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STRUCTURAL ANALYSIS AND OPTIMAL DESIGN
OF A DYNAMIC ABSORBING BEAM
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The structural analysis and optimal design of a dynamic absorbing beam which is
attached to the main beam with a viscoelastic layer or other mechanism of similar effect
is presented. The dynamic stiffness matrix of a composite beam composed of two parallel
beams with viscoelastic layer between them has already been derived and can be employed
for the structural analysis. A simplified two-degree-of-freedom system is proposed for the
optimal design of the dynamic absorbing beam. An example is included for demonstration
and discussion.
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1. INTRODUCTION

There are many ways to control the vibration of a beam structure such as a suspended
mass with spring and dashpot as shown in Figure 1, a support isolation as shown in
Figure 2 and a dynamic absorbing beam with viscoelastic layer as shown in Figure 3. The
dynamic absorbing beam might have many advantages, some of which are (1) it is easy
to build and maintain, (2) little space is required, (3) high performance can be achieved,
(4) it is easy to remold to increase its performance and (5) there is no need to change the
main beam structure. In view of these advantages, it is the purpose of this paper to present
the structural analysis and the optimal design of a dynamic absorbing beam for engineering
applications.

A dynamic absorbing beam system as shown in Figure 3 consists of a main beam, a
dynamic absorbing beam, and a viscoelastic layer between them. Therefore the
dynamic stiffness matrix of a layered beam with flexible core established by Chen
and Sheu [1, 2] can be directly employed in the structural analysis of a dynamic absorbing
beam system. Most of the vibrational level is dominated by the first two major modes.
In general they might be any two of the first four lowest modes of a dynamic absorbing
beam system. Therefore a simplified two-degree-of-freedom system may appropriately be
used to describe the dynamic behavior of these two major modes of the dynamic absorbing
beam system at the optimal condition. The properties of the simplified two-degree-of-free-
dom system and the important parameters for the optimal design of a dynamic absorbing
beam system derived in this paper provide a practical design-guide. A free–free dynamic
absorbing beam attached to a simply-supported main beam as an application example is
presented for study and demonstration.

2. STRUCTURAL ANALYSIS

The dynamic stiffness matrix and the deflection functions of a composite beam element,
which is composed of two parallel beams with a flexible viscoelastic layer in between,
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Figure 1. A suspended mass with spring and dashpot.

would be applied directly to the structural analysis of a dynamic absorbing beam
system presented in this paper. The effects of the rotary inertia of mass, the shear
distortion, the viscoelastic layer, the various damping components, and the boundary
conditions at supports can all be included in the structural analysis. Applying the
procedure of the direct stiffness method the assembly of the dynamic stiffness matrix of
an entire structure can be accomplished by superposing the contributions from all the
beam components affected by each individual nodal displacement. The nodal
displacements can then be computed from the dynamic stiffness equations. The deflection
at any position would be determined by the dynamic deflection functions accordingly.
Unfortunately the explicit formula of the dynamic stiffness matrix and the dynamic
deflection function of a composite beam element cannot be obtained due to their
complexities. Only the implicit forms can be obtained by numerical computation for the
practical application.

3. SIMPLIFIED TWO-DEGREE-OF-FREEDOM SYSTEM

Before going into the optimal analysis of a dynamic-absorbing beam, it is better to know
the dynamic characteristics of a dynamic absorbing beam system such as the natural
frequencies and the corresponding mode shapes, and the importance of each mode to the
dynamic response. In most cases only the first two major modes, which might be any two
of the first four lowest modes, should be taken into consideration in the optimal analysis
of the dynamic absorbing beam system. The dynamic responses are significant at these two
major natural frequencies and small at other natural frequencies due to the various
damping components. If the mode shapes of these two major modes of the dynamic
absorbing beam system can be assumed to be similar to each other as shown in Figure 4,

Figure 2. A support isolation system.
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Figure 3. A dynamic absorbing beam system.

then the functions f1 (x) and f2 (x) can appropriately describe both the main beam and
the dynamic-absorbing beam, respectively. Therefore the displacements of the main beam
and the dynamic absorbing beam can be expressed in the following forms as

v1 (x, t)=f1 (x)y1 (t), v2 (x, t)=f2 (x)y2 (t), (1)

where f1 (x) and f2 (x) represent the mode shapes and y1 (t) and y2 (t) represent the
amplitudes for the main beam and the dynamic-absorbing beam, respectively.

If both the effects of the rotary inertia of the mass and the shear distortion of the beams
are neglected, the kinematic and potential energies of the dynamic absorbing beam system
can be given by

T= 1
2 g

l

0

m1 v̇2
1 dx+ 1

2 g
l

0

m2 v̇2
2 dx,

V= 1
2 g

l

0

E1 I1 v02
1 dx+ 1

2 g
l

0

E2 I2 v02
2 dx+ 1

2 g
l

0

ks (v1 − v2)2 dx. (2)

The definitions of the physical properties of the dynamic-absorbing-beam system
represented by the symbols in Equation (2) and Figure 3 are given in Reference 1.

The virtual work done by the non-conservative forces including the external force and
the damping force is given by

dW=g
l

0

p1 (x, t) dv1 dx+g
l

0

p2 (x, t) dv2 dx−g
1

0

cd (v̇1 − v̇2)d(v1 − v2) dx, (3)

where p1 (x, t) and p2 (x, t) represent the external forces acting on the main beam and the
dynamic absorbing beam respectively.

Figure 4. Displacement of dynamic absorbing beam system.
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Figure 5. The simplified two-degree-of-freedom system.

Applying Hamilton’s principle (or Lagrange’s equations of motion) [3], the equations
of motion of the dynamic absorbing beam system for these two major modes can be
obtained and described by the generalized coordinates y1 (t) and y2 (t) as:

$m*1
0

0
m*2 %6ÿ1

ÿ27+$ c*d1

−c*d
−c*d

c*d2%6ẏ1

ẏ27+$k*1 + k*s1
−k*s

−k*s
k*2 + k*s2%6y1

y27=6p*1
p*2 7, (4)

where

m*i =mi g
l

0

f2
i (x) dx, k*i =Ei Ii g

l

0

f02
i (x) dx,

k*si = ks g
l

0

f2
i (x) dx, c*di = cd g

l

0

f2
i (x) dx, (5)

k*s = ks g
l

0

f1 (x)f2 (x) dx, c*d = cd g
l

0

f1 (x)f2 (x) dx,

p*i =g
l

0

pi (x, t)fi (x) dx, all i=1, 2.

Therefore equation (4) shows that the dynamic behavior of these two major modes of a
dynamic absorbing beam system would be described approximately by a simplified
two-degree-of-freedom system as shown in Figure 5. The property constants denoted in
Figure 5 are given by

m̄i =m*i , k�s = k*s , c̄d = c*d , k�i = k*i + k*si − k*s ,

c̄i =c*di − c*d , p̄i = p*i , all i=1, 2. (6)
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If the external force is acting on the main beam only, equation (4) can be rewritten in the
form:

$10 0
1%6ÿ1

ÿ27+$ 2jv2 u
−2jv2 h

−2jv2 uah

2jv2 %6y� 1ẏ27
+$ v2

1 +v2
s u

−v2
s j

−v2
s uah

v2
s +v2

2%6y1

y27=6p*1 /m*1
0 7 (7)

where

u=m2 /m1, v2
i = k*i /m*i , i=1, 2

v2
s = ks /m2, a=g

l

0

f2
2 dx>g

l

0

f2
1 dx

h=g
l

0

f1 f2 dx>g
l

0

f2
2 dx j= cd /(2m2 v2) (8)

Setting j=0 and p*1 =0 for the case of free vibration, the natural frequencies and the
corresponding mode shapes would be determined from equation (7) accordingly.

4. OPTIMAL DESIGN

If a unit harmonic force acts at the midspan of the main beam, the force and response
vectors in equation (7) could be expressed in the following forms as

{p*}=6107 eivt, {y}=6Y1

Y27 eivt. (9)

Substituting equation (9) into equation (7) will yield

$K11

K21

K12

K22%6Y1

Y27=61/m*1
0 7, (10)

where

K11 = (−v2 +v2
1 +v2

s u)+ i(2jv2 uv), K12 = (−v2
s uah)− i(2jv2 uahv),

K21 = (−v2
s h)− i(2jv2 hv), K22 = (−v2 +v2

2 +v2
s )+ i(2jv2 v). (11)

The dynamic magnification factors D1 or D2 is defined as the ratio of the displacement
amplitude of the main beam or the dynamic absorbing beam to the static displacement
at the midspan of the main beam and is given as

Di = =Yi =/dst , i=1, 2, (12)

where dst represents the static displacement at the midspan of the main beam, which is equal
to the value of Y1 in equation (10) at zero frequency (v=0) and given as

dst =(v2
s +v2

2 )/{m*1 [(v2
1 +v2

s u) (v2
s +v2

2 )−v4
s uah2]} (13)
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Finally the dynamic magnification factor D1 can be determined and given by

D1 = {d2
1 (a2 + b2j2)/{d2

2 [(c+ dj2)2 + e2j2]}}1/2 (14)

where

a=−b2 + g2 + f 2, b=2bf,

c= b4 − [(1+ g2)+ (1+ u)f 2]b2 + (g2 + f 2 + uf 2g2 + usf 4),

d=−4usf 2b2, e=2bf[−(1+ u)b2 + (g2 +2sf 2)u+1],

d1 = (1+ uf 2) (g2 + f 2)− uah2f 4, d2 = g2 + f 2,

s=1− ah2, g=v2 /v1, f=vs /v1, b=v/v1. (15)

There are two fixed points in the D1 − b curves described by equation (14) for a
two-degree-of-freedom system having any value of the damping ratio j. The values of b

at these two fixed points can be determined from the same value of D1 given by equation
(14) for j=0 or 1·0 respectively i.e.,

a2/c2 = (a2 + b2)/[(c+ d)2 + e2]. (16)

Substituting equation (15) into equation (16) yields the following equation

D8 b8 +D6 b6 +D4 b4 +D2 b2 +D0 =0, (17)

where

D8 = u2 +2u−2us,

D6 =4u2s2f 2 −4u2sf 2 −2u2g2 −2u2f 2 +2usf 2 +6usg2 −6ug2 −2uf 2 +2us−2u,

D1 =−6u2s2f 4 −8u2s2f 2g2 +4u2sf 2(f 2 + g2)+6u2f 2g2 +6u2g4

−2usf 2 −6usg2 −4usf 2g2 −6usg4 +6ug2 +6ug4 +2uf 2 +4uf 2g2,

D2 =4u2s2f 4g2 +4u2s2f 2g4 −2u2sf 2g4 −4u2sf 4g2 −2u2f 2g2 −2u2g4 −2u2g6 −4u2f 2g4

+6usg4 +4usf 2g2 +2usf 2g4 +2usg6 +2usf 4g2 −2uf 2g4 −6ug4 −2ug6,

D0 = u2s2f 8 +2u2s2f 4g4 +4u2s2f 6g2 −2u2sf 6g2 + u2g8 +2u2f 2g6 −2usg6

−2usf 2g4 +2ug6 +2uf 2g4. (18)

Equation (17) is of even order; therefore it has four-pair roots, and the real ones give two
values of b. If these two fixed points are denoted by (Da , ba ) and (Db , bb ), the condition
Da =Db can yield the following equation

b2
a b2

b (b2
a − b2

b )u2 + [(−b4
a + b4

b ) (ea + eb )− (b2
a − b2

b ) (e2
a s− e2

a )]u

+(b2
a − b2

b ) (ea + eb )2 =0, (19)

where

ea = k*s /k*1 , eb =(k*2 /k*1 )0g
l

0

f2
1 dx/g

l

0

f2
2 dx1. (20)

Equation (19) gives the relationship between the mass ratio u and the spring constant of
the viscoelastic layer ks , or the so-called constraint condition for the optimal design of a
dynamic absorbing beam system. Two important optimal parameters u and ks of the
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dynamic absorbing beam could be determined from the proposed two-degree-of-freedom
system in Equation (19). The optimal damping ratio and the corresponding dynamic
responses can then be calculated by the exact theory [1]. If cd =0, the optimal damping
ratio hs , which is the imaginary part of the complex stiffness coefficient ks of the viscoelastic
layer [1], could be determined by trial-and-error if the two maximum values of the
D1 − b curve for the first two major modes are just at or very close to these two fixed
points [4].

5. APPLICATION AND DISCUSSION

5.1. :  –   

A free–free dynamic absorbing beam is attached to the simply-supported main beam
with the viscoelastic layer as shown in Figure 3. The properties of this dynamic-absorbing
beam system are given as: (a) Main beam (square section): Young’s modulus
E=2×1011 N/m2, Poisson ratio n=0·3, beam length l=1 m, beam width b=1 cm,
beam depth d=1 cm, shape factor for shear k'=0·87, mass per unit length
m=0·76 kg/m. (b) Dynamic absorbing beam (rectangular section): E=2×1011 N/m2,
n=0·3, l=1 m, b=1 cm, k'=0·87. Ten cases are under investigation, these being
d=0·072, 0·175, 0·295, 0·440, 0·448, 0·510, 0·614, 0·650, 0·900 and 1·100 cm. All the
masses of these cases are proportional to the main beam by the beam depth d. (c)
Viscoelastic layer: Let cd =0, ks and hs are as requested for optimal design to achieve the
minimum vibrational level at the midspan of the main beam where the excitation is applied.

The constraint condition defined by Equation (19) gives the relationship between the
parameters u and ks for the optimal design as shown in Figure 6 obtained by numerical
computation. The optimal value of hs can then be determined by trial-and-error and the
result are also shown in Figure 6. The corresponding dynamic magnification factors D1

and D2 are also calculated and shown in Figures 7 and 8 respectively. The natural
frequencies for these ten optimal cases are calculated by both the exact theory [1] and the
approximate method presented in this paper, and the results are given in Table 1. The
values in the brackets in Table 1 are calculated by the latter method and indicate the two

Figure 6. Curves of D1, u and hs versus ks .
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Figure 7. Dynamic magnification factor of main beam.

major modes. Both results show excellent agreement particularly for the cases of the
harder layer (or higher value of ks ). The exact mode shapes for cases 3 and 8 are shown
in Figure 9. The overall (or effective) damping ratios are also calculated by the exact theory
and the results are given in Table 2. The displacement functions f1 (x) and f2 (x) are
assumed as a sine function and a horizontal line for the main beam and the dynamic
absorbing beam, respectively, for approximation. Sometimes f1 (x) and f2 (x) of the first
mode calculated by the exact theory could give a better result, particularly for a softer
layer.

The vibration of the dynamic absorbing beam defined by D2 and shown in Figure 8 is
not very significant, which might be an another advantage of the dynamic absorbing beam
in practice. It can be seen in Figure 6 that the dynamic magnification factor D1 is almost
inversely proportional to the design parameters ks , hs , and u. Both u and hs will increase
tremendously with ks if ks e 4×103 N/m2; therefore it is not practical to control the
vibration or to achieve a smaller value of D1 for this situation. The optimal condition will

Figure 8. Dynamic magnification factor of dynamic absorbing beam.
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T 1

Natural frequencies (Hz) of the dynamic absorbing beam system at optimal condition

First Second Third Fourth
Case d (cm) u ks (N/m2) hs mode mode mode mode

1 0·072 0·072 1·0×103 0·370 19·59 23·91 25·60 29·73
(19·77) (25·30)

2 0·175 0·175 2·0×103 0·480 17·47 19·46 21·34 26·34
(17·56) (26·01)

3 0·295 0·295 3·0×103 0·540 16·08 18·14 23·51 27·30
(16·15) (26·62)

4 0·440 0·440 4·0×103 0·734 15·08 17·32 26·48 29·81
(15·13) (27·24)

5 0·488 0·488 4·2×103 0·801 14·57 16·85 26·87 31·28
(14·71) (27·29)

6 0·510 0·510 4·3×103 0·843 14·51 16·58 27·00 32·08
(14·55) (27·33)

7 0·614 0·614 4·5×103 0·982 13·59 15·54 27·17 36·13
(13·61) (27·25)

8 0·650 0·650 4·6×103 1·020 13·35 15·27 27·24 37·68
(13·38) (27·28)

9 0·900 0·900 4·8×103 1·270 11·69 13·26 27·18 49·31
(11·71) (27·16)

10 1·100 1·100 4·9×103 1·390 10·72 12·11 27·13 59·26
(10·73) (27·12)

be spoiled if kq 4·9 N/m2. It is the reason that both the main beam and the dynamic
absorbing beam will move at the same direction due to the hard layer (high value of ks )
tying them together while vibrating, and thus the energy absorbed by the viscoelastic layer
is very limited. All of these discussions could provide a rule of thumb for the optimal design
of a dynamic absorbing beam system.

Figure 9. Mode shapes for (a) d=0·295 and (b) d=0·650 cm.
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T 2

Over-all (or effective) damping ratio of the dynamic absorbing beam system at optimal
condition

Case First mode Second mode Third mode Fourth mode

1 0·1057 0·0921 0·0842 0·0075
2 0·1275 0·1175 0·1909 0·0191
3 0·1430 0·1230 0·1402 0·0258
4 0·1742 0·1302 0·1454 0·0246
5 0·1870 0·1414 0·1342 0·0209
6 0·1925 0·1506 0·1362 0·0197
7 0·2197 0·1731 0·0993 0·0116
8 0·2251 0·1803 0·0906 0·0541
9 0·2654 0·2084 0·0478 0·0116

10 0·2841 0·2171 0·0299 0·0130

6. CONCLUSIONS

Some important conclusions can be drawn from this study and are given as:
(1) The dynamic absorbing beam which is attached to the main beam with a viscoelastic

layer between them can reduce the vibration of the main beam very effectively, since most
of the dynamic magnification factors of the main beam can decrease tremendously and
are, in general, less than ten or are of even smaller values (refer to Figure 7).

(2) The dynamic magnification factor of the dynamic absorbing beam is limited (refer
to Figure 8) compared with other types of absorbers [5]. Therefore the whole system
including both the main beam and the dynamic absorbing beam would remain in a
somewhat quiet condition vibration.

(3) In view of the two previous conclusions and the advantages mentioned in the
Introduction, the dynamic absorbing beam might have a great potential in engineering
application.

(4) The exact theory of the layerd beam with flexible core [1] and the approximate model
of the simplified two-degree-of-freedom system presented in this paper would provide an
efficient tool for the structural analysis and the optimal design of a dynamic absorbing
beam system in practice.

(5) The natural frequencies and the mode shapes of a dynamic absorbing beam system
can be determined exactly in advance by the theory of the layer beam with flexible core.
The approximate natural frequencies of the first two major modes could also be found
from the model of the simplified two-degree-of-freedom system.

(6) Most of the vibrational level of the main beam is dominated by the first two major
modes. The first major mode can be used as the displacement functions f1 and f2 given
in Equation (1) for the optimal design by using the simplified two-degree-of-freedom
system. These displacement functions could also be assumed by two known functions
similar to the first major mode for approximation, such as the sine function and a
horizontal straight line as used in the example.

(7) The mass ratio (u) of the dynamic absorbing beam should be assumed at first,
the stiffness (ks ) of the visocelastic layer can then be determined by the constraint
equation (refer to Equation (19)) based on the simplified two-degree-of-freedom
system. Finally the optimal damping ratio (hs ), which is the imaginary part of the complex
stiffness (ks ), would be calculated by the theory of the layered beam using a trial-and-error
scheme.
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(8) When the optimal parameters u, ks , and hs are all found, the dynamic responses (or
the dynamic magnification factors D1 and D2) can be calculated easily from the theory of
the layered beam.

(9) The optimal design would be spoiled if the value of the mass ratio (u) is greater than
a certain limit (refer to Figure 6). Fortunately it is not a problem, since the mass ratio
should not be much greater than 0·2 in practice.

(10) The design and manufacture of the dynamic absorbing beam, particularly the
viscoelastic layer, will be considered as a research topic for future study. Of course more
experimental work should be encouraged for this purpose.
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