. For p=1, the relative velocity of the mass variation is equal to the absolute
velocity of the rotor. The absolute velocity of separated mass is zero. The impact force
exists and it is known in the literature as the impact force of Levi–Chivita type.
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The non-linear functions l(=z=), cD (=z=) and c(=z=) are obtained experimentally. It is
evident that the fluid circumferential average velocity ratio l(=z=) varies during a cycle.
When the rotor is displaced from its concentric position inside the fixed cylinder, the
average velocity decreases. As the variation of the velocity in the clearance between the
fixed and inner cylinders is small, it is assumed that the fluid circumferential average
velocity ratio has the constant value l [16]. This value depends on the type of the fluid
[15]. Assume that the non-linear function c(=z=) is of the parabolic type

c(=z=)= k3(=z=)2. (5)

The non-linear function cD (=z=) is omitted. Then, the differential equation of motion is

−ep
dm
dt

ż=m(t)z̈+DSż+Kz+Mf [z̈−2ilVż− l2V2z]

+ D[ż−ilVz]+ [K0 + k3(=z=)2]z. (6)

3. STABILITY ANALYSIS

To investigate the stability of the purely rotational motion of the shaft, the unbalance
force is assumed to be equal to zero. The stability of the purely rotation motion of the
shaft means the stability of the zero solution of the equation (6).

Separating the real and imaginary parts in the equation (6), two second order differential
equations are obtained:

−ep
dm
dt

ẋ=m(t)ẍ+DSẋ+Kx+Mf [ẍ+2lVẏ− l2V2x]

+ D[ẋ+ lVy]+ [K0 + k3(x2 + y2)]x, (7)

−ep
dm
dt

ẏ=m(t)ÿ+DSẏ+Ky+Mf [ÿ−2lVẋ− l2V2y]

+ D[ẏ− lVx]+ [K0 + k3(x2 + y2)]y. (8)

For the stability analysis, the direct Lyapunov procedure will be applied, [24]. Forming
the Lyapunov function

V= 1
2[m(t)+Mf ](ẋ2 + ẏ2)+ 1

2(x
2 + y2)$K+K0 −Mfl

2V2 +
D(D+DS )

2Mf %
+

D
2Mf

[m(t)+Mf ](xẋ+ yẏ)+ 1
4k3(x2 + y2)2, (9)

which is positive definite for

m(t)+Mf eMf q 0, (10)

k3 q 0, (11)

K+K0 −Mfl
2V2 +

D(D+DS )
2Mf

q 0, (12)
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0K+K0 −Mfl
2V2 +

D(D+DS )
2Mf 1−0 D

2Mf1
2

[m(t)+Mf ]

e0K+K0 −Mfl
2V2 +

D(D+DS )
2Mf 1−0 D

2Mf1
2

[mmax +Mf ]q 0, (13)

where mmax is the maximal value of variable mass.
The first time derivative of V after substituting equations (7) and (8) is

V� =− 6e(p− 1
2)

dm
dt

+(DS +D)−
D

2Mf
[m(t)+Mf ]7(ẋ2 + ẏ2)

−
D

2Mf
e

dm
dt

(p−1)(xẋ+ yẏ)−
D

2Mf
[(K0 +K)−Mfl

2V2](x2 + y2)

−
D

2Mf
k3(x2 + y2)2. (14)

The function (14) is negative definite for

K0 +K−Mfl
2V2 q 0, (15)

(DS +D)−
D

2Mf
[mmax +Mf ]+ (p− 1

2)eb dm
dt bmax

q 0, (16)

2D
Mf 6(p− 1

2)e
dm
dt

+DS +D−
D

2Mf
[m(t)+Mf ]7[K0 +K−Mfl

2V2]

− 0 D
2Mf1

2

e20dm
dt1

2

(p−1)2 e 2D
Mf 6DS +D−

D
2Mf

[mmax +Mf ]− eb dm
dt bmax7

× [K0 +K−Mfl
2V2]−0 D

2Mf1
2

e20dm
dt1

2

max

q 0, (17)

where =dm/dt=max is the maximal value of the mass time derivative.
According to the direct Lyapunov theorem of asymptotic stability [24] (if, for differential

equations (7) and (8) of perturbed motion, the positive definite function V exists, and if
its first time derivative along the integrating line of the equations (7) and (8) is negative
definite, the unperturbed motion is asymptotically stable) and the previous consideration,
it can be concluded that the rotation of the rotor with zero deflection of the mass center
is asymptotically stable for equation (11),

(DS +D)−
D

2Mf
[mmax +Mf ]+ (p− 1

2)eb dm
dt bmax

q 0, (18)

and

K+K0 −Mfl
2V2 −0 D

2Mf1
2

[mmax +Mf ]q 0, (19)
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2D
Mf 6DS +D−

D
2Mf

[mmax +Mf ]− eb dm
dt bmax7

×[K0 +K−Mfl
2V2]−0 D

2Mf1
2

e20dm
dt1

2

max

q 0, (20)

i.e.,

VQ 1
lXK+K0

Mf
−

1
Mf 0 D

2Mf1
2

[mmax +Mf ], (21)

or

VQ 1
lXK+K0

Mf
−

D
8M2

f

e2(dm/dt)2
max

[DS +D−(D/2Mf )[mmax +Mf ]− e=dm/dt=max ]
. (22)

The stronger criteria of equations (21) and (22) are the threshold of the asymptotically
stable rotation of the rotor with zero deflection of the mass center. It depends not only
on the properties of the bearing and the rotor, but also on the mass variation. In Figure 2,
the criteria of asymptotically stable motion are plotted. For Mf =0·1, DS =1·92, D=0·08,
l=0·5 and various values of the maximal mass of the rotor and the velocity of the mass
increase (dm/dt), the angular velocity of the rotor for which the motion is asymptotically
stable is obtained according to the equations (21) and (22).

Analyzing the criteria of stability equations (11) and (18–20) it can be seen that the
motion may also be asymptotically stable for the case in which damping is neglected, but
the impact parameter has the value

pe 1/2, (23)

and

VQ 1
lXK+K0

Mf
. (24)

Figure 2. The threshold of asymptotic stable rotation.
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Then, the impact force acts as motion stabilizer.
Consider the case in which p=0; i.e., the impact force is zero. Due to the definition

of the simple stability given by Lyapunov [24] (if, for differential equations (7) and (8) of
perturbed motion, the positive definite function V exists if its first time derivative along
the integrating line of the equations (7) and (8) is a negative function or zero, the
unperturbed motion is stable) it can be concluded that the rotation of the rotor with zero
deflection of the mass center, when the mass variation is without impact, is simple stable
if the condition (11) and

K+K0 −Mfl
2V2 e 0, (25)

(DS +D)−
D

2Mf
[mmax +Mf ]−

e

2 b dm
dt bmax

e 0, (26)

are satisfied. From the last inequality it can be seen that the simple stable motion is realized
only for the case when damping exist. Otherwise, the conditions of stability are not
fulfilled.

4. SELF-EXCITED VIBRATION

Consider the case in which the non-linearity is small and the unbalance is omitted. The
mathematical model of motion is

m(t)z̈+DSż+Kz+Mf [z̈−2ilVż− l2V2z]

+D[ż−ilVz]+K0z= ec(=z=)z− ep
dm(t)

dt
ż, (27)

where e�1 is a small parameter. The equation is a second order differential equation with
a complex function, small non-linearity and slow time variable parameter. The damping
terms in the equation are significant. The approximate solutions of the equation (27) are
to be determined. In reference [25] the procedure of variable amplitude and phase
(Krylov–Bogolubov method) is extended for the systems with a complex function. Using
the principles of the aforementioned procedure, an extension of the method is used for the
differential equation (27) with a complex deflection function and small non-linearities, and
also slow time variable parameters. The solution of equation (27) has the same form as
the solution of the equation with constant parameters and without non-linearity (when
e=0)

m0z̈+DSż+Kz+Mf [z̈−2ilVż− l2V2z]+D[ż−ilVz]+K0z=0, (28)

where m0 is the mass for t=0. The solution of equation (28) is assumed as

z=A edt ei(vt+ u). (29)

Substituting (29) and its time derivatives into equation (28) and separating the real and
imaginary parts, two algebraic equations are obtained. The unknown values are

d=−
D+DS

2(m0 +Mf )
2

z−R1 +z(R1)2 + (R2)2

2z2(m0 +Mf )
, (30)

v=
MflV

m0 +Mf
2

zR1 +z(R1)2 + (R2)2

2z2(m0 +Mf )
, (31)
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where

R1 =4(m0 +Mf )(K+K0)−4m0Mfl
2V2 − (D+DS )2, (32)

R2 =4lV(m0D−MfDS ). (33)

The values of A and u are obtained for the arbitrary initial conditions. According to
equation (29), the solution of equation (27) is assumed in the form

z=A(t) eD(t) ei8(t), (34)

where

D=g
t

0

d(t) dt=g
t

0 6− D+DS

2[m(t)+Mf ]
2

z−R1(t)+z[R1(t)]2 + [R2(t)]2

2z2[m(t)+Mf ] 7 dt, (35)

8(t)=g
t

0

v(t) dt+ u(t)

=g
t

0 6 MflV

m(t)+Mf
2

zR1(t)+z[R1(t)]2 + [R2(t)]2

2z2[m(t)+Mf ] 7 dt+ u(t), (36)

R1(t)=4[m(t)+Mf ](K+K0)−4m(t)Mfl
2V2 − (D+DS )2, (37)

R2(t)=4lV[m(t)D−MfDS ]. (38)

Substituting equation (31) into equation (24) and separating the real and imaginary parts
and after a transformation, two first order differential equations are obtained:

A� =$ ed(t)
m(t)+Mf

Re+
ev(t)

m(t)+Mf
Im% 1

[d(t)]2 + [v(t)]2

−
eA

[d(t)]2 + [v(t)]2 $d(t)
dd(t)
dt

+v(t)
dv(t)

dt %, (39)

Au� =$ ed(t)
m(t)+Mf

Im−
ev(t)

m(t)+Mf
Re% 1

[d(t)]2 + [v(t)]2

+
eA

[d(t)]2 + [v(t)]2 $v(t)
dd(t)
dt

− d(t)
dv(t)

dt %. (40)

where

d(t)=−
D+DS

2[m(t)+Mf ]
2

z−R1(t)+z[R1(t)]2 + [R2(t)]2

2z2[m(t)+Mf ]
, (41)

v(t)=
MflV

m(t)+Mf
2

zR1(t)+z[R1(t)]2 + [R2(t)]2

2z2[m(t)+Mf ]
, (42)

Re0Ac(A eD)− pA
dm(t)

dt
d(t), (43)
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Im0−pA
dm(t)

dt
v(t). (44)

If the non-linearity is omitted, equation (39) transforms into the form

A� =−
dm(t)

dt

eAp
m(t)+Mf

−
eA
2

1
[d(t)]2 + [v(t)]2

d[d(t)]2 + [v(t)]2

dt
. (45)

Integrating equation (45) for the initial conditions A(0)=A0, m(0)=m0, d(0)= d0,
v(0)=v0, it is

A=A00 m0 +Mf

m(t)+Mf1
p

0 d2
0 +v2

0

[d(t)]2 + [v(t)]21
1/2

. (46)

The value of A depends on the impact parameter p. For the case in which it is zero,
the A− t function is

A=A0X d2 +v2

[d(t)]2 + [v(t)]2
. (47)

Next, we analyze equations (41), (42), (46) and (47) for the case in which the damping
of the system is extremely strong. As the damping parameter is constant and the mass of
the system varies, it causes variation of the damping function. For the case in which the
mass increases, the damping function (41) and the frequency function (42) decrease. Then,
the properties of the function A depend on the velocity of the added mass. If the mass
is added with a velocity that is smaller than the velocity of the rotor (the parameter pQ 1)
and when the adding of mass is with the velocity equal to the absolute velocity of the rotor
(p=0) (see equation (47)), the function A increases. For the case in which the absolute
velocity of the adding mass is zero (p=1), the function A (see equation (46)) is constant.
According to equation (34), it can be seen that the amplitude of self-excited vibrations is
the product of the function A and the function eD. For the case of intensive damping, it
can be seen that eD decreases exponentially (see equation (35)) and the amplitude of
vibration disappears.

The more complex situation is when the damping in the system is not the dominant
value. Then, the amplitude of self-excited vibrations has a tendency to increase if

d
dt

(A eD)e 0,

i.e., [A+Ad(t)] eD e 0. If the vibrations have a tendency to increase, the motion of rotor
is unstable. As eD q 0, the condition for unstable motion is

A� +Ad(t)e 0. (48)

For the case in which the non-linearity is neglected, the condition of unstable motion of
the rotor is

−
dm(t)

dt

eAp
m(t)+Mf

−
eA
2

1
[d(t)]2 + [v(t)]2

d[d(t)]2 + [v(t)]2

dt
+Ad(t)e 0, (49)

where A is given as (46). It is evident that the unstable motion is strongly correlated with
the mass variation and the parameter of impact force.

4.1.    

As suggested in reference [13], the fluid dynamic forces in the clearance between the
stationary and rotating cylinders are very often modelled in the form of a dashpot and
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a spring. Then, the inertial effects of the fluid are neglected. This assumption is assumed
due to the fact that the mass Mf is quite small.

For the case in which the fluid inertial effect is neglected, the simplified system of the
first order differential equations that describe the rotor vibrations is

A� =$ed(t)
m(t)

Re+
ev(t)
m(t)

Im% 1
[d(t)]2 + [v(t)]2

−
eA

[d(t)]2 + [v(t)]2

× $d(t)
dd(t)
dt

+v(t)
dv(t)

dt %, (50)

Au� =$ed(t)
m(t)

Im−
ev(t)
m(t)

Re% 1
[d(t)]2 + [v(t)]2

+
eA

[d(t)]2 + [v(t)]2

× $v(t)
dd(t)
dt

− d(t)
dv(t)

dt %, (51)

where

d(t)=−
D+DS

2m(t)
2

z−R1(t)+z[R1(t)]2 + [R2(t)]2

2z2m(t)
, (52)

v(t)=2
zR1(t)+z[R1(t)]2 + [R2(t)]2

2z2m(t)
, (53)

R1(t)=4m(t)(K+K0)− (D+DS )2, (54)

R2(t)=4lVm(t)D. (55)

Substituting equations (43) and (44) into the differential equation (50), it becomes

A� =
eAc(A eD)d(t)

m(t)
1

[d(t)]2 + [v(t)]2
−

dm(t)
dt

eAp
m(t)

−
eA
2

1
[d(t)]2 + [v(t)]2

d[d(t)]2 + [v(t)]2

dt
. (56)

According to equation (48), the motion is unstable if

eAc(A eD)d(t)
m(t)

1
[d(t)]2 + [v(t)]2

−
dm(t)

dt

eAp
m(t)

−
eA
2

1
[d(t)]2 + [v(t)]2

d[d(t)]2 + [v(t)]2

dt
+Ad(t)e 0. (57)

Analyzing equation (57), it can be concluded that the stability of the vibrations depends
not only on the mass variation properties of the system but also on the average
circumferential angular velocity of the fluid force.

4.2.  

As discussed in section 4, if the damping is extremely strong in the system, the influence
of slow mass variation can be neglected. The self-excited vibrations decrease and the
motion is stable. If the damping in the system is quite small, the effects of the mass
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variation and of the impact force have very important roles. The character of the motion
depends directly on the mass variation and the impact force. To give the correct
conclusions about the motion, assume that the damping is omitted. Then, the vibrations
of the rotor are described by two first order differential equations:

A� =
e

[m(t)+Mf ]v(t)
Im−

eA
v(t)

dv(t)
dt

, (58)

Au� =−
e

[m(t)+Mf ]v(t)
Re, (59)

where

d(t)=0, (60)

v(t)=
MflV

m(t)+Mf
2

z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2

m(t)+Mf
, (61)

i.e.,

A� =−
epA[dm(t)/dt]

m(t)+Mf
−

eA
v(t)

dv(t)
dt

, (62)

u� =−
ec(A)

[m(t)+Mf ]v(t)
. (63)

If the non-linearity is given as a parabolic function (5), the differential equation of
motion is

m(t)z̈+(K+K0)z+Mf [z̈−2ilVż− l2V2z]=−ep
dm
dt

ż− ek3(=z=)2z. (64)

For the initial conditions A(0)=A0, u(0)= u0 and v(0)=v0, the solutions of equations
(62) and (63) are

A=A0$ m0 +Mf

m(t)+Mf%
p

$ v0

v(t)%, (65)

u=−ek3A2
0v

2
0 (m0 +Mf )2p g dt

[m(t)+Mf ]2p+1[v(t)]3
+ u0, (66)

or after substituting equation (61), it is

A=A0$ m0 +Mf

m(t)+Mf%
p−1

$ MflV2z[m0 +Mf ](K+K0)−m0Mfl
2V2

MflV2z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2%, (67)

u=−ek3A2
0v

2
0 (m0 +Mf )2p

× g dt

[m(t)+Mf ]2(p−1)[MflV+z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2]3

+ u0. (68)
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The solution (67) exists only for

VE 1
lXK+K0

Mf 01+
Mf

m01. (69)

The amplitude of vibration is not a function of non-linear rigidity. In spite of that, the
phase angle is a function of non-linearity (5).

For the case in which the damping is neglected, the condition of instability transforms
to the relation A� e 0; i.e.,

pA[dm(t)/dt]
m(t)+Mf

+
A

v(t)
dv(t)

dt
E 0. (70)

It is evident from equation (70) that the non-linear rigidity force has no influence on
instability conditions.

Consider two special cases: the first when the relative velocity of mass adding is zero,
i.e., the absolute velocity of adding mass is equal to the velocity of the rotor (p=0), and
the second when the absolute velocity of adding mass is zero (p=1).

4.2.1. Impact force neglected (p=0)
For the first case when the impact force is neglected the amplitude–time function is

A=A0$m(t)+Mf

m0 +Mf %$ MflV2z[m0 +Mf ](K+K0)−m0Mfl
2V2

MflV2z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2%. (71)

The amplitude of self-excited vibrations is the function of angular velocity of the rotor.
It is necessary to define the area in which the motion of the rotor is unstable. For the case
when the impact force is zero (p=0), the condition of unstable motion (70) is simplified
to

dv/dtE 0, (72)

i.e.,

dm
dt

1
m(t)+Mf 6 1

m(t)+Mf
[MflV2z[m(t)+Mf ](K+K0)−m(t)Mfl

2V2]

3
(K+K0)−Mfl

2V2

2z[m(t)+Mf ](K+K0)−m(t)Mfl
2V27e 0. (73)

If it is assumed that the mass of the rotor increases it is dm(t)/dtq 0. Hence, the
inequality (73) exists for equation (69).

4.2.2. Impact force exists (p=1)
If the impact force exists, the amplitude–time function is, according to equation (67),

A=A0$ MflV2z[m0 +Mf ](K+K0)−m0Mfl
2V2

MflV2z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2%. (74)

The motion is unstable for

[dm(t)/dt]
m(t)+Mf

+
1

v(t)
dv(t)

dt
E 0, (75)
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i.e.,

dm
dt

K+K0 −Mfl
2V2

{MflV+z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2}

×
1

z[m(t)+Mf ](K+K0)−m(t)Mfl
2V2

E 0. (76)

For dm/dtq 0 and equation (69), the condition (76) cannot be satisfied. This means that
for adding mass with zero absolute velocity and the rotor velocity (69), the rotation of the
rotor is never unstable. The amplitude of self-excited vibrations decreases and the rotation
of the rotor is stable, as mentioned in the previous section.

The results of section 4.2 will be discussed in an example.

4.3.      

For this special case, the amplitude of vibration is

A=A0$ m0

m(t)%
p−1/2

, (77)

u=−ek3A2
0v

2
0 (m0)2p g dt

[m(t)]2(p−1)[z[m(t)(K+K0)]3
+ u0. (78)

It is interesting to conclude that the amplitude of vibration is not dependent on rigidity
coefficients of the rotor and fluid layer. Besides, the amplitude of vibration does not depend
on the angular velocity of the rotor. For a rotor with increasing mass, the amplitude of
vibration decreases for pe 1/2, and increases for pQ 1/2. This means that if the adding
of the mass is with the velocity which is the halfed or minor than the absolute velocity
of the rotor, the motion of the rotor is stable. For the mass adding with the velocity which
is higher or equal to the velocity of the rotor, the motion of the rotor is unstable.

5. EXAMPLE

Consider the motion of the rotor on which the band is winding up. The rotor is the
symmetrical shaft–disc system. The mass of the disc varies in time due to winding of the
band. As shown in reference [23], the mass variation is a linear function of time,

m=m0 + et, (79)

where m0 is the mass of the empty rotor and e= rlvh, in which r is the density of the band
material, l is the length of the disc, v is the velocity of band winding and h is the thickness
of the band. Let us assume that e is a small value and the mass variation is slow. For a
real rotor in the textile industry, it is [26]

m=0·9+0·1t.

The rotor is supported on journal bearings. For the case in which the damping properties
of the bearing can be omitted, the differential equations of motion are

m(t)ẍ+Kx+Mf [ẍ+2lVẏ− l2V2x]+ [K0 + ek3(x2 + y2)]x=−ep
dm
dt

ẋ, (80)

m(t)ÿ+Ky+Mf [ÿ−2lVẋ− l2V2y]+ [K0 + ek3(x2 + y2)]y=−ep
dm
dt

ẏ. (81)
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Figure 3. Motion of rotor center in the x–y plane: (a) p=1; (b) p=0.

As the parameters are D=DS =0, K+K0 =1, Mf =0·1, l=0·5, k3 =0·1 and e=0·1,
and the initial conditions are x(0)=0·1, ẋ=0, y(0)=0 and ẏ(0)=0·1, equations (80) and
(81) can be solved numerically by applying the Runge–Kutta method. In Figure 3, the
motion of the rotor center in the x–y plane is plotted for V=1 and p=1 (Figure 3(a))
and p=0 (Figure 3(b)). The first group of parameters satisfies the conditions of asymptotic
stable motion (23) and (24) and the motion of the rotor center is bounded (see Figure 3(a)).
The second group of parameters does not satisfy the relation (23) and the conditions of
the stable motion are not fulfilled. As can be seen in Figure 3(b), the motion of the rotor
center is not bounded.

To prove the correctness of the analytically solved procedures for obtaining self-excited
vibrations, the analytically obtained solutions are compared with the numerical ones. The
analytical approximate solutions of the differential equations (67) and (68) are compared
with numerical solutions of the differential equations (80) and (81). In Figure 4(a) and 4(b),
the amplitude–time diagrams are plotted for p=0 and p=1, respectively. For the first
case, when V=4·15 the amplitude has a tendency to increase. In the second case, the
amplitude has a tendency to decrease for V=2·5. The analytically and numerically
obtained solutions show very good agreement. The analytical solution is the averaged
value of the numerical one.
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Figure 4. Amplitude–time diagrams obtained analytically AA and numerically AN : (a) p=0; (b) p=1.

6. CONCLUSIONS

The following conclusions can be drawn.

(1) The rotation of the rotor with the variable mass and zero deflection of the mass
center which is settled on journal bearings is asymptotically stable if the conditions (11),
(18), (21) and (22) are satisfied. The threshold of stability is a function not only of the
physical properties of the rotor and the fluid film but also of the mass increase: the higher
the value of adding mass on the rotor the lower the limit of the angular velocity of the
rotor. This means that the stability of rotation of the rotor with angular velocity V will
not be disturbed only if the added mass is quite small. On the contrary, to stabilize the
motion the angular velocity of motion of the rotor must be decreased.

(2) If the damping in the system is so small that it can be omitted, the motion of the
rotor with mass adding is stable only if the impact force exists and the parameter is pq 1/2.

(3) The self-excited vibrations of the rotor are obtained analytically by applying the
asymptotic method of Krylov–Bogolubov. The solutions of the differential equations
obtained analytically are compared with the numerical ones. They are in good agreement
for a mass increase up to 50% of the initial mass.

(4) Using the asymptotic analytical solutions, the criteria of unstable motion are
obtained. The threshold of unstable motion depends not only on the physical properties
of the rotor and journal but also on the mass variation parameters.
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APPENDIX: NOTATION

A amplitude of vibration
A0 initial amplitude
c radial clearance
D fluid damping parameter
DS damping parameter of the rotor
e eccentricity of journal in bearing
F fluid force
i imaginary unit
K stiffness coefficient
k3 coefficient of non-linearity
K0 fluid film radial stiffness
l bearing or squeeze film land length
m0 initial mass
m(t) variable mass
mmax maximal mass value
Mf fluid mass
p constant parameter
R bearing radius
r(t) position of center of unbalanced rotor
t time
vz velocity of adding or separating mass
V Lyapunov function
x, y horizontal and vertical components of rotor lateral displacement in stationary co-ordinates
z complex deflection function
=z= = (x2 + y2)1/2

ż absolute velocity of the rotor
d coefficient of damping
d0 initial coefficient of damping
D variable damping function
e small parameter
u phase of vibration
u0 initial phase of vibration
l(=z=) fluid circumferential average velocity
m lubricant viscosity
r eccentricity ratio
t slow variable time
8(t) variable phase function
F impact force
c(=z=) non-linear rigidity function
cD (=z=) non-linear damping force
v frequency of vibration
v0 initial frequency of vibration
V rotational speed


