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RANDOM VIBRATION OF MULTI-SPAN
TIMOSHENKO BEAM DUE TO A MOVING LOAD
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The method of modal analysis is presented to investigate the random vibration of a
multi-span Timoshenko beam due to a load moving at a constant velocity. The load is
considered to be a stationary process with a constant mean value and a variance. The effects
of both velocity and statistical characteristics of the load and the span number of the beam
on both the mean value and the variance of the deflection and the moment of the structure
are investigated. Moreover, the results obtained from a multi-span Timoshenko beam are
compared with those from a multi-span Bernoulli–Euler beam.
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1. INTRODUCTION

The vibration of a load moving on structures has attracted engineers’ interest since railway
bridges were erected at the beginning of the nineteenth century. Usually, the beam
structures on which loads move are periodically supported. This kind of beam is called
a multi-span beam. A typical example of a multi-span beam is a continuous guideway. Due
to technological advancement, the speed and weight of vehicles on guideways are
increasingly complex. Under these circumstances, the vibration of beams due to moving
loads has become a critical consideration in structural design. Previous literature regarding
the vibration of a load moving on multi-span beams has been abundant in recent years
[1–3]. The maximum deflection and the maximum moment of a multi-span beam induced
by a moving load are always greater than those induced by the same static load.
Furthermore, a critical velocity exists at which beam structures seriously deform.
Moreover, higher span numbers produce greater values of absolute maximum deflection,
absolute maximum moment and critical velocity. The upper bound of the critical velocity
is the lowest phase velocity of bending wave in the structure [4].

In the aforementioned work, the magnitude of the loads is considered to remain
constant. In most cases, both magnitude and velocity of a moving load, e.g., traffic flow
on an elevated highway and turbulence to wings, cannot be described deterministically.
The response of structures due to such a kind of load is, consequently, unpredictable. Even
worse, those loads may cause enormous disasters. Fortunately, the statistical
characteristics of moving loads can be estimated. Numerous studies have been undertaken
regarding the random vibration of one-span beams to moving loads [5–10]. In actual
situations, a multi-span beam is more widely encountered in structures than a single-span
beam. However, the random vibration of multi-span beams due to moving loads has never
been investigated.
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The wave velocity in the Bernoulli–Euler beam becomes unreasonable within the high
frequency range. This is the reason why the Bernoulli–Euler beam theory leads to
erroneous results for both a large ratio of thickness to length and high modes. Such an
error for high modes indicates that the theory cannot predict accurately the response of
a beam subjected to a rapidly travelling load. Therefore, the Timoshenko beam theory is
considered herein to investigate the random vibration of beams. A multi-span beam is
considered to be homogeneous and isotropic with Young’s modulus E, shear modulus G,
Poisson’s ratio m, shear coefficient k, cross-sectional area A, density r, second moment
of area I and the radius of gyration of cross section h. A concentrated load moving on
the multi-span beam at a constant velocity is adopted to investigate the fundamental
response phenomena of the entire beam. The load is assumed here to be a stationary
random process with a constant mean value and a variance. Four kinds of variances of
the load are considered herein: a white noise process, an exponential process, an
exponential cosine process and a cosine process. In addition, the effects of both velocity
and variance type of the load and the effect of spans number of the multi-span beam on
both the mean value and the variance of responses of the entire beam are investigated here.
These results are compared with those of a multi-span Bernoulli–Euler beam.

2. THE EQUATIONS OF MOTION

A distributed load P�(x̄, t�) on an n-span Timoshenko beam is depicted in Figure 1. Each
span has the same length L. The transverse shear force q̄ and moment m̄ are [11]

q̄= kGA(1w̄/1x̄−c�), m̄=−EI1c�/1x̄, (1a, b)

in which x̄ is the axial co-ordinate, w̄ is the transverse deflection and c� is the rotatory angle.
The equations of motion of the entire beam are

1q̄/1x̄+P�(x̄, t�)= rA12w̄/1t̄2, q̄− 1m̄/1x̄= rI12c�/1t�2, (2a, b)

where t� is time.
According to the orthogonality of two distinct sets of mode shape functions [4], the

transverse deflection, rotatory angle, transverse shear force and moment of the beam can
be expressed in terms of the superposition of mode shape functions as

{w̄c�q̄m̄}(x̄, t�)= s
j=1

aj (t�){W� jC� jQ� jM� j}(x̄), (3)

Figure 1. A distributed load P�(x̄, t�) on an n-span Timoshenko beam.
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where W� j and C� j are the jth set of mode shape functions of displacement and rotatory
angle, and Q� j and M� j are their corresponding transverse shear force and moment.
Substituting equation (3) into equations (2a) and (2b) yields

− s
j=1

aj
dQ� j

dx
+ s

j=1

rAW� j
d2aj

dt�2 =P�(x̄, t�), (4a)

− s
j=1

aj 0Q� j −
dM� j

dx̄ 1+ s
j=1

rIC� j
d2aj

dt�2 =0. (4b)

Multiplying equation (4a) by W� k and equation (4b) by C� k , then integrating their
summation from x̄=0 to x̄= nL yield the governing equation of the kth modal amplitude
ak as

d2ak

dt�2 + v̄2
kak = gk (t�), (5)

where the modal frequency v̄k and the modal excitation gk (t�) are

v̄2
k = sk /mk , gk (t�)=g

nL

0

P�(x̄, t�)W� k (x̄) dx̄/mk , (6a, b)

in which the corresponding modal mass mk and modal stiffness sk are

mk =g
nL

0

(rAW� 2
k + rIC� 2

k ) dx̄, (7a)

sk =−g
nL

0 6W� k
dQ� k

dx̄
+C� k0Q� k −

dM� k

dx̄ 17 dx̄. (7b)

The initial conditions of the beam are set at zero. The response history of the kth modal
amplitude ak (t�) is

ak (t�)=g
t�

0

hk (t̄− t̄)gk (t̄) dt̄, (8)

in which the kth modal impulse response hk (t�) is

hk (t�)=6sin (v̄kt�)/v̄k

0
(0Q t�)
(t�E 0)7 , (9)

Equation (8) can be expressed as the form

ak (t�)=g
a

−a

hk (t̄)gk (t�− t̄) dt�. (10)
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Figure 2. A random load moves on the n-span Timoshenko beam.

3. MOTION OF A RANDOM LOAD ON THE BEAM

A random load F�(t�) moving on the beam at a constant velocity. v̄ is depicted in Figure 2.
This random load is considered to be a stationary process with a constant mean value
F�0(=�F�(t�)�) and a centred deviation f�(t�). The covariance Cf�(t�1, t�2) between two deviations
f�(t�1) and f�(t�2) is

Cf�(t�1, t�2)= � f�(t�1)f�(t�2)�, (11)

in which �� is the mean value operator. The respective histories of the kth modal excitation
gk (t�) and its corresponding mean value �gk (t�)�, and the covariance Cgjgk (t�1, t�2) between
gj (t�1) and gk (t�2) are

(1) 0E t�, t�1, t�2 E nL/v̄

gk (t�)=F�(t�)W� k (vt)/mk , �gk (t�)�=F�0W� k (vt)/mk , (12a, b)

Cgjgk (t�1, t�2)=Cff (t�1, t�2) W� j (vt1)W� k (vt2)/mjmk ; (12c)

(2) nL/v̄Q t�, t�1 (or t�2)

gk (t�)=0, �gk (t�)�=0, Cgjgk (t�1, t�2)=0. (13a–c)

The mean value histories of the jth modal amplitude, transverse deflection and moment,
respectively, are

�aj (t�)�=g
a

−a

hj (t�− t̄)�gj (t̄)� dt̄, (14a)

�w̄(x̄, t�)�= s
j=1

�aj (t�)�W� j (x̄), �m̄(x̄, t�)�= s
j=1

�aj (t�)�M� j (x̄). (14b, c)

The covariance Cajal (t�1, t�2) between aj (t�1) and al (t�2) is

Cajal (t�1, t�2)=g
a

−a g
a

−a

hj (t�1 − t̄1)hl (t�2 − t2)Cgjgl (t̄1, t̄2) dt̄1 dt̄2. (14d)
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The deflection covariance Cw̄ (x̄1, x̄2, t�1, t�2) between w̄(x̄1, t�1) and w̄(x̄2, t�2) is

Cw̄ (x̄1, x̄2, t�1, t�2)= s
j=1

s
l=1

Cajal (t�1, t�2)W� j (x̄1)W� l (x̄2). (15a)

Similarly, the moment covariance Cm̄ (x̄1, x̄2, t̄1, t̄2) between m̄(x̄1, t̄1) and m̄(x̄2, t�2) is

Cm̄ (x̄1, x̄2, t�1, t�2)= s
j=1

s
l=1

Cajal (t�1, t�2)M� j (x̄1)M� l (x̄2). (15b)

Consider the deviation f�(t�) to be a stationary process, i.e.,

Cf�(t�1, t�2)=Cf�(t�1 − t�2). (16)

The covariance Cgjgl (t�1, t�2) and the covariance Cajal (t�1, t�2), respectively, are

Cgjgl (t�1, t�2)=6Cf�(t�1 − t�2)W� (j)(vt1)W� (l)(vt2)/(mjml )
0

0E t�1, t�2 E nL/v̄
nL/v̄E t�1, t�2 7 , (17a)

Cajal (t�1, t�2)=g
a

−a g
a

−a

hj (t�1 − t̄1)hl (t�2 − t̄2)Cgjgl (t̄1, t̄2) dt̄1 dt̄2/mjml . (17b)

Furthermore, the variances of deflection and moment of the entire beam are denoted as
s̄2

w̄ (x̄, t�) and s̄2
m̄ (x̄, t�), respectively, which are

s̄2
w̄ (x̄, t�)=Cw̄ (x̄, x̄, t�, t�)= s

j=1

s
l=1

Cajal (t�, t�)W� j (x̄)W� l (x̄), (18a)

s̄2
m̄ (x̄, t�)=Cm̄ (x̄, x̄, t�, t�)= s

j=1

s
l=1

Cajal (t�, t�)M� j (x̄)M� l (x̄). (18b)

The following four types of variance with the standard deviation s̄2
0 are considered (Figures

3(a), (b)) in the study:
(1) white noise

Cf�(t̄)= s̄2
0d(t̄); (19a)

(2) cosine

Cf�(t̄)= s̄2
0 cos (v̄0t̄); (19b)

Figure 3. Four types of variances of the load: (a) white noise, (b) cosine (c) exponential and (d) exponential
cosine.
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Figure 4. The span number effect on (a) the �w�max − aT distribution and (b) the �m�max − aT distribution of
a multi-span Timoshenko beam. Key: ——, 5 spans; - - - - -, 3 spans; – – –, 1 span.

(3) exponential

Cf�(t̄)= s̄2
0 e−v̄g t̄; (19c)

(4) exponential cosine

Cf�(t̄)= s̄2
0 e−v̄g t̄; cos (v̄0t̄). (19d)

4. ILLUSTRATIVE EXAMPLES AND DISCUSSION

To illustrate the numerical results of the present study, the non-dimensional variables
adopted are defined as follows: w= w̄/h, c=c�L/h, x= x̄/L, t�=(EI/raL4)1/2t, o=E/kG,
q= q̄L3/EIh, m= m̄L2/EIh, r= h/L, v̄=(EI/rAL4)−1/2v, (F�0, s̄0)= (F0, s0)L4/EIh,
aT (=v̄/(E/r)1/2), in which aT is the velocity ratio. The data k=0·85, m=0·3 and r=0·05
are taken for the purpose of numerical analysis. It is known that the lowest fifteen modal
frequencies and their corresponding sets of mode shape functions of the entire beam are
sufficiently required in the method of modal analysis in the numerical computation [4]. The
value of F0 is assumed to be unity. The velocity range considered in this section is
0E aT E 0·24. The following parameters are defined to illustrate the numerical results:
maximum mean value of deflection during the motion of the load, �w�max ; maximum mean
value of moment during the motion of the load �m�max ; position of maximum mean value
of deflection during the motion of the load, X�w�; position of maximum mean value of
moment during the motion of the load, X�m�; maximum variance of deflection during the
motion of the load, s2

w,max ; maximum variance of moment during the motion of the load,
s2

m,max ; position of maximum variance of deflection during the motion of the load, (Xs )w ;
position of maximum variance of moment during the motion of the load, (Xs )m ; velocity
ratio at which absolute maximum mean value of deflection appears, ac ; velocity ratio at
which absolute maximum variance of deflection appears, as .

4.1.  

The effects of the span number on the �w�max − aT and the �m�max − aT distributions of
a multi-span Timoshenko beam are displayed in Figures 4(a) and 4(b) respectively. The
higher span number results in a heavier mass of the entire beam. The load can be regarded
as a quasistatic load within the low velocity range 0E aT E 0·08. Therefore, as the span
number increases, both �w�max and �m�max decrease within the velocity range
0E aT E 0·08. The effect of bending wave on the vibration of the beam is more apparent
for higher span numbers [4]. As a result, both figures demonstrate that ac and both absolute
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Figure 5. (a) The X�w� − aT distribution and (b) the X�m� − aT distribution of a three-span Timoshenko beam.

�w�max and �m�max increase as the span number increases. Furthermore, ac is more obvious
for the higher span number.

The X�w� − aT and the X�m� − aT distributions of a three-span Timoshenko beam are
shown in Figures 5(a) and 5(b) respectively. There is no reaction moment at both the first
support (x=0) and the fourth support (x=3). Therefore, �w�max always appears near the
mid-point of either the first span or the third span. Within a low velocity range
0E aT E 0·07, �m�max occurs when the load travels on the beam. Therefore, �m�max appears
approximately near the mid-point of either the first span or the third span within the
velocity range. For a load moving at a supercritical velocity, �m�max will appear after the
load has left the beam. Therefore, �m�max occurs within the third span for the load
travelling at a supercritical velocity. Both the displacement and the resultant moment are
zero at the hinge supports of the beam. As a result, both figures show that the X�w� − aT

and X�m� − aT distributions of the beam are discontinuous.

4.2.   

The frequency range of the power spectrum of the white noise process extends from
negative infinity to positive infinity. Therefore, all modal responses of the Timoshenko
beam are excited by the white noise process. A slow moving load results in a long duration
of forced vibration of the beam. Therefore, the beam will be in the steady state of vibration
as the duration of forced vibration goes to infinite, i.e., the velocity of the load approaches
zero. Under this circumstance, the beam will be in resonance. Therefore, both s2

w,max and

Figure 6. The span number effect on (a) the s2
w,max − aT distribution and (b) the s2

m,max − aT distribution of a
multi-span Timoshenko beam due to a white noise process. Key: ——, 5 spans; - - - - , 1 span.
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Figure 7. Comparisons of the effects of two beam theories on (a) the s2
w,max − aT distribution and (b) the

s2
m,max − aT distribution of a three-span beam due to a white noise process. Key: ——, Timoshenko beam; - - - - ,

Euler beam.

s2
m,max will be infinite as aT approaches zero. Moreover, both s2

w,max and s2
m,max rapidly decrease

as aT increases. The first modal frequency of a multi-span beam is independent of the span
number. The higher the span number of the beam, the smaller the values of modal
frequencies vi (iq 1). This result indicates that the higher the number of the span, the more
flexible the beam is. Therefore, Figure 6(a) indicates that the higher span number leads
to a larger s2

w,max . However, a larger span number causes a smaller s2
m,max , as indicated in

Figure 6(b).
The effects of two beam theories on the s2

w,max − aT and the s2
m,max − aT distributions of

a three-span beam are shown in Figures 7(a) and 7(b) respectively. The effect of shear
deformation causes s2

w,max of the Timoshenko beam to be larger than that of the
Bernoulli–Euler beam. However, due to the effect of rotatory inertia, s2

m,max of the
Timoshenko beam is smaller than that of the Bernoulli–Euler beam. In Figure 8(a) it is
shown that (Xs )w of the Timoshenko beam is always near the mid-point of either the first
span or the third span. However, in Figure 8(b) it is shown that (Xs )m is near the left side
of one hinge support.

4.3.  

The effects of three vg (=0, 0·1v, 0·3v) values of an exponential process on the s2
w,max − aT

and the s2
m,max − aT distributions of a three-span Timoshenko beam are displayed in

Figure 8. (a) The (Xs )w − aT distribution and (b) the (Xs )m − aT distribution of a three-span Timoshenko beam
due to a white noise process.
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Figure 9. Comparisons of the effects of three vg values of an exponential process on (a) the s2
w,max − aT

distribution and (b) the s2
m,max − aT distribution of a three-span Timoshenko beam. Key for vg values: ——, 0·0;

- - - - -, 0·1v; – – –,0·3v.

Figures 9(a) and 9(b) respectively. Both figures show that the parameter vg of the process
has an obvious effect on reducing both absolute s2

w,max and s2
m,max of the beam, especially,

as the velocity ratio is near as .

4.4.   

The effects of the two kinds of exponential cosine processes
(vg =0, v0 =0·5v1; vg =0·3v, v0 =0·5v1) on the s2

w,max − aT and the s2
m,max − aT

distributions of a three-span Timoshenko beam are displayed in Figures 10(a) and 10(b)
respectively. It can be seen that the parameter vg has an apparent effect on reducing both
absolute s2

w,max and s2
m,max . The as presented in Figure 10(a) is smaller than that in Figure

9(a). This finding suggests that as is determined only by v0.

4.5.  

The effects of two v0(=v1, 0·5v1) values of the cosine process on the s2
w,max − aT and

the s2
m,max − aT distributions of a three-span Timoshenko beam are displayed in Figures

11(a) and 11(b) respectively. The beam is subjected to a quasi-steady state loading as the
velocity of load approaches zero. Both s2

w,max and s2
m,max will, consequently, be infinite due

to the beam being in resonance at v0 =v1 and aT =0. However, both s2
w,max and s2

m,max will
be finite for any aT value except for the case of v0 =v1. A rapidly moving load implies

Figure 10. Comparisons of the effects two vg values of an exponential cosine process (v0 =0·5v1) on (a) the
s2

w,max − aT distribution and (b) the s2
m,max − aT distribution of a three-span Timoshenko beam. Key: ——, vg =0·0,

v0 =0·5v1; - - - , vg =0·3v, v0 =0·5v1.
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Figure 11. Comparison of the effects of two v0 values of a cosine process on (a) the s2
w,max − aT distribution

and (b) the s2
m,max − aT distribution of a three-span Timoshenko beam. Key: v0 =0·5v1; - - - - , v0 =1·0v1.

a short duration of the forced vibration of the beam. The value of cosine function does
not abruptly change as the loading time is short. Therefore, s2

w,max approaches a constant
value for the load moving at a supercritical speed. Moreover, a greater v0 (Ev1) value
of the process requires a longer duration of a load moving on the beam to cause the
extreme values of both s2

w,max and s2
m,max . The above phenomena indicate that the greater

v0 (Ev1) implies smaller as .
The effects of the span number on the s2

w,max − aT and the s2
m,max − aT distributions of a

multi-span Timoshenko beam due to a moving load with a variance of cosine process
(v0 =0·5v1) are displayed in Figures 12(a) and 12(b) respectively. The frequency v0

(=0·5v1) is smaller than all modal frequencies of the beam. Therefore, this cosine process
can be regarded as a constant variance process. Consequently, both tendencies of the
s2

w,max − aT (or s2
m,max − aT ) and the �w�max − aT (or �m�max − aT ) distributions are very

similar.
The comparisons of two beam theories on the s2

w,max − aT and the s2
m,max − aT distributions

of a three-span beam due to the moving load with a variance of cosine process (v0 =0·5v1)
are shown in Figures 13(a) and 13(b) respectively. The first modal frequency of the
Timoshenko beam is smaller than that of a Bernoulli–Euler beam. The frequency v0 is
closer to the first modal frequency of the Timoshenko beam than that of the
Bernoulli–Euler beam. Accordingly, both s2

w,max and s2
m,max of the Timoshenko beam due to

the load moving at a low speed are greater than those of the Bernoulli–Euler beam.

Figure 12. The span number effect on (a) the s2
w,max − aT distribution and (b) the s2

m,max − aT distribution of
a multi-span Timoshenko beam due to a cosine process (v0 =0·5v1). Key as for Figure 4.
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Figure 13. Comparisons of the effects of two beam theories on (a) the s2
w,max − aT distribution and (b) the

s2
m,max − aT distribution of a three-span beam due to a cosine process (v0 =0·5v1). Key as for Figure 7.

Figure 14. (a) The (Xs )w − aT distribution and (b) the (Xs )m − aT distribution of a three-span Timoshenko beam
due to a cosine process (v0 =0·5v1).

However, the Timoshenko beam has a low as . The periodicity of the variance of the load
causes both (Xs )w − aT and (Xs )m − aT distributions of the beam to be different from those
of a white noise process and of the mean values. The (Xs )W − aT distribution of the
three-span Timoshenko beam displayed in Figure 14(a) indicates that s2

w,max always appears
in close proximity to the mid-point of one span. However, s2

m,max may occur at the mid-point
of each span or on the left side of either the first support or the second support, as indicated
in Figure 14(b).

5. CONCLUSIONS

The maximum mean value of transverse deflection of a multi-span Timoshenko beam
due to a random load moving at a constant velocity always occurs in close proximity to
the mid-point of either the first span or the last span. Both the maximum variance of
transverse deflection and that of moment of the beam due to the load with the variance
of white noise process decrease for an increasing velocity. The maximum variance of
transverse deflection due to the white noise process always appears near the mid-point of
the first span or the last span of the beam. A rapidly moving load with the variance of
a cosine function will not induce significant variances of deflection and moment of the
beam.
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