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In this paper available methods are examined for computing critical speeds for rotating
machines whose bearings have speed dependent properties and a modification is proposed
which can be incorporated into almost all of the established techniques. The established
methods for the calculation of critical speeds are adequately efficient when only a single
configuration is analyzed. The trend towards incorporating critical speed calculations into
the design optimization process and model-based fault diagnosis systems requires the more
efficient calculation of critical speeds. The proposed modification involves replacing the sets
of speed-dependent bearing characteristics by fictitious multi-degree-of-freedom systems
whose characteristics emulate those of the bearings themselves. The method by which these
fictitious systems can be found is explained and the advantages of using this method
for computing critical speeds are demonstrated in conjunction with the finite element
approach to evaluating critical speeds. The proposed technique is also well suited to
computing efficiently the machine response to unbalance by using a truncated modal
decomposition.
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1. INTRODUCTION

In the design of large rotating machinery, one of the most fundamental considerations is
the set of values of the critical speeds relative to the intended operating speed range of
the machine. Before the availability of reliable calculation procedures and computational
hardware on which to execute them, there was a strong tendency to design “‘rigid-rotor”
machines which would have no critical speeds below the highest speed of interest in the
operating range. In the design of steam turbines in particular, this tendency imposed
severe limitations on the maximum size of plant. With the arrival of multi-element
models of rotor/stator systems and powerful computers, machine designers are now
confidently designing machines to have several critical speeds below the maximum
operating speed.
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Computationally, finding critical speeds is not straightforward, particularly for machines
having journal bearings because the dynamic properties of these bearings are strongly
dependent on rotor speed. There are several established solutions of this problem and these
are discussed in this paper. Although the power of modern computing hardware is such
that computing a set of critical speeds for a single machine design is not usually sufficiently
time-consuming to be of any concern, the trend towards building the calculation of critical
speeds into a design optimization process [1, 2] combined with the need to examine the
many possible combinations of misalignment and various operating conditions of
multi-bearing machines, means that these calculations may be required numerous times
in the automated search for an optimal machine design. The proposed method may also
be used in model-based diagnosis of faults in rotating machines.

In this paper, a technique is proposed which significantly streamlines the calculation of
critical speeds for machinery whose bearing characteristics are dependent on shaft speed.
This involves setting up fictitious multi-degree-of-freedom systems between the stationary
and rotating parts of the bearing to emulate the frequency response function of the journal
bearings. Although these degrees of freedom are not physical, the resulting systems can
be regarded as reduced order models of the complex bearing dynamics. The calculation
of critical speeds is then reduced to a simple eigenvalue solution like that required for the
calculation of resonances of a stationary structure and the dimension of this eigenvalue
problem is only slightly greater than the dimension of the eigenvalue problem which would
have to be solved to establish critical speeds if the bearing properties were independent
of speed. One very attractive aspect of this technique is that any program which can
perform dynamic calculations for a rotor-stator system given a fixed set of bearing
characteristics can be used without modification to compute the true critical speeds of a
system in which the bearing characteristics vary significantly with speed.

The proposed technique is also well suited to efficiently computing the machine response
to unbalance using a truncated modal decomposition. The current approach for machines
with speed dependent bearings requires the response to be calculated from the dynamic
stiffness matrix at every rotor speed. In many machines, where only a few of the system
modes are excited, the modal decomposition approach would require far less computation.
This method is not considered further, since it is a straightforward extension of the critical
speed calculations once the system matrices have been set up.

The actual dependence of bearing characteristics on speed is a matter of some
tribological complexity and continues to be the subject of intense study. It is well
established, however, that the dynamic stiffness properties of any hydrodynamic bearing
for small oscillations at synchronous frequency can be represented by using one 2 x 2
stiffness matrix (over the field of real numbers) and one 2 x 2 viscous damping matrix (also
over the field of real numbers) if the bearing is sufficiently short. A longer bearing might
require two 4 x 4 matrices to account for the effects of angular oscillations of the shaft
with respect to the bearing about a diametral axis. The method of this paper is described
in terms of short bearings but is no less applicable to the longer bearings case.

It will be assumed for the purposes of this paper that empirical relationships have
already been derived for the stiffness and damping matrices of any bearing which might
be considered for inclusion into a machine design and that these relationships are smooth.

2. ANALYSIS METHODS FOR EVALUATING CRITICAL SPEEDS

The existing methods for computing critical speeds for rotating machinery can be
categorised as pure finite element models, numerical transfer matrix models, and analytical
transfer matrix models (or hybrid models including finite elements).
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It would appear from the literature that in the majority of current computer programs
for rotor dynamics calculations the transfer matrix concept is used. The concept of the
transfer matrix method is well established and understood, having been originated by
Myklestadt [3] in 1944 for static beams and subsequently developed by Prohl [4] for rotors.
Employing the transfer matrix technique in some form has much to recommend it as
evidenced by the proportion of the researchers who advocate the use of a transfer
matrix model for the rotor [5-11]. The strongest advantage in using a transfer matrix
representation for the rotor is that it is not necessary to create very large system matrices
to represent the rotating part of the system.

Finite element methods enable general purpose programs to be written for computing
critical speeds [12—17]. Pure finite element methods for computing critical speeds do require
substantially more computer memory than their transfer matrix counterparts and this
disadvantage has been a powerful argument if favour of transfer matrix or hybrid
methods. However, with current computer hardware, there are very few rotating
machines that cannot be modelled with more numerical accuracy than necessary, in more
detail than necessary and for a greater range of frequencies than is necessary by using
a finite element model. If this model is set up by an experienced rotor-dynamicist, it is
almost certain that any significant discrepancy between the predictions based on the model
and measurements made on the physical machine would have a lot more to do with errors
in the model parameters than with a lack of detail in the model.

An exhaustive comparison of the respective merits of finite element and transfer
matrix methods is beyond the scope of this paper. For example, it is arguable whether
the computational time taken by finite element methods is greater than or less than
that required for a transfer matrix approach in general. The authors observe that the
trend in the literature is towards full finite element models. The recent text by Lalanne
and Ferraris [16], for example, does not include any mention of transfer matrix methods.
The text by Childs [17] devotes very little attention to the problem of computing
critical speeds for the general rotating machine but one chapter is devoted largely to
developing a system model and the bulk of this focuses on finite element type models.
Childs does note the considerable computation required for the repeatedly manipulation
of the large matrices which automatically result from many real analyses and pays
particular attention to methods by which the size of the matrices can be dramatically
reduced.

In the present paper it is proposed that a fictitious dynamic system can be incorporated
between the shaft and the bearing support system in any model for a rotating machine
as a means of approximating the speed dependence of the bearing characteristics, rather
than using speed dependent stiffness and damping matrices. This concept provides no
advantage in numerical transfer matrix methods because the combined bearing and
support properties are computed numerically for each individual speed. It does, however,
provide a considerable advantage in finite element and analytical transfer matrix methods.
The method is presented in the context of pure finite element models.

3. EVALUATING CRITICAL SPEEDS USING FINITE ELEMENT MODELS

Suppose that a finite element model has been created to represent all aspects of a
particular rotating machine except the bearing characteristics. Implicitly, therefore, the
rotor and stator of the machine are completely uncoupled. Given that they must
eventually be coupled together to analyze the complete machine, it is sensible to model
the rotor and stator using a single reference frame and the usual choice is the stationary
frame.
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It is normal practice in dynamic analysis with finite element models to perform static
(Guyan) reduction to reduce the number of active degrees of freedom in the model before
either solving for natural frequencies or computing either transient or steady state response
and one can suppose that this reduction or condensation has taken place for both the stator
and the rotor such that for the range of frequency of interest with the model and the
accuracy desired, all of the remaining degrees of freedom are deemed to be “‘necessary”.
Note that certain degrees of freedom at the bearing locations on both the rotor and the
stator must be retained through the condensation process to allow for the rotor and stator
to be coupled subsequently.

The condensed vector of displacement co-ordinates u will be used to represent the set
of harmonic displacements (at angular frequency w rad/s). Assume that the full model of
the rotor/bearing/foundation system may be partitioned by using degrees of freedom
(DoFs) relating to the rotor and the foundation. Both sets of DoFs may be further
partitioned into internal DoFs and DoFs at the bearings. It is assumed that the bearings
can be modelled by using DoFs on the rotor and on the foundation only, so that the
bearing model does not contain any internal DoFs. Thus the equations of motion of the
system, in terms of dynamic stiffness matrices, may be written as

Dry Dris |)urs _ fr:
for the rotor, |:DR.BI DR,BB:| {u“} = {_ fm}, (1
o B —B Urp( _ frp
for the bearings, [—B B }{uﬁg} = {_fw}, 2)
. DF,BB’ DF,B’I Urp( _ fF.B’
for the foundation, [D“B Dm]{um} = { 0 } 3)

In equations (1)—(3), D represents a dynamic stiffness, u the response, and f a force. The
first subscript, R and F, represents the rotor and foundation models. The second subscripts
represent the DoFs at the bearing (B) or at internal DoFs (/). The force fz, represents the
force on the internal rotor DoFs and includes the out-of-balance forces. It is assumed that
no external force is applied to the foundation.

Note that the special form of the bearing dynamic stiffness matrix arises from the
assumption that the force required to produce a given relative bearing deflection depends
only on the relative displacement, uzz — ur 5, and this force acts equally and oppositely
on the rotor and on the foundation. The only force into the foundations is assumed to
be from the bearings. Any force excitation applied to the foundations will produce extra
force terms in equation (3).

Equations (1)-(3) may be combined to give the full equations of motion:

Dy Drx.s 0 0 Ug s frr
Drs; Drss+ B —B 0 Ugp 4
0 —B B+ Drsz Drg Urp N (I @)

0 0 DF,IB DF,II Uz 0
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The dynamic stiffness matrices may be written in terms of the mass, damping, gyroscopic
and stiffness matrices of the rotor, My, Cr, Gr and K;, and of the foundation, M, C,
and Ky, where, for example,

)

DR = GQ))ZMR + _](,O[CR + QGR] + KR = |:DRJ[ DRJB:|.

DR.BI DR,BB

In general these structural matrices are determined as condensed mass, stiffness,
gyroscopic and damping matrices. The mass, damping and stiffness matrices for the rotor
and the foundation are generally symmetric. The gyroscopic effects are linear in the
rotational speed, 2, and the gyroscopic matrix, Gz, is skew-symmetric. The bearing
dynamic stiffness is usually speed dependent, so that B = B(Q2), and is generally
non-symmetric.

For the purposes of this paper, the only source of forcing considered is unbalance forcing
whose frequency is equal to the rotor spin speed. Thus w = Q. Equation (4) can be used
to form another equation which directly expresses the criterion for a critical speed. There
are actually two possible definitions of critical speed. On the one hand Ianuzzelli [18], for
example, defined a critical speed as a rotor spin speed at which the response to unbalance
forcing (which rises in proportion to Q?) reaches a local maximum. Depending on the
damping in the system, this “critical speed” can be significantly different from the critical
speed defined by the frequency that minimizes

D Dzis 0 0
Drsr  Drss+ B —B 0
det 0 —B B+ Drss Drsr | ©
0 0 Dris D:y

The two definitions differ most in the cases of critical speeds for which the damping ratio
is quite high but for practical purposes, if the damping is relatively high, then the exactness
of the predicted critical speed is not important. The “local maximum in unbalance
response’’ definition actually depends to some extent on the position of the unbalance
whereas the other definition based on Equation (6) depends only on the system. For the
remainder of this paper, the definition used for critical speed, Q..,, will be based on
equation (6).

If the mass, damping and stiffness matrices are independent of 2, then the critical speeds
may be calculated by solving the following eigenvalue problem

HERHE

where
Kru Kz.5 0 0
K Krpr  Krps+ B —B 0
- 0 —B B+ Kess Kew
0 0 DFJB KFJI

[Ce 0 Mx 0
C—[o CF} M_[o M]
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Here, for clarity, it has been assumed that the gyroscopic effects are negligible. The
eigenvalues, s, contain the critical speed as the imaginary part. The corresponding
eigenvector determines how the machine behaves close to the critical speed. If
gyroscopic effects are not negligible then the gyroscopic matrix will enter in the mass
matrix M.

When the system matrices are not independent of speed, there are several alternative
methods which might be selected for evaluating the critical speeds as enumerated below,
and demonstrated in the example. In many books the first two of these approaches are
discussed, and they may be consulted for further details [ 16, 17, 19-24].

(1) For each speed in a set of speeds spanning the range of interest, the response of the
machine to synchronous unbalance is computed. This involves computing the dynamic
stiffness and finding the response to some nominal unbalance force for each speed, Q, by
solving equation (4). Peaks in the response are noted and recorded as ““critical speeds”.
Clearly, this approach finds critical speeds as defined by using the “local maximum in
response’’ criterion and these will not be exact solutions for equation (6). The approach
is not able to find critical speeds that are not excited by the chosen unbalance.
Furthermore, the frequency at which the response is maximum will change slightly
depending on which DoF is considered.

(2) For each speed, Q, in a set of speeds spanning the range of interest, mass, damping
and stiffness matrices M(Q2), C(Q2), and K(£2) are set up and the characteristic roots of this
combination of matrices are found by solving an eigenvalue problem such as equation (7).
The imaginary parts of these characteristic roots are the damped resonance frequencies.
A plot (called a Campbell diagram) can be created showing the variation of these resonance
frequencies with shaft speed. The intersection of each resonance frequency curve with the
line through the origin (on which shaft speed equals resonance frequency) defines a critical
speed. This is the technique used (combined with (1) above when the damping is high) by
Lalanne and Ferraris [16].

(3) An iterative search for critical speeds can be used to locate individual critical speeds.
In this method, the first critical speed is estimated as Q,. Then K(Q,), C(Q,) and M(Q,)
are computed and equation (7) is solved to find the damped resonance frequencies. The
lowest of these damped resonance frequencies is always an improved approximation to the
first critical speed. Thus €, is given this new value and the process is repeated until
satisfactory convergence is obtained. The numerical example illustrates this process in
action and convergence is generally very fast. Higher critical speeds are obtained by
choosing the higher damped resonance frequencies as a better approximation to the critical
speed at each iteration.

(4) A method which could be referred to as polynomial fit to bearing characteristics
could be applied to the problem. The present authors have not found any reference in
the rotor-dynamics literature which specifically claims to use this approach but
polynomial approximations have been used in modal analysis for some time [25]. Similar
techniques have also been used to solve non-linear eigenvalue problems. Since the
present authors hold this to be the principal contender with the new method
proposed in this paper, a separate section is devoted to it. The formulation of this
method also lays much of the useful foundation for the explanation of the proposed new
method.

4. USING A POLYNOMIAL FIT TO BEARING CHARACTERISTICS

This method begins with the recognition that for the purposes of computing
synchronous response or critical speeds, every (short) bearing can be characterized by a
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single complex 2 x 2 dynamic stiffness matrix which relates the synchronous oscillatory
forces existing in the oil film to the displacements of the shaft journal relative to the bearing
shell. These dynamic stiffness matrices are assembled to the full bearing dynamic stiffness
matrix, B(Q), as
B/ (@)
B, (@)
B(Q) = . . (®)

B, (@) |

where B; (Q) is the dynamic stiffness of the ith bearing, and there are m bearings. As
indicated by equation (2), the force arising at the bearings depends on the relative
displacement of the rotor and thus

frp = B(Q) (uR.B - UF,B), (9)

where the displacements and forces may also be partitioned according to their bearing
location. We will continue using the general form, equation (9), although in practice the
bearing dynamic stiffness matrix will be built up from the contributions from the individual
bearings.

The bearing dynamic stiffness may be approximated by a polynomial in jQ of arbitrary
order n, where the rotor speed Q is real. Thus,

B(Q) ~ B, + (jQ)B, + (jQ)’B, + - - - + (jQ)'B,. (10)

These coefficient matrices are usually obtained by minimizing the residuals between the
polynomial expression for the bearing dynamic stiffness and the ones obtained by
hydrodynamic theory (or possibly experiment), often in a least squares sense. It is worth
noting that short hydrodynamic bearings are generally characterized by using four purely
real stiffness coefficients and four purely real damping coefficients for a given shaft speed
but that this representation is intended to be valid for all frequencies of lateral oscillations
of the shaft and this paper is concerned only with synchronous oscillations. Thus, the
bearing can be ‘“characterized” at any one speed by using only four generally complex
numbers.

If n = 2 in equation (10), then this polynomial expansion for the bearing coefficients can
be used directly in equation (7) by recognizing that By, B, and B, can be incorporated
directly into K, C and M respectively. Thus,

Kz Kz 0 0
Krsr  Krss+ Bo ) 0
K= 0 —By By +Kiss  Kes |’
0 0 Kr.s Krn
Cru Cris 0 0
Crar Crps+ B, —B, 0
€= 0 —B, B+ Crss  Cra
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Mz Mz.s 0 0
Mpis Mgz + B, —B, 0
M=1% ~B: B+ Muw M|’ (D
0 0 Mg 5 M.

Then when the dynamic stiffness matrix is formed for the complete machine including the
bearing connections according to equation (4), it can be a reasonably close approximation
to the exact matrix over a wide band of speeds. It is worth noting that By, B, and B, are
generally complex but the entries of the structural matrices arising from the rotor and
foundation models are generally real. Complex entries sometimes appear in the stiffness
matrices to represent hysteretic damping. The introduction of a small number of complex
entries into the otherwise purely real matrices constitutes no significant computational
disadvantage, but the resulting eigenvalues will not appear as complex conjugate pairs. If
necessary the polynomial expansion in equation (10) can be forced to give purely real
matrices By, B; and B,, although this will result in a considerable reduction in the quality
of fit to the bearing characteristics. Once K, C and M are defined, then equation (7) can
be applied to find critical speeds. The roots of equation (7) are generally complex. If the
system is lightly damped, it will be found that most of the roots are almost purely
imaginary with a relatively small (negative) real part.

If n =3 or n =4 in equation (10), then the approximation to the exact B(Q) can be
improved but the size of the matrices in the eigenvalue problem must be increased.
Equations (12) show how the higher order polynomial fit can be incorporated into the
framework of stiffness, damping and mass matrices:

[ Krn Kz 0 0 0
Krs: Krsz+Bo 0 —By 0
K=| 0 0 I 0 0 |,
0 —By 0 By+Krss Keg
| 0 0 0 K5 Kru ]
Cru Crup 0 0 0
Crsr Cras+ B B; —B, 0
C=1]0 0 0 0 0 |,
0 —B, —B; B+ Crzz  Cryp
0 0 0 Cru Crn
[Men Mg 0 0 0 ]
Mgz Mz +B, By —B; 0
M=| 0 —1 0 I 0 . (12)
0 —B; —Bs By + Mrps Meg
| 0 0 0 M5 My |

Notice that there is no advantage in considering only the cubic approximation in equation
(10), as the size of the matrices is increased by the number of DoFs at the bearings, for
both the cubic and quartic approximations to the bearing characteristics. In solving
equation (7), it is necessary to find an inverse of K and M and therefore, it is desirable
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to ensure that these matrices are always non-singular. It is useful to minimize the level of
skew-symmetry in the matrices as this can reduce the computation time required to solve
the eigenvalue problem [26].

In equations (12), additional entries have been introduced into the vector of system
deflections u. These additional deflection variables will be referred to as dummy freedoms
and the positions at which they are introduced are arbitrary. There is some sense in
introducing them at the partitions between the shaft translations and the bearing housing
translations in the vector of deflections and this was done in the definitions in equations
(12).

For n =6, a second set of dummy freedoms may be introduced to give the mass,
damping and stiffness matrices as

[ Kgu K.z 00 0 0
Krsr Krgzs+Bo 0 0 —By 0
0 0 I 0 0 0
K=1" 0 0 1 0 0 |’
0 —By 0 0 Bo+Kpss Krm
L 0 0 0 0 K5 Kru
" Cru Crus 0 0 0 0
Crar Crzs+ B B; B; —B, 0
0 0 0 0 0 0
=10 0 0 0 0 0o |’
0 —B, —B; —Bs; B+ Crs Cru
L 0 0 0 0 Crs Cru
[ Mgy M 15 0 0 0 0 ]
My Mgss + By B, Bs —B, 0
0 —1I 0 0 I 0
M= 0 10 0 0o | (13)
0 —-B, —Bs, —B¢ B+ Mg My
L 0 0 0 0 M5 \Y P

A pattern may now be established whereby a polynomial approximation for the bearing
coefficients of arbitrary degree can be created and installed into the system matrices to yield
a direct and efficient calculation method for critical speeds. The approximation of the
bearing characteristics are taken as even powers of rotational speed. Each increase of 2
in the order of the polynomial approximation requires the addition of N, dummy freedoms,
where N, is the number of degrees of freedom at the bearing (that is the length of the vector
uR.B)~

5. THE ALTERNATIVE TECHNIQUE PROPOSED

The technique presented here can be expressed very concisely by reference to equations
(11)-(13) above. In these equations, the dynamic properties of the bearing were represented
by three matrics, M, C, and K. Dummy freedoms were introduced to derive these matrices,
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but these dummy freedoms were essentially constrained to be even derivatives of
the relative displacement of the bearing. Higher order polynomial approximations to the
bearing characteristics increased the number of dummy freedoms and increased the
accuracy of the approximation. The disadvantage is increased computation time.
Furthermore complex matrices are required for a fully general polynomial fit to the bearing
characteristics. The technique proposed in this paper delivers a greater accuracy than the
polynomial expansion for the same computation time because it effectively allows more
variables to be used in the definitions of the mass, damping and stiffness matrices. The
resulting matrices are also real. This is done by allowing the dummy freedoms to have
dynamics of their own. This essentially means adding general matrices into the
corresponding positions in the mass, damping and stiffness matrices. Thus, one assumes
these matrices may be written as

LS Y 0 0 0
Krs  Krszs+ By R, —By 0
K=| 0 S; Kp —-S; U
0 ) —Ro Bo+Krss  Krg
| 0 0 0 K:.s Krn |
[ Cra Crs 0 0 0 |
Crsr  Crps+ By R, —B, 0
C= 0 1T Co - SlT 0 >
0 —B, —R B+ Gz Crp
| 0 0 0 Crs Cru |
[Mey Mg 0 0 0 ]
Mis  Mess + B, R; —B, 0
M = 0 S; M, —S7 0 , (14)
0 -B; —R: By+Mpss Mpg
0 0 0 M5 M. |

where the bearing characteristics are now approximated by the identified values in the
matrices in the following equation:

B(Q2) ~ By + j2B, + (j2)'B, — [Ry + jOR, + Q)R] [Kp + jQC) + Q) M,] ™!
x [So + j2S: + (Q)S.]". (15)

Equations (14) and (15) are the most general expressions for the structural matrices,
consistent with the constraint that the forces on each side of the bearings are equal in
magnitude, but opposite in direction. The number of dummy DoFs used determines the
size of the mass, damping and stiffness matrices, My, Cp and K,. This number is
determined solely by the quality of fit to the bearing characteristics required. It should be
clear from equation (15) that the wider choice of parameters enables a much closer
approximation to be made to the bearing characteristics than could be obtained with a
polynomial fit.

Although the mass, damping and stiffness matrices for the dummy freedoms, M,, C,
and K,, can take any form, these degrees of freedom are not physical, and therefore may
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be transformed arbitrarily. One particular convenient form is to assume that the dummy
freedoms are such that these matrices are diagonal. This form assumes proportional
damping, whereas the most general form retains a full damping matrix. In practice, a good
fit to the bearing characteristics may be obtained by assuming proportional damping, and
this assumption will be used in the example to follow. Thus, if there are p dummy freedoms,
and if

MD = dlag ([mm, Mpry oo vy mDp])a CD = dlag ([Cm, CD2y v v vy ch])a
K, = diag ([kpi, kpa, - . -, kDp])y
then equations (15) may be written as

B(Q) ~ B, + jQB, + (jQ)’B,

_ i Ukpi X0 + jQcpi 1 + ()15} {kpi Soi + jQcpi 810 + (12)’8ni | " (16)
kDi + jQCDi + (]Q)2 ’

i=1

where the R and S matrices have been written as

Ro = [kpitan kpaTor - kDp T, So = [kp1 Sor kp2Sx -+ kDp Sop ],
R, = [Cm rn Cpprp " Cpp rlp]a S = [Cm Sit Cp2Siz "t Cpp Slp],
R, = [1‘21 Iy - l'2p], S, = [Szl S» SZ])]-

Since each numerator and denominator pair in equation (16) may be multiplied by any
scalar constant, one may arbitrarily set mp = 1.

The question that now arises is how to choose the parameters relating to the dummy
freedoms so that the bearing dynamic stiffness matrix is closely approximated by the
expression in equation (16). Methods based on the direct minimization of the residual in
equation (16) will give significant problems as the error surface that is minimized has many
local minima. Indeed the direct approach has been abandoned in experimental modal
analysis, which is essentially looking at the same problem. In the standard frequency
domain modal analysis method one fits a rational fraction polynomial expression to the
dynamic stiffness matrix, and this yields as a first stage the natural frequencies and
damping ratios [27]. This approach may be used here to obtain the denominator terms in
equation (16).

It remains to estimate the R and S matrices. Equation (16) may be rewritten in the form

Ts + jQT4i

P
~ 1 1 2 [—
B(Q) ~ To +jQT, + ()T ,-; kpi + jQcpi + Q)7 (1)
123 4 5 67 89 10 11 12
Coupling N N
to motor

Figure 1. Diagram of the rotor for the numerical example.
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where the T matrices may be written in terms of the B, S and R matrices. This is the form
of the model that may be easily identified by the rational fraction polynomial method. The
matrices R and S then have to be computed so that the numerator terms in the summations
in equations (16) and (17) are equal. Then the B matrices in equation (16) may be found
by equating the quadratic terms in equations (16) and (17). Matching the numerator terms,
after considerable algebra, gives the following conditions that the R and S matrices must
satisfy:

kpi — i i
ko {l'zi - l’of} {Szi - SOI’}T - C%)i {rlf - rOf} {Slf - SOI‘}T = DTCD Ts + 1%) Ty, (18)
Di Di
1 1
{l’zi - rli} {SZi - Sli}T - {rn - rOi} {Su - SOi}T = i Ty + . Ty (19)
Di Di 'V Di

It is clear that the left sides of equations (18) and (19), obtained from equation (16), will
not be full rank in general, but of rank at most 2. The right sides of equations (18) and
(19), involving the measured matrices T; and T4, will in general be full rank. Thus the
model using the dummy freedoms cannot be made equivalent to a model identified from
the rational fraction polynomial method. However, if B(Q) represents a single short
bearing, the matrices T and T, will be 2 x 2, and therefore of rank at most 2. Even so,
solutions for the R and S matrices from equations (18) and (19) are unlikely, and this is
considered in more detail later. There is, of course, some redundancy in these equations,
and in the following ry and sy will be set to zero. Upon assuming the R and S matrices
have been found, then the B matrices may be obtained from the fitted constant, linear and
quadratic terms: that is, Ty;, T); and T,;, and also the R and S matrices. If there is more
than one bearing, each bearing will be assumed to have its own dynamics, and therefore

TABLE 1

Physical dimensions and properties for the numerical example

Shaft properties
A

f Young’s Mass density, )
Station Length (mm) Diameter (mm) modulus, £ (GPa) p (kgm—3)

1 6-35 381 200 7850

2 254 77-6 200 7850

3 50-8 381 200 7850

4 203-2 100-0 200 7850

5 177-8 381 200 7850

6 50-8 116-8 200 7850

7 76-2 381 200 7850

8 76-2 109-7 200 7850

9 76-2 381 200 7850
10 50-8 102-9 200 7850
11 177-8 381 200 7850
12 203-2 100-0 200 7850

Balancing discs
r A Al
Mass density, p
Station Length (mm) Diameter (mm) (kgm~%)
6 254 203-2 7850

10 254 2032 7850
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dummy freedoms, and the bearing characteristics for the complete rotor may be generated
in block diagonal form.

If the number of degrees of freedom in each bearing is larger than the rank of the Ty
and T, matrices, or there is no solution of equations (18) and (19), then the identified
rational polynomial form cannot be used directly. There are then two possibilities. Either
an optimization process is performed to generate the B, R and S matrices directly, by using
the denominator polynomial identified from the rational fraction polynomial method.
Direct optimization often has considerable difficulties and should be avoided if at all
possible. The alternative is to add more dummy freedoms with the same ‘‘natural
frequency” and ““‘damping ratio’: that is, the same denominator polynomial. This has the
effect of making r, and s,;,, ¢ = 0, 1, 2, have more than one column. Thus the rank of the
left sides of equations (18) and (19) may be increased. Dummy freedoms may be added
until the rank of these matrices is equal to that of the equivalent measured matrices. This
will now be demonstrated for short bearings, and a decomposition method introduced to
produce the R and S matrices.

For short bearings it is required to add a second set of dummy degrees of freedom with
the same “‘natural frequency’ “damping ratio”. For the ith dummy freedom, let the extra
columns of the R and S matrices be denoted by £, and §,, ¢ = 0, 1, 2. On the assumption
that

S =85=0, b=1,=0, (20)
equations (18) and (19) become

T 2 A AT 2 (s a A A
ki Yoi So; — € {rli - 1'01'} {Sli — SOi}T + ki Roi S — ¢ {rli - rm} {Sli — SOi}T

= (kpi — C%)i)/klzji Ts + (i /kDi)TAi, @2n
Iy S1T,- — {1'11 — rUi} {511 — SUi}T + iy §1T1 — {f'li — f'Oi} {§Ii — §0i}T = — l/kéi Ts: + 1/(cpi kpi)Ty.
(22)

It happens that one does not need all the vectors (or columns of the R and S matrices)
to be independent, and thus the following assignments can be made:

So=su.  Su=—si. (23)
\
20 — .
- \
S | ..
-
~.
S -
5 10— .
2 T ——
(]
£ L
=
E=]
: _——-
B OF e
S
IS
@ L
o0
CI0L
\ I | ‘
° 20 40 60 80
Rotational speed (Hz)
Figure 2. The speed dependent stiffness coefficients for the bearings used in the example. ——, (1, 1) element,

''''' , (2, 1) element; - - - -, (1, 2) element; — - — -, (2, 2) element.
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Figure 3. As Figure 2 but for the damping coefficients.

These assignments are not unique, and the only requirement is that the linear relationships
in equations (23) have distinct coefficients. With these definitions, equations (21) and (22)

become

0i

kpi {1'01' + f'Oi} + chi {_rOi + 1 — Fo + f'li} | Chi {rOI — 1 — o + f'lf} |:ST:|

Damped natural frequency (Hz)

—ro + 1y — Fo + By

80

60

40

20

T
| o Sy

For — For

kpi — ¢ 'Di
Dich Ty + ;C*D Ty
Di Di
= 1 1 . (24)
_kTZJi Ts + 701)1‘ . Ts

20 40 60 80
Rotational speed (Hz)

Figure 4. Campbell diagram for the numerical example.
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It is now clear how the unknown vectors may be obtained. A singular value decomposition
of the right side of equation (24) is performed. The right side has dimension 4 x 2 for short
bearings, and the singular values are distributed equally by multiplying the left and right
singular vectors by the square root of the corresponding singular values. The resulting
matrix of “normalized” right singular vectors immediately gives the s vectors. The
“normalized” left hand singular vectors are contained in a 4 x 2 matrix, and this gives
8 linear equations for the 8 unknown elements of the r vectors. This approach may be
extended to matrices of larger dimension and also for extra dummy degrees of freedom.

6. A NUMERICAL EXAMPLE

The numerical example is based on a small test rig located at Aston University,
Birmingham. No experimental results are used since the purpose of this paper is to
compare methods of calculating critical speeds, not to test the quality of the modelling.
However, the example does show the calculation of critical speeds for a real system. The
rig consists of a steel shaft approximately 1-1 m long, with nominal diameter 38 mm and
two shrink-fitted balancing discs. The shaft is supported at either end by a journal bearing
of diameter 100 mm, L /D ratio of 0-3 and radial clearance of 125 um. The bearings contain
oil with a viscosity of 0-0009 Nsm~2 and are supported on rigid pedestals. Each bearing
is assumed to support a force of 300 N. The rig is designed to operate with a flexible
foundation, but rigid pedestals are assumed here to highlight the speed dependent bearing
properties, and hence speed dependent resonances. A schematic of the rig, as modelled,
is shown in Figure 1. The dimensions of each station and material properties are given
in Table 1. A finite element model of the rotor with 23 elements was created, with 4 DoFs
per node (2 lateral translations and 2 rotations), resulting in a 96 DoFs model of the rotor.
The rotor was assumed to be constrained along the axial direction of the rotor. The
rotational DoFs in this model were eliminated by using Guyan reduction, giving a 48 DoFs
model of the rotor. Short bearing theory was used to obtain values for the bearing stiffness
and damping [28]. Figures 2 and 3 show the speed dependent bearing properties, given as
stiffness and damping matrices, used in the simulation. Direction 1 is horizontal and
direction 2 is vertical.

Figure 4 shows the Campbell diagram for this example, for rotor speeds up to 80 Hz,
clearly showing four critical speeds in this range. Applying the iterative method to obtain
the critical speed gives the results shown in Table 2. The initial guesses for the critical

TABLE 2

Convergence of critical speeds for the iterative method

Iteration no. Critical speed (Hz)

Initial 40-0000 48-0000 50-0000 74-0000
1 38:1220 48-0121 50-2166 73-4895
2 38-0440 48-0119 50-3138 73-3875
3 38:0410 48-0119 50-3572 73-3670
4 38-0409 — 50-3766 73-3629
5 38:0408 — 50-3852 73-3620
6 38-0408 — 50-3890 73-3619
7 — — 50-3907 73-3618
8 — — 50-3915 73-3618
9 — — 50-3918 —

10 — — 50-3920 —




154 M. I. FRISWELL ET AL.

TABLE 3

Estimated critical speeds, Q...,, and damping ratios, {, obtained by using the iterative method
and the proposed method with different numbers of dummy DoFs

Iterative 8 Dummy DoFs 12 Dummy DoFs 16 Dummy DoFs 20 Dummy DoFs
A A A A A

r Al r Al r A r A r Al
Qi (Hz)  ( (%) Quu(Hz) (%) Qu (Hz) (%) Qo Hz) (%) Qo (Hz) (%)
38-:04 13-0 39-11 12-1 39-13 12-1 39-13 121 39-13 121
48-01 2-3 47-99 2:2 48-00 2:2 47-99 2:2 47-99 2:2
50-39 32:6 60-70 32-1 60-74 32:0 60-71 32:0 60-71 32:0
73-36 17-2 76-66 19-2 76-61 19-2 7662 19-2 76-62 19-2

speeds are obtained from the Campbell diagram and convergence is very fast. Table 3
shows the converged critical speeds, and also the corresponding damping ratios. Table 3
also shows the critical speeds obtained by using the new approach proposed in this paper,
together with the corresponding damping ratios, for different numbers of dummy DoFs.
In all cases the quality of the fit to the bearing characteristics was very good. The fitted
characteristics are not shown because little error would be visible in plots equivalent to
Figures 2 and 3. The number of dummy DoFs is the number of extra DoFs required, in
addition to the 48 rotor DoFs. Only critical speeds inside the frequency range used to fit
the bearing characteristics are shown in Table 3. Since the bearing model is not valid
outside this range, critical speeds outside the range must be treated with great suspicion.
These “‘numerical” or non-physical critical speeds may also be identified as they tend to
change as the number of dummy DoFs varies and they are often highly damped, although
in this example there are none. The correspondence between the critical speeds obtained
by the iterative approach and the new approach is good for lightly damped critical speeds,
and gets poorer as the damping ratio for a critical speed increases. Thus, the
correspondence in the third critical speed is particularly poor because the damping ratio
(32%) is very high. This poor correspondence arises because of the approximation inherent
in the calculation of the critical speed via system eigenvalues, namely that the eigenvalue
is equal to j times the critical speed (where j = ./ —1). Clearly this relies on the damping
being small. The definition of critical speeds in highly damped systems was discussed earlier
in this paper. To highlight the effect of this approximation, Table 4 shows the
corresponding results for this example if the bearing damping is reduced by a factor of
2. The damping in all critical speeds is now small, and the correspondence between critical
speeds is much improved.

TABLE 4

Estimated critical speeds, Q..,, and damping ratios, {, obtained by using the iterative method
and the proposed method with different numbers of dummy DoFs; bearing damping reduced
by a factor of 2

Iterative 8 Dummy DoFs 12 Dummy DoFs 16 Dummy DoFs 20 Dummy DoFs
A A A A A
r A r B r A r A r B
Qi Hz) (%) Qo (Hz) (%) Qo (Hz) (%) Qo Hz) (%) Qo (Hz) (%)
39-30 1-5 39-35 1-7 39:35 1-6 39-35 16 39-35 1-6
47-28 2:6 47-26 2:5 47-26 2-5 47-26 2-5 47-26 2:5
6826 1-2 68-52 15 68:53 1-5 68:53 1-5 68-53 1-5

83-59 0-23 83-66 0-28 83-64 0-26 83-63 0-26 83-63 0-26
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TABLE 5

Estimated critical speeds, Q...,, and damping ratios, {, obtained by using the iterative method
and a polynomial fit for different polynomial degree

Polynomial Polynomial Polynomial
degree = 2 degree = 4 degree = 6
Iterative 0 Extra DoFs 4 Extra DoFs 8 Extra DoFs

r A A r A Al r A Al r A A
Q... (Hz) { (%) Q... (Hz) (%) Q.. (Hz) (%) Q... (Hz) (%)
38-04 13-0 28-82 20-4 17-48 91-0 13-05 39-5
48-01 2-3 32:32 33-7 18-02 90-1 13-17 41-5
50-39 32:6 39-12 12-0 18-62 373 17-59 969
73-36 172 47-99 2-3 1892 42-3 17-78 97-0
— — 48-36 —0-6 22-83 —89-7 39-14 121
— — 57-71 12:6 23-37 —89-1 47-99 2:2
— — 58-46 32:4 39-13 122 48-68 0-0
— — 64-47 729 47-99 2:2 49-34 1-4
— — 6491 71-6 4861 0-0 52-85 639
— — 7561 21-3 50-92 49 55-80 61-7
— — — — 61-63 30-2 59-91 —60-2
— — — — 75:59 18-8 60-48 —59-3
— — — — — — 60-65 33-6
— — — — — — 76-70 182

For comparison, Tables 5 and 6 show the equivalent results obtained by fitting a
polynomial to the bearing characteristics, and using the method outlined in section 4.
Complex coefficient matrices are used and in all cases the curve fit is of high quality. The

TABLE 6

Estimated critical speeds, Q...., and damping ratios, {, obtained by using the iterative method
and a polynomial fit for different polynomial degree; bearing damping reduced by a factor

of 2
Polynomial Polynomial Polynomial
degree =2 degree = 4 degree = 6
Iterative 0 Extra DoFs 4 Extra DoFs 8 Extra DoFs

r A Al r A Al r A Al r A Al

Qo Hz) (%) Qu(Hz) (%)  QuHz) (%) Qi (Hz) (%)
39-30 15 29-97 9-7 19-21 89-6 12:69 98-6
4728 2:6 3647 172 19-48 89-1 1324 98-4
68-26 12 39-36 16 21-53 19-4 15-44 217
83-59 0-23 4724 2:6 2293 232 1587 232
— — 48-30 —0-2 2317 —88-1 39-35 16
— — 60-74 69 23-56 —874 4726 2-5
— — 6532 63-3 39-34 1-6 48-68 0-0
— — 67-51 621 4727 2-5 4975 10
— — 68-23 15 4860 0-0 52-38 62-4
— — 8548 1-8 52-43 3-6 52-40 62-4
— — — — 59-98 —93-8 58-87 —584
— — — — 6091 —934 59-40 —57-0
— — — — 68-39 1-4 68-55 15
— — — — 82-34 4-1 84-09 0-5

— 84-59 09 — —
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Figure 5. The fitted speed dependent stiffness coefficients obtained by using a polynomial of degree 10 with
real coefficients, the dashed lines are the fitted data. Elements: (a) (1, 1); (b) (1, 2); (¢) (2, 1); (d) (2, 2).

use of complex coefficient matrices means that the eigenvalues will not occur in complex
conjugate pairs. This is one reason for the increased number of candidate critical speeds
in the frequency range of interest. As the degree of the polynomial changes the true critical
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Figure 6. As Figure 5 but for the damping coefficients.
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speeds remain quite constant, and correspond quite closely with those obtained from the
proposed method, and given in Tables 3 and 4. However, there are a huge number if
“numerical” or non-physical critical speeds, that must be investigated further and
eliminated. For complex, large scale rotor-bearing systems this is likely to be very difficult.
Figures 5 and 6 show the fit to the bearing characteristics, obtained by using real
coefficients and a polynomial degree of 10. Despite the high polynomial degree the fit is
very poor. This arises because the stiffness is modelled by using only even powers of rotor
speed, and the damping by only odd powers. A huge number of potential critical speeds
arise in this case because of the high polynomial degree required for a good fit, even though
the eigenvalues now occur in complex conjugate pairs.

7. CONCLUSIONS

A new method for calculating critical speeds of rotating machines has been presented
in which the speed-dependent characteristics of the bearings is incorporated by introducing
dummy degrees of freedom between the rotor and the pedestals. This concept makes
possible the accurate computation of all critical speeds of the machine after the solution
of only one eigenvalue problem. The dimension of the matrices involved in this eigenvalue
problem is only slightly greater than the dimension of matrices in the eigenvalue problem
which is commonly solved for each of a relatively large number of rotor speeds in the
standard procedure for computing critical speeds by developing the Campbell diagram.

Although the dramatic increases in available computation power have been such that
the computation of critical speeds of a single machine design is now a comparatively trivial
exercise, the computation requirements become significant again when the calculation
procedure is embedded in design optimization studies, when it is used in model based
diagnostics of rotating machines or when it is used repeatedly in certain classes of
parameter identification methods. In these circumstances, the present method offers
substantial advantage. It is self-evident that methods which require numerous solutions
of large eigenvalue problems will be notably less efficient than those which require only
one, provided the matrix dimensions in each case are not dissimilar.

The method has been compared closely with an extension of an established mathematical
technique involving the use of polynomial fits to the speed dependent properties. Though
the polynomial fit method itself appears not to be commonly used in the analysis of
rotating machines, this approach has been used in areas such as experimental modal
analysis and the solution of non-linear eigenvalue problems, and is the closest rival to the
proposed technique for computational efficiency. However the polynomial approximation
introduces extra, non-physical modes that must be identified and discarded, making the
proposed technique much more efficient in practice.

ACKNOWLEDGMENT

Dr. Friswell gratefully acknowledges the support of the Engineering and Physical
Sciences Research Council through the award of an Advanced Fellowship.

REFERENCES

1. M. Rasan, S. D. Rajan, H. D. NeLsoN and W. J. CHEN 1987 ASME Journal of Vibration,
Acoustics, Stress, and Reliability in Design 109, 152—157. Optimal placement of critical speeds
in rotor-bearing systems.



158 M. I. FRISWELL ET AL.

10.

11.

12.

13.

14.

15.
16.

17.

18.

217.

28

. T. N. SHiau and J. R. CHANG 1993 ASME Journal for Gas Turbines and Power 115, 246-255.
Multi-objective optimization of rotor-bearing system with critical speed constraints.

. N. O. MYKLESTAD 1944 Journal of the Aeronautical Sciences 11, 176-178. A new method of
calculating uncoupled bending vibration of airplane wings and other types of beam.

. M. A. PrOHL 1945 Journal of Applied Mechanics 12, A142-A148. A general method for
calculating the critical speeds of flexible rotors.

. R. FrrooziaN and H. ZHu 1991 IMechE Journal of Mechanical Engineering Science 205,
131-137. A hybrid method for the vibration analysis of rotor-bearing systems.

. J. GU 1986 ASME Journal of Vibration, Acoustics, Stress and Reliability in Design 108, 182—188.
An improved transfer matrix—direct integration method for rotor dynamics.

. J. M. VaNCE, B. T. MurpHY and H. A. Tripp 1987 ASME Journal of Vibration, Acoustics, Stress

and Reliability in Design 109, 1-7. Critical speeds of turbomachinery: computer predictions vs.

experimental measurements—part I: the rotor mass—elastic model.

J. M. VaNCE, B. T. MurpHY and H. A. Tripp 1987 ASME Journal of Vibration, Acoustics, Stress

and Reliability in Design 109, 8-14. Critical speeds of turbomachinery: computer predictions vs.

experimental measurements—part II: effect of tilt-pad bearings and foundation dynamics.

J. W. LunD and Z. WANG 1986 ASME Journal of Vibration, Acoustics, Stress and Reliability

in Design 108, 177-181. Application of the Ricatti method to rotor dynamic analysis of long

shafts on a flexible foundation.

J. W. Lunp 1974 ASME Journal of Engineering for Industry 96, 509-517. Stability and damped

critical speeds of a flexible rotor in fluid-film bearings.

N. FENG, E. J. HAHN, A. LATTAB and A. SESTIERI 1992 IMechE International Conference on

Vibrations in Rotating Machinery, 529-534. A combined finite-element/transfer-matrix approach

for including foundation effects on the vibration behaviour of rotating machinery.

R. L. RuHL and J. F. BOOKER 1986 ASME Journal of Vibration, Acoustics, Stress and Reliability

in Design 108, 177-181, paper C432/142. A finite element model for distributed parameter

turborotor systems.

V. RamamurTy and A. R. P. StMAH 1987 Journal of Sound and Vibration 117, 578-582. Finite

element calculation of critical speeds of rotation of shafts with gyroscopic action of discs.

R. FirooziaN and R. STANWAY 1989 Journal of Sound and Vibration 134, 115-137. Design and

application of a finite element package for modelling turbomachinery vibrations.

A. D. DIMARAGONAS 1992 Vibration for Engineers. Englewood Heights NJ: Prentice-Hall.

M. LALANNE and G. FERRARIS 1998 Rotordynamics Prediction in Engineering. New York; John

Wiley: second edition.

D. CHiLDs 1993 Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. New

York: John Wiley.

R. J. IanNuzzELLI 1985 Journal of Machine Design 25, 83-96. Avoiding errors in critical speed

predictions.

G. GeNTA 1993 Vibration of Structures and Machines: Practical Aspects. Berlin: Springer-Verlag.

. A. D. DiMARAGONAS and S. A. Parperis 1983 Analytical Methods in Rotor Dynamics.
Amsterdam: Elsevier Applied Science.

. J. M. VANCE 1988 Rotordynamics of Turbomachinery. New York: John Wiley.

. J. S. Rao 1983 Rotor Dynamics. New York: John Wiley.

. F. F. EHRICH (editor) 1992 Handbook of Rotordynamics. New York: McGraw-Hill.

. E. KRAMER 1993 Dynamics of Rotors and Foundations. Berlin: Springer-Verlag.

. H. VAN DER AUWERAER and J. LEURIDAN 1987 Mechanical Systems and Signal Processing 1,
259-272. Multiple input orthogonal polynomial parameter-estimation.

. S. D. GARVEY 1993 International Journal for Numerical Methods in Engineering 36, 4151-4163.

An efficient method for solving the eigenvalue problem for matrices having a skew-symmetrical

(or skew-Hermitian) component of low rank.

M. I. FrisweLL and J. E. T. PENNY 1993 Modal Analysis: The International Journal of Analytical

and Experimental Modal Analysis 8, 257-262. The choice of orthogonal polynomials in the

rational fraction polynomial method.

. D. M. SmitH 1969 Journal Bearings in Turbomachinery. London: Chapman and Hall.



