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The complex stiffness of resilient elements is an important parameter required in order
to model vibration isolation for many applications. Measurement methods are being
standardized which allow such a stiffness to be measured as a function of excitation
frequency for known loading conditions. This paper describes one such method, the indirect
method, in which the resilient element is placed between two large blocks, the vibrations
of which are measured. A number of refinements to this method are proposed here. These
aspects of the method are then illustrated by using example results of measurements on
a resilient rail pad for use in railway track. It is shown how the frequency range of the
measurements can be extended and how rotational and lateral components can be
separated reliably.
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1. INTRODUCTION

Resilient mounting is widely used in noise and vibration control as a means of isolating
a vibration source from a receiving structure or from a structural component with a
significant radiating area. Examples include the mounting of engines in vehicles, vehicle
suspensions and the mounting of rails in railway tracks. The stiffness and damping of
resilient elements are important parameters, required when modelling any form of resilient
mounting. For example, models of railway track dynamic behaviour require numerical
values for the stiffness and damping of rail pads. These are resilient elements placed
between the rails and concrete sleepers on modern railway track. For vertical track
dynamics the compressional stiffness of the rail pad is required, whereas if lateral track
dynamics are to be modelled correctly both lateral and rotational stiffnesses are required
[1, 2].

At a given frequency of excitation the ratio between force and displacement can be
expressed as a complex stiffness. Of greatest interest is usually the transfer stiffness,
k2,1 =F2 /u1 (for u2 =0), that is the ratio of the force F2 transmitted into a blocked
termination (2) to the deflection u1 input at the free termination (1). The input stiffness,
k1,1 =F1 /u1 for u2 =0 is also of relevance.

Unfortunately many resilient elements consisting of or containing viscoelastic materials
have a complex stiffness which is highly dependent on parameters such as preload,
temperature, frequency, strain amplitude and strain history. Furthermore, the mass of a
resilient element introduces internal resonances at high frequencies which cause further
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frequency dependence. In this resonance region the transfer stiffness differs significantly
from the input stiffness. Measurement methods are therefore required in which as many
as possible of these variables are controlled whilst the stiffness is measured as a function
of frequency. Moreover the resilient element usually provides a connection of finite
impedance between six vibrational degrees of freedom at one side and six at the other side.
Although some terms can be equal to one another or zero by symmetry considerations,
to characterize a general resilient element 36 transfer stiffness terms and 21 input stiffness
terms are required (k1,1 is symmetric for linear systems by reciprocity).

An international standard is in preparation which describes measurement methods for
determining the dynamic stiffness of resilient elements [3–5]. Two basic measurement
methods are distinguished, referred to as the direct method and the indirect method. In
the direct method the transfer stiffness is measured by using a load cell or force transducer
at the blocked termination to measure F2 and either a displacement transducer or an
accelerometer to measure u1. The excitation is often provided by a hydraulic actuator
which can also generate preloads to the system. This method is used widely; see reference
[6]. A second force transducer can also be used to measure F1 allowing k1,1 to be obtained.

The measurement rigs designed for the direct method are often limited to frequencies
below typically 300 Hz. Furthermore the direct method is often limited to the axial
direction, whereas other directions are generally important too. The indirect method [7, 8]
has been developed as an alternative which extends the possibilities for measuring at higher
frequencies and for other degrees of freedom. Here the force F2 is not measured directly
but is derived from the (relatively small) vibration u2 of a blocking mass of known mass
m2 at the 2-side of the resilient element, by making use of Newton’s second law, F2 =m2 ü2.
This method will be described in more detail in section 2. It has previously been applied
to many different types of resilient element, notably engine mounts for ship diesel engines
[8], and more recently to various rail fasteners [2, 9]. In this paper, new measurements of
a resilient rail pad are included to illustrate the method, and in particular a number of
improvements which are proposed here. These include an extension to the method to allow
lower frequency results to be obtained and a method for reliably separating lateral and
rotational stiffnesses.

2. THE INDIRECT METHOD FOR MEASURING TRANSFER STIFFNESS

2.1.   

The dynamic behaviour of a resilient element in a single direction can be described by
the well known matrix relation

0 F1

−F21=$ k1,1

−k1,2

−k2,1

k2,2%0u1

u21. (1)

For the so-called blocked termination, u2 =0, it can be seen that the transfer stiffness,
k2,1 =F2 /u1 and the input stiffness, k1,1 =F1 /u1, as discussed in the introduction. For linear
passive elements the principle of reciprocity leads to k1,2 = k2,1. If the resilient element is
symmetrical between 1 and 2, k1,1 = k2,2. In the case of a massless spring k1,1 = k1,2 and
F1 =F2. At low frequencies the massless damped spring is a good approximation to most
resilient elements, but at high frequencies the mass of the element causes standing waves
to occur within resilient elements. For more general linear passive elements the above
equalities (apart from the principle of reciprocity) do not apply.
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Equation (1) can be extended to a multi-degree-of-freedom situation by writing Fi and
ui as column vectors each with six elements and the stiffness matrix, K, as partitioned into
four 6×6 matrices.

2.2.  

The measurement apparatus used for the indirect method is shown schematically in
Figure 1. It consists of two blocks of known mass between which the resilient element is
mounted. This whole arrangement is itself mounted on very soft rubber springs under the
lower block and a hydraulic preload is applied through further soft isolators to the upper
block.

The large mass of the lower block gives it a much higher impedance than the resilient
element which serves to satisfy the requirement that =u2 =�=u1 =. Under this approximation,
equation (1) reduces to

F2 1 k2,1 u1. (2)

The high frequency vibration of the upper block is introduced by using electrodynamic
exciters. Accelerometers are used to measure the vibration of both blocks in terms of their
accelerations ü1 and ü2.

Figure 1 also shows the measurement apparatus approximated as a mass–spring system.
For simplicity only the axial direction is considered. The element under test has a complex
frequency-dependent stiffness matrix Kp , the upper and lower blocks have masses m1 and
m2, respectively, and rest on further resilient elements of input stiffness k1 and k2

Figure 1. (a) Schematic diagram of the measurement apparatus (not to scale), showing main dimensions.
(b) Equivalent mass–spring system.
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respectively. These are assumed to be grounded at the other end as they are sufficiently
soft and the structure on which they rest has a sufficiently high impedance. The stiffness
of these resilient mounts has to be chosen to be low enough to minimize any effect on the
impedance of the blocks for the frequency range under consideration: i.e., the resonance
frequency of mi on ki has to be significantly lower than the lowest measurement frequency.
If this is not the case, a correction has to be applied, as discussed in section 5. Conversely,
the stiffness must be high enough to provide a stable measurement arrangement even under
the significant preloads. Distribution of the springs around the perimeter of the lower block
helps to achieve this. In general, k1 and k2 should be softer than the elements of Kp ,
preferably by at least an order of magnitude. They should also not stiffen too much under
preload.

The preload is not modelled explicitly here although it has an effect on the dynamic
values of Kp , k1 and k2. The excitation of the upper block has the effect of introducing
the vibration amplitude u1, which can be measured. The usual measurement method
consists of determining u1 and u2 as a function of frequency, by measuring the transfer
function between them.

2.3.   

The equations of motion of this two-degree-of-freedom system under the influence of
a harmonic force Fe eivt applied to the upper block, can be written as

k1 u1 + kp1,1 u1 − kp1,2 u2 −v2m1 u1 =Fe , (3)

k2 u2 + kp2,1 u1 + kp2,2 u2 −v2m2 u2 =0, (4)

where ui now represents the amplitude of harmonic vibration of block i. These equations
can be solved to give two resonance frequencies:

bkp1,1 + k1 −m1 v2

−kp2,1

−kp1,2

kp2,2 + k2 −m2 v2 b=0. (5)

For frequencies which are sufficiently low that kp = kp1,1 = kp1,2 etc., and that the various
stiffnesses are effectively independent of frequency and for the required condition that
k1�kp and k2�kp , this reduces to

v1 1z(k1 + k2)/(m1 +m2) (6)

and

v2 1zkp (m1 +m2)/m1 m2. (7)

For a given force excitation, therefore, the responses u1 /Fe and u2 /Fe will have maxima
at these resonance frequencies. However, the force Fe itself is not measured in this method.
Rewriting equation (4) gives

u2 /u1 = kp2,1 /(k2 + kp2,2 −m2 v2). (8)

The transfer function between u2 and u1 (or equivalently between the corresponding
accelerations) thus has a peak where

v'2 =z(k2 + kp2,2)/m2. (9)

Although this is not a system resonance as such, it is equivalent to the resonance of the
lower block on the two springs k2 and kp2,2, with the upper block held rigidly. For
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sufficiently high frequencies, v above about 3v'2 , the denominator of equation (8) can be
approximated by −m2 v2. The stiffness can then be derived as:

kp2,1 1−m2 v2(u2 /u1) for vq 3v'2 . (10)

This is the basis of measurements reported in references [7–9].

3. EXAMPLE MEASUREMENT RESULTS

3.1.   

Measurements are presented which have been carried out according to the above method
on a series of rail pads. These results have also been quoted by Fenander [10]. They are
included here to illustrate the method and the advantages gained by the improvements
presented in later sections.

The rail pads measured are Pandrol type 5877 studded rubber pads, nominally
10 mm thick, with maximum dimensions 194×160 mm. The area covered by the
studs is 154 mm wide in each direction. These are the normal pads used in Sweden and
similar pads are in use for example in the U.K., Belgium, Norway and Finland. Four
nominally identical pads have been measured, but the results presented here are
only for one of these (for others see reference [10]). The samples supplied were in new
condition.

3.2.    

For use with the measurement apparatus, a series of blocks is available, mostly
cylindrical, which can be used as either m1 or m2. Different blocks are chosen according
to the expected stiffness, the required frequency range and any geometrical constraints. For
the current measurements, the upper block consisted of a solid steel cylinder of diameter
0·520 m, height 0·270 m and mass 450 kg. Although the mass of this block is of little
importance, the diameter and stiffness were required to spread the excitation from two
exciters and the height was required to allow the measurements of lateral and rotational
stiffnesses discussed in section 6.

The lower block comprised a steel cylinder of diameter 0·700 m and height 0·325 m. On
the underside of the lower block, a series of concentric holes had previously been made,
reducing the mass by approximately 65 kg and raising the centre of mass slightly. An
aluminium spacing block was fixed to the centre of the upper side of the block, using a
very hard adhesive. This was 0·098 m high, with a diameter of 0·298 m and a mass of 18 kg.
Its purpose was to increase accessibility between the two blocks (for transducers, etc.). It
can also reduce any possible excitation of the lower block by the airborne path which exists
in parallel to the path via the resilient element, although this is unlikely to be relevant for
resilient elements of the stiffness measured here. The total mass of the lower block was
measured as 930 kg.

Both bearing surfaces were smooth and free from holes or other defects. The preload
is measured by using a load cell; the actual preload is this load plus the weight of the upper
block, that is 450 kg or 4·4 kN. The excitation signal was a rapidly swept sine (‘‘chirp’’)
covering the frequency range of the measurement, with a period of 1 s. Two exciters are
used, symmetrically placed with respect to the central hydraulic preload, in order to ensure
a purely vertical excitation. In another test rig, used for the measurements reported in
reference [9], a single exciter is placed centrally whereas the preload is applied at either
side. These methods are equivalent.

In order to measure purely translational components, pairs of accelerometers were used
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Figure 2. Static load-deflection curve (left) and incremental stiffness derived from it (right).

on each block with an analogue summation/subtraction device. This can also be used to
give the difference signal, which is used when measuring rotational components.

3.3.   

Although the test rig described is intended for high frequency dynamic stiffness
measurements, it is also possible to use the rig to measure the static load-deflection curves.
This was performed by applying the hydraulic preload in steps of 5 kN from 4·4 kN (i.e.,
the weight of the upper block with no hydraulic preload) to almost 80 kN. The relative
deflection on either side of the block was measured by using a dial gauge, which gave
readings to the nearest 10 mm.

The static load-deflection curve is shown in Figure 2. Also in this figure, the incremental
static stiffness is shown as a function of preload. The static stiffness can be seen to be
relatively constant (20 MN/m) at preloads up to about 25 kN, above which it increases
sharply. Values of the static stiffness at the preloads used in the high frequency
measurements are given in Table 1. Note that the static stiffness measurements are less
reliable at high preloads as the deflection increases rather slowly as a function of load here.

3.4.       

For dynamic excitation, the power spectrum of the acceleration of the upper block is
shown in Figure 3 for the five preloads. This equals the spectral density due to the use
of 1 Hz frequency spacing in the analysis. The overall r.m.s. acceleration level of the upper
block, derived from the sum over this spectrum, is 0·3 m/s2. Although the force has not

T 1

Estimate of static incremental stiffnesses (from Figure 2) and of dynamic stiffness magnitudes
at single frequencies estimated from the resonance frequency in Figure 3 and equation (7);

total r.m.s. strain amplitudes are also listed, from Figure 4

Preload (kN) 20 30 40 60 80
Static stiffness MN/m 19 25 37 95 c. 200
Frequency f2 (Hz) 74 84 106 166 245
Stiffness (MN/m) at f2 (Hz) 65 85 135 330 720
Dynamic/static stiffness ratio 3·4 3·4 3·6 3·5 3·6
r.m.s. strain amplitude 85×10−6 70×10−6 45×10−6 20×10−6 9×10−6
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Figure 3. PSD of acceleration of upper block at various preloads (——, 20 kN; - - -, 30 kN; · · · · · ·, 40 kN;
- · - · -, 60 kN; w——w, 80 kN).

been measured, it is likely to be reasonably flat over the frequency range at least from
50 Hz to 1 kHz.

The response curves reveal two resonances of the system. These are v1 and v2 as
discussed in section 2.3. The first, between 14 and 16·5 Hz, corresponds to the complete
mass of the test rig m1 +m2 vibrating on the combined stiffness of the upper and lower
foundations k1 + k2, see equation (6). This is relatively insensitive to the preload. Given
the combined mass of 930+450 kg, the stiffness k1 + k2 can be estimated as increasing
from about 10 to about 15 MN/m under the effect of the preload. The second resonance
at f2 (=v2 /2p) corresponds to the two masses moving in anti-phase on the resilient element
(the rail pad), see equation (7). Provided that kp�k1 + k2, these frequencies allow a first
estimate of the dynamic stiffnesses of the rail pad, as listed in Table 1. Upon comparing
these dynamic stiffnesses with the static stiffnesses at the same preload, it emerges that the
ratio between them for this pad is virtually constant at 3·5 for all preloads.

Figure 4 shows the power spectral density of the strain in the rail pad. This has been
derived from a direct measurement of u1 − u2 obtained using a further summation/subtrac-
tion device to combine the signals of u1 and u2. With the data below 10 Hz which are
contaminated by noise being ignored, the r.m.s. strain amplitudes calculated from these
spectra have been derived, and are listed in Table 1.

3.5.    

The stiffness derived by using the transfer function u2 /u1 according to equation (10) is
given in Figure 5. These ‘‘stiffnesses’’ contain a peak at the frequency f'2 (=v'2 /2p, see
equations (8) and (9)), at which the phase also deviates significantly from the typical values.
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Figure 4. PSD of strain in pad and various preloads. Key as Figure 3.

The corresponding ‘‘resonance’’ frequency increases with increasing preload. Table 2
lists these frequencies, and the stiffness values derived from equation (9) by assuming
kp�k2 (in section 4.2 below, k2 is shown to be between 6 and 9 MN/m depending
on preload; the values listed at f'2 are actually kp + k2, and so give a slight overestimate
of kp ). The values are, of course, similar to those listed in Table 1 which were derived
from f2.

The values derived from the resonance frequencies can be used to check the results of
the actual measurement method at discrete frequencies, as they are immune from any
calibration error. Such errors are always a possibility, no matter how slight, in transfer
function measurements. Therefore Table 2 also lists the stiffness values measured from the
curves of Figure 5 at the lower limiting frequencies, 3f'2 . These are similar to those implied
from the resonance frequency itself. Above these frequencies, the stiffness can be seen in
Figure 5 to increase slightly with frequency.

4. EXTENSION TO THE METHOD TO ALLOW MEASUREMENTS AT
LOWER FREQUENCIES

4.1.   

The procedure described above, in which the stiffness is derived from the transfer
function u2 /u1 has been used extensively to obtain high frequency dynamic stiffnesses and
the draft ISO standard in reference [5] is based on this approach. However, the condition
vq 3v'2 introduces a rather strict limit on the lower bound of the valid frequency range.
In the example measurements described above, f'2 is between 40 and 140 Hz, depending
on the preload, which means that the lower limit of validity is between 120 and 420 Hz.
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Figure 5. Magnitude and phase of complex ‘‘stiffness’’ measured using u2/u1 for various preloads. Key as
Figure 3.
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T 2

Estimate of dynamic stiffness at single frequencies using ‘‘resonance’’ frequency in Figure 5
and equation (9), and directly at lower limit of validity of equation (10)

Preload (kN) 20 30 40 60 80
Frequency f'2 (Hz) 43 49 62 94 138
Stiffness (MN/m) at f'2 (Hz) 69 88 142 325 700
Stiffness (MN/m) at 3f'2 (Hz) 73 100 163 390 860

Investigations have therefore been carried out into extending the usual method by
measuring directly the compression of the resilient element (u1 − u2) as well as the response
of the lower block u2. This allows the lower limit of the measurement to be extended to
below f'2 , the aim being to measure at least down to 50 Hz. On the other hand, this is valid
only if kp = kp2,1 = kp2,2 in the low frequency region in which =u2 =�=u1 = does not hold. This
will usually be the case.

The transfer function to be measured is now u2 /(u1–u2). Equation (4) can be rewritten
as

kp2,1 =0 u2

u1 − u21((k2 −m2 v2)+ (kp2,2 − kp2,1)). (11)

At low frequencies, the last term vanishes; at high frequencies it is in any case much smaller
than m2 v2. The stiffness kp2,1 can thus be derived from

kp2,1 1−m2 v20 u2

u1 − u21 for vq 3v'1 , (12)

where the lower limit is now given in terms of:

v'1 =zk2 /m2, (13)

which is the resonance of the lower block on its resilient mounts. This condition can also
be relaxed further by applying the effective mass correction discussed below.

4.2.    

Figure 6 shows the results of the revised method, which also include a running average
over 11 Hz to smooth the data. Compared to those in Figure 5, these results show a
stiffness behaviour over a much wider frequency range, even where the strain has a
‘‘resonance’’.

Here only the results with coherence greater than 0·95 are presented. This limits the
frequency range somewhat, but as will be discussed later, additional measurements are
available for the high frequency part of the measurement range with better signal-to-noise
ratios.

Not shown in these results, but noteworthy, is that the ‘‘stiffness’’ measured in this way
has a ‘‘resonance’’ peak at between 13 and 16 Hz (increasing with preload). This is the
frequency v'1 given in equation (13). This means that, from equation (12), the revised
method can be used from about 40–50 Hz upwards. For a mass m2 of 930 kg, this value
of v'1 allows the stiffness k2 to be deduced as 6 MN/m at 20 kN preload increasing to about
9 MN/m at 80 kN preload.
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Figure 6. Magnitude and phase of complex stiffness measured using (u1 − u2)/u1 for various preloads. Key as
Figure 3.

5. CORRECTIONS FOR MASS OF LOWER BLOCK

5.1.  

To allow measurements to be carried out to frequencies which are as low as
possible, the mass of the lower block m2 must be large, see equations (9, 10) and (12, 13).
This mass m2 can be measured on a balance. At very high frequencies, however, the lower
block will no longer act as a rigid mass, but will exhibit resonant behaviour. Large
blocks have the disadvantage that this behaviour occurs at lower frequencies than
for small blocks. For a given mass, the ideal block shape is cylindrical with height
equal to the diameter [5], as this maintains its constant mass character as long as
possible.

It is also possible to calibrate the block to determine its effective mass as a function of
frequency. To do this, the response of the lower block is determined at the positions
used in the stiffness measurements when a known force is applied at the centre of the
upper surface, that is the location of the resilient element during the stiffness
measurements. As well as eliminating the effect of the onset of resonant behaviour at high
frequencies, this effective mass measurement can also allow for the term k2 in equations
(8) or (11):

meff (v)=m2 − k2 /v2. (14)

Note, however, that the procedure used for determining meff does not account for the
stiffening of k2 due to introduction of the preload, because it is carried out without the
resilient element and therefore without the preload present in the apparatus.
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Example measurement results are shown in Figure 7 in the form of the logarithmic ratio,
DLm =20 log10 (meff /m2), where m2 =930 kg is the measured mass of the block. It can be
seen that DLm is within the range 20·5 dB for frequencies 70–800 Hz. At 1000 Hz, DLm

is +0·8 dB as the block begins to show non-rigid behaviour, and at low frequencies it
reduces to −1 dB at 50 Hz as the effect of the foundation resonance becomes evident. The
frequency f'1 (=v'1 /2p), the dip in the effective mass, occurs at about 12 Hz in this unloaded
situation, which gives k2 as about 5·5 MN/m. Also shown in Figure 7 is the effective mass
calculated by using equation (14) with this value of k2, which is very close to the measured
curve.

5.2.    

Upon introducing the mass correction from Figure 7, the results are produced
which are given in Figure 8. The upper figure gives the magnitude of the stiffness and
the lower figure the phase angle. The mass correction used is the analytical result up
to 350 Hz, that is equation (14) making use of the preload-dependent values of
k2, and above that the high frequency measurement. The difference between these
results and those without mass correction is less than 1 dB in the frequency range
shown (see Figure 7), but is more significant below 40 Hz. This difference, although small
in the frequency range of interest, is of the same order of magnitude as
the frequency-dependence of the stiffness at low frequencies which would otherwise be
masked.

Additionally, the high frequency results have been supplemented by the results
obtained when using a more limited frequency sweep (from 380 to 1200 Hz). This
reduces the excitation of the resonances v1 and v2 seen in Figure 3, and allows a
more sensitive setting to be chosen on the pre-amplifier, thus reducing the instrumentation
noise level and allowing an improved signal to be recorded at the higher
frequencies.

Figure 7. Correction for effective mass, DLm =20 log10 (meff /m2). Measured, —— and · · · · · ·, and estimated
from equation (14), - - -.
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Figure 8. Magnitude and phase of complex stiffness measured using (u1 − u2)/u1 with mass correction for
various preloads. Key as Figure 3.

6. SEPARATION OF ROTATION AND LATERAL COMPONENTS

6.1.      

In order to measure the stiffness of the resilient element to rotation about a horizontal
axis, it is necessary to perform two experiments each containing a combination of lateral
and rotational motion. This follows from the fact that the upper block in the test rig cannot
be made to move in only the rotational degree of freedom (it always contains some
translational component), and that it is not possible to measure only the moment acting
on the lower block in the absence of lateral forces. The lateral stiffness can also be extracted
from these measurements. To derive the lateral stiffness from a single experiment would
similarly require an experiment with purely lateral motion of the upper block which is also
difficult to arrange. A method has been developed to separate these two components from
the two combined measurements. In preliminary form it has been proposed for inclusion
in the draft standard in reference [5].

Figure 9 shows the geometry of the lateral/rotational experiments. In each experiment
both the lateral translation, u, and the rotation, u, of the upper and lower blocks are
measured, using the sum and difference of the outputs from two accelerometers. The sum
of the two transducer signals ua

i and ub
i from block i divided by 2 gives the translation at

the midpoint of their locations, u'i , whilst the difference signal divided by the separation
di gives the rotation, ui .

For a situation in which the lower mass effectively blocks the motion of the lower side
of the resilient element, =u2 =�=u1 = and =u2 =�=u1 =, the following four transfer stiffnesses
determine the response:
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Figure 9. Schematic diagram of the measurement geometry for lateral/rotational measurements.

0 F2

M21=$ kF,u kF,u

kM,u kM,u%0u1

u11. (15)

Here u1 and u1 are the displacement and rotation at the upper surface of the resilient
element and F2 and M2 are the force and moment acting on the upper surface of the lower
block. The measurements, however, consist of transfer functions between the translations
u'1 and u'2 at the mean transducer positions, the rotations u1 and u2 and a reference channel.
The rotation is independent of the height, but the translation depends on the height. For
the reference channel, the rotation u1 is chosen. The required quantities can be expressed
in terms of the measured quantities as

u1 /u1 = (u'1 /u1)+ h1, (16)

where h1 is the distance from the mean measurement position on the upper block to its
lower surface, and

F2

u1
=−v2m2 0u'2

u1
− hc

u2

u11, (17)

M2

u1
=−v20m2 h2

u'2
u1

+ (I2 −m2 h2 hc )
u2

u11, (18)
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where h2 is the distance between the centre of mass of the lower block and its upper surface,
and hc is the height of the mean measurement position on the lower block below its centre
of mass (see Figure 9). I2 is the moment of inertia of the lower block with respect to rotation
about its centre of mass.

6.2.  

In order to solve equation (15) for the four unknown stiffnesses, two measurements are
performed with different ratios of u1 /u1. For these, the upper block is excited laterally, first
near its upper edge and then near its lower edge. With these two experiments denoted by
the indices (1) and (2), equation (15) becomes

$ (F2 /u1)(1) (F2 /u1)(2)

(M2 /u1)(1) (M2 /u1)(2)%=$ kF,u kF,u

kM,u kM,u%$(u1 /u1)(1)

1
(u1 /u1)(2)

1 %. (19)

Transposing and inverting gives

$kF,u kM,u

kF,u kM,u%=$(u1 /u1)(1)

(u1 /u1)(2)

1
1%

−1

$(F2 /u1)(1) (M2 /u1)(1)

(F2 /u1)(2) (M2 /u1)(2)%, (20)

where the right-hand side can be expressed in terms of measured quantities by using
equations (16), (17) and (18). The accuracy of this solution depends, amongst other things,
on the condition number of the matrix which has to be inverted:

cond $(u1 /u1)(1) 1
(u1 /u1)(2) 1%. (21)

A matrix with a high condition number tends to magnify errors in the measured right-hand
side quantities. If u1 had been used as the reference instead of u1, this condition number
would have been

cond $1 (u1 /u1)(1)

1 (u1 /u1)(2)%. (22)

From the experimental results it is found that the condition number in equation (21)
is less than 5 in the relevant frequency range whereas that in equation (22) is around 9,
as shown in Figure 10. Consequently the use of the rotation as the reference signal
gives a more reliable inversion. Another reason for using u1 is that u1 is not measured
directly but reconstructed from u'1 and u1 (see equation (16)) making it a less reliable
reference.

6.3.  

The above procedure relies on the accurate knowledge of the values of a number of
parameters. The separation of the accelerometers was d1 =0·250 m and d2 =0·304 m and
by symmetry h1 =0·135 m. The mass of the lower block, m2, has already been determined
as 930 kg and its moment of inertia, I2, can be estimated from its dimensions as 37·9 kg m2.
According to this calculation, the centre of mass should be located at hc =0·012 m above
the centre of the steel cylindrical block. The two transverse accelerometers were located
symmetrically with respect to this block, so the sum of their signals should represent the
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Figure 10. Condition number of measured matrices. ——, Equation (21); - - -, equation (22).

lateral vibration at its centre. From the dimensions of the blocks, the height h2 + hc can
be deduced as 0·2605 m.

To check these values, a calibration measurement has been carried out, similar to that
for the effective mass in section 5.1. The block was excited laterally with a hammer about
1–2 cm below the top of the aluminium block and the response of the lower block in the
lateral and rotational directions was measured. From the transfer function between the
lateral force and the lateral response, the effective mass can be checked, by using equation
(17). However, the mass found initially was slightly higher than 930 kg, due to the fact
that the lateral response measured, u'2 , is located slightly below the centre of mass. The
true response of the centre of mass is given by

u02 = u'2 − hc u2, (23)

which allows hc to be deduced. The value hc 1 0·016 m is found to be consistent with
m2 =930 kg from these measurements, and is close to the theoretically estimated value of
0·012 m.

Since the calibration experiment contains no moment at the top surface, M2 =0,
equation (18) allows h2 to be derived from I2 (unfortunately it is not possible to calibrate
both I2 and h2). Taking I2 =37·9 kg m2 resulted in h2 1 0·227 m. This is 0·0175 m smaller
than expected for hc =0·016 m, which corresponds to the distance below the top surface
at which the hammer excitation was located.

The effective mass calibration results are shown in Figure 11 as 20 log10 (F2 /m2 ü02 ) for
hc =0·016 m and 20 log10 (F2 d2 /I2 u� 2) for h2 =0·227 m. Note that although the equivalent
mass is effectively constant over the frequency range 40–800 Hz, the equivalent moment
of inertia is only constant over the range 90–500 Hz. The deviation at low frequencies is
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Figure 11. Equivalent mass (——) and moment of inertia (- - -) derived from measured transfer functions for
hammer excitation expressed as a ratio to actual values assuming hc =0·016 m and h2 =0·227 m.

due to the resonances of the block on its springs, rather like the dip found in meff in the
vertical direction (see Figure 7). For the lateral/rotational directions two such resonances
occur, one dominated by translation of the block found at around 4·5 Hz, the other mainly
rotation at around 13 Hz.

6.4.     

The rotational stiffness measurements are presented here for only one vertical preload
(40 kN). Compared to that of the vertical measurements the coherence was much less
acceptable, necessitating the use of three or four sweeps over different frequency ranges
with differing amplifier settings to achieve reasonable accuracy over the whole frequency
range to be measured. Data with coherence less than 0·8 were rejected, which limited the
frequency range to a maximum of 750 Hz.

Lateral excitation by a single exciter was via a thin rod to eliminate moment excitation
of the block. Since the addition/subtraction devices cannot be used to output both the sum
and the difference simultaneously, four measurements were carried out for each of the two
force locations to give the transfer functions u'2 /u'1 , u2 /u'1 , u'2 /u1 and u2 /u1. Consequently
the transfer function u1 /u1 (required in equation (24)) has not been measured directly. This
has been reconstructed by using

u1

u1
10u2

u11>0u2

u'11+ h1 for g2
u2 /u1

1 1 and g2
u2 /u'1 1 1, (24)

although it would clearly be preferable to measure both quantities simultaneously.
The lateral and rotational stiffnesses (kF,u and kM,u ) are shown in Figure 12. It can be

seen that, below about 100 Hz, the apparent magnitudes of both kF,u and kM,u increase with
decreasing frequency. This is a result of ‘‘resonances’’ in the transfer functions (there are
two peaks at low frequencies corresponding to the single peak found for the vertical
direction in Figure 3), and is not a genuine stiffness of the pad, similar to the effect seen
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Figure 12. Magnitude and phase of complex lateral and rotational stiffness for 40 kN preload. ——, kF,u ;
- - -, kM,u .

in Figure 5. It is possible, in principle, to eliminate the effects of such ‘‘resonances’’ by
measuring the differences u1 − u2 and u1 − u2 as in the vertical measurements. However this,
and the frequency-dependent mass correction, have not been implemented for the
lateral/rotational measurements here.

Above about 300 Hz, the phase of both kF,u and kM,u deviates from the low frequency
behaviour, the former increasing strongly while the latter drops below 0. The stiffness
magnitudes also deviate from those of the low frequency behaviour. This corresponds to
frequencies where the cross terms kF,u and especially kM,u were found to have higher
magnitudes. It is possible that internal resonances of the pad are responsible for the
behaviour of the lateral stiffness—in the lateral direction such a resonance is expected at
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roughly 1 kHz. However, it also reinforces the difficulty of obtaining reliable measurements
in the lateral and rotational directions, as also found by the necessity for a lower coherence
threshold than for the vertical direction.

As a check of the rotational stiffness, it should be possible to estimate the rotational
stiffness from the vertical stiffness, approximating the pad as a homogeneous material, by
using the relation

kM,u 1 kvert L2/12, (25)

where L is the width of the pad. When using a value of L=0·154 m (the width over the
studs), the values calculated by using this equation agree extremely well with those
measured directly (within an average of 1%). For other pads it would therefore be possible
to estimate the rotational stiffness from the vertical stiffness in this way without needing
to measure it directly. The method of this section would be needed, however, for the lateral
stiffness.

7. CONCLUSIONS

The indirect method provides a reliable means of measuring the high frequency transfer
stiffnesses of resilient elements in the low amplitude region as a function of frequency. This
method is already being included in international standards. In this paper the dynamic
behaviour of the measurement apparatus has been pointed out and extensions to the
method have been described which allow a wider frequency range to be covered
successfully. These involve deriving the compression of the resilient element by measuring
the difference between accelerations above and below the element and correcting for the
frequency dependence of the apparent mass of the lower block. A procedure has been
successfully developed to allow the lateral and rotational components of stiffness to be
separated.
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