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A numerical method is proposed for predicting the vibroacoustic response of a
viscoelastic structure submitted to harmonic forces in the medium frequency range. The
structure is described as a finite dimension dynamical system. The frequency domain of
interest is divided into several different subdomains. The method consists of solving a set
of time domain equations of motion where each of them is associated with a given
frequency subdomain. This time–frequency study is formulated within the framework of
non-uniform modulated filter banks. Conditions are given to ensure that the analysis and
the synthesis banks allow reconstruction of the complete investigated displacement field
from the time solutions. A low-pass filter with a compact time support is designed to ensure
an efficient computation. To illustrate the discussion, two examples using different
variational approaches are proposed. First, flexural vibrations of an in vacuo steel plate
described by a finite element method is considered. Second, a semi-analytical method is used
to describe a point loaded steel plate radiating in air.
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1. INTRODUCTION

In predicting the vibroacoustic response of a viscoelastic structure submitted to harmonic
forces, the medium frequency domain is where the dynamical behaviour is most difficult
to model. The problem lies in describing vibroacoustic phenomena for which the
characteristic length is of the order of the wavelength of the excitation. Three different
approaches have been proposed in the literature to describe the wave propagation
properties for the medium frequency range. The first approach [1] uses complex rays to
represent wave motion in the vibration structure. The second approach [2, 3] analyses the
energy propagation by computing the power flow. This method results from the extension
of the statistical energy analysis (S.E.A.) used to study the high frequency range [4]. The
third approach [5, 6], based on a finite element model, consists of solving the dynamic
equation of the structure using a time domain computation. This last method has been
developed as an extension of the modal method and the direct method which are
appropriate in the low frequency range [7].

The present paper deals with the third approach which is a resolution method using a
matrix description of the dynamical system, for instance, resulting from a finite elements
formulation or from a modal analysis. To describe the dynamic behaviour in the medium
frequency range, the difficulty lies in choosing the description of the geometry of the
structure as well as the model of the constitutive properties of materials. Therefore, Soize
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[6] proposed to take into account structural fuzzy. Considering that such probabilistic
aspects can be added, the present paper deals with a numerical tool to compute the
vibroacoustic response of the studied dynamical system.

Considering the limitations of the classical modal and direct methods as the frequency
increases, Soize [5] developed a computational method based on a finite element model
which transforms the dynamic equation of the structure into a set of time domain
equations of motion with slowly varying variables. The whole frequency range of interest
is broken into several different subdomains using rectangular windows. For each given
frequency subdomain, a time domain equation of motion is solved. The complete
investigated response is constructed by a simple juxtaposition of the several frequency
responses associated with each subdomain. However, this choice obviously implies that a
cardinal sinus time window is used to analyse the excitation in each frequency subdomain.
Because this function has an infinite time support, it is necessary to determine initial and
final time values to integrate each time domain equation of motion numerically. Especially,
the selection of a criterion to choose the initial time value is subjected to numerical
difficulties [8].

An optimized solution is proposed by analysing the excitation signal with compact time
suppoort windows. It is chosen to set up the method within the framework of non-uniform
modulated filter banks [9–11]. This time-frequency tool is applied to construct the complete
frequency displacement field of the excited structure.

Recalling the equation of motion associated with a viscoelastic structure submitted to
harmonic forces, the principle of the resolution method is presented first. It is shown that
the initial problem is linearized in order to work with a set of equations of motion related
to the subdivision of the frequency range under interest. For each subdomain, the time
domain equation of motion is solved numerically.

The analysis–synthesis banks are described in the next section. The aim is to propose
the conditions which ensure perfect reconstruction. These conditions concern the set of
low-pass filters used to split the frequency domain and to construct the complete response.
As the vibroacoustic objective requests the computation of the frequency response, a
frequency condition is given.

To simplify the computation, it is chosen to split the frequency range of interest by
taking into account two consecutive subdomains only. Nevertheless, different frequency
widths are considered and there must be an overlap between two successive subdomains.

The next three sections deal with the application of the method. First, the set of analysis
filters is defined by using one main low-pass filter function. The condition of reconstruction
allows the definition of the required synthesis filters. The choice of a causal filter function
ensures that the initial conditions of the time domain intergration are verified. The second
section deals with the numerical time domain integration. It is shown that two numerical
parameters are required to compute the solutions. As the studied signals have bounded
energy, a test on a cumulative energy quantity is proposed as a stopping criterion for the
time domain integration. In the third and fourth sections, numerical results are presented
to prove the accuracy and efficiency of the method. Flexural vibration of a steel plate
excited by a point force is considered. Both in vacuo vibrations and radiation effects are
studied using two different variational approaches, i.e., a finite element model and a
semi-analytical model. Partial analytical results are presented in the appendices.

2. RESOLUTION METHOD

The vibroacoustic response of a linear viscoelastic structure is studied in the frequency
domain assuming an exp [ j2pft] time variation, where f and t denote respectively frequency
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and time. Using a classical approach (F.E.M., B.E.M., semi-analytical methods, . . . ), the
structure excited by a harmonic force vector xx ( f ) is characterized by a mass matrix
[M( f )], a damping matrix [C( f )] and a stiffness matrix [K( f )]. It is assumed that these
quantities are real and frequency dependent to take into account behaviour of materials.
The equation of motion associated with the displacement field ux ( f ) of the structure is
given by

[Ẑ( f )] ux ( f )= xx ( f ), (1)

where [Ẑ( f )]=−(2pf )2[M( f )]+ j2pf[C( f )]+ [K( f )] is the impedance operator.
The method consists of subdividing the frequency domain into N subdomains. Each

subdomain n, where 1E nEN, is defined in relation to a central frequency fn and to a
width Dfn . For each frequency subdomain n, mass matrix, damping matrix and stiffness
matrix are assumed to have constant values denoted by [Mn ], [Cn ] and [Kn ], respectively.
For instance, these values can be those at the central frequency fn . At this point, no
condition has been applied on the subdividing domain.

Thus, the equation of motion (1) becomes the following system of N similar linearized
equations:

[Ẑ( f, fn )]ux (f )= xx (f ), [f $ $fn −
Dfn

2
, fn +

Dfn

2 %, (2)

where the impedance operator [Ẑ(f, fn )] is defined by

[Ẑ( f, fn )=−(2pf )2[Mn ]+ j(2pf ) [Cn ]+ [Kn ]. (3)

Each linearized frequency domain equation of motion is studied in the narrowband
related to each subdomain by translating the centre of the frequency window in equation
(2) from fn to zero in the frequency domain such that

[Ẑn ( f )]ux n ( f )= xx 'n ( f ), [f $ $−Dfn

2
,
Dfn

2 %, (4)

with [Ẑn ( f )]= [Ẑ( f+ fn , fn )], ux n ( f )= ux ( f+ fn ) and xx 'n ( f )= xx ( f+ fn ).
By applying the inverse Fourier transform over the whole frequency domain but where

the only non-zero values are located in the interval [−Dfn /2, Dfn /2], each equation of
motion given by equations (4) is equivalent to a time domain equation as follows:

[Mn ]
d2u� n (t)

dt2 + [C̃n ]
du� n (t)

dt
+[K̃n ]u� n (t)= x� 'n (t). (5)

with [C̃n ]= [Cn ]+4jpfn [Mn ] and [K̃n ]= [Kn ]− (2pfn )2[Mn ]+ j2pfn [Cn ].
The time excitation signal denoted by x� 'n (t) is the frequency translated excitation and

the time signal u� n (t) is the frequency translated displacement field.
The proposed method consists of solving the ordinary differential time domain equation

of motion (5) numerically. For this purpose, any direct unconditionally stable step by step
time integration algorithm can be used. It is chosen to apply a Newmark scheme.
According to the sampling theorem, the response u� n (t) can be described without loss of
information from its numerical values at times t= kTn with Tn =1/Dfn and k $Z if
=ux n (f ) ==0 for =f =qDfn . The main interest of the method is to work with low-frequency
excitation signals. Since a frequency linearization is used, the investigated displacement
field is found by computing low frequency signals. Consequently, the narrow subdomain
[−Dfn /2, Dfn /2] is a low-pass frequency range. The problem is then to reconstruct the
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complete response ux ( f ), solution of equation (1), from the N time domain solutions
u� n (kTn ).

3. ANALYSIS AND SYNTHESIS BANKS

The excitation signal x(t) related to xx (f ) (equation (1)) must be broken into N different
signals xx 'n (t). This process has to be reversible in order to reconstruct the complete
displacement field of the structure from the N time solutions of equation (5). For this
purpose, it is chosen to use non-uniform filter banks to divide the excitation into
subdomains and then to recover the complete solution. Figure 1 illustrates the proposed
approach.

To apply the analysis bank, the frequency spectrum of the time domain excitation x(t)
is shifted towards the origin by fn which is known to be the demodulation frequency. The
resulting shifted complex signal is passed through a low-pass filter gn having a cutoff
frequency of Dfn . This low-pass complex signal, denoted by x� n (t), is used instead of x� 'n (t)
as the excitation in the linearized model described by equation (5). Therefore, the applied
filtered excitation signal resulting from the analysis bank is defined as

xn (t)= x� (t) exp [−j2pfn t]&gn (t), (6)

where & denotes the convolution operator. The frequency spectrum of signal x� n (t) has
the approximated compact support [−Dfn /2, Dfn /2].

The synthesis bank allows reconstruction of the complete displacement field u� r(t) from
the time domain solutions u� n (t) (equation (5)). By applying the sampling theorem, the
calculated response u� n (t) is sampled at the rate Tn =1/Dfn to reduce aliasing. Therefore,
the numerical values of the solution of equation (5) provide a sampled complex signal
u� en (t). The synthesis bank is applied using a set of low-pass filters hn . Each sampled complex
signal is filtered and then shifted back into the frequency domain from the origin to fn .
The operation involved in this reconstruction is complementary to the one used in the

Figure 1. Algorithm proposed using analysis filter bank (g), time domain equation of motion (5) and synthesis
filter bank (h).
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analysis bank. The resulting reconstructed displacement field u� r(t) is obtained from a
summation on the number of subdomains as follows:

u� r(t)= s
n

Tn [u� en (t)&hn (t)] exp [ j2pfn t]. (7)

Equation (7) gives the classical time domain construction of modulated filter banks. The
chosen set of filters gn and hn is known as a complementary Euclidian set [9].

Keeping in mind the vibroacoustic objective, the frequency response ux r( f ) must be
calculated. Thus, the Fourier transform of equation (7) leads to

ux r( f )= s
n

Tn ux e
n ( f− fn )h
 n ( f− fn ). (8)

The presented analysis–synthesis method allows it to be ensured that the solution û�r( f)
is the frequency response to a reconstructed excitation xx r( f ) such that

ux r( f )= [Ẑ(f )]−1xx r( f ). (9)

The excitation force xx r(f ) results from the application of both analysis and synthesis filters.
It is now important to ensure that equation (9) is equivalent to the studied equation of
motion (1). As shown in Appendix A, this requires that the set of filters gn and hn verify
the following perfect reconstruction condition:

s
N

n=1

ĝn ( f− fn )h
 n ( f− fn )=1. (10)

Consequently, the reconstructed excitation force is the applied force such as xx r( f)= xx ( f ).
Then, the solution ux r( f ) is the investigated solution ux ( f ) of equation (1). The application
of equation (10) obviously depends on the way used to break the frequency range into N
subdomains.

4. DIVISION OF THE FREQUENCY DOMAIN

The displacement field solution is computed in the frequency domain in order to evaluate
the vibroacoustic indicators. By solving the N frequency shifted systems (equation (4)), the
aim of the computation is to obtain the complete response of the structure for a given
frequency range extending from a minimum frequency fmin to a maximum frequency fmax .
This response is reconstructed if the following condition is verified:

[ fmin , fmax ]W0k
N

n=1 $fn −
Dfn

2
, fn +

Dfn

2 %1. (11)

In the following, the frequency f is therefore always included in the studied domain
[fmin , fmax ]. From a theoretical point of view, any frequency discretization can be used to
decompose the frequency domain. Nevertheless, to ensure simple and convenient
computation, it is chosen to limit the overlap between the different subdomains as follows:

[n, fn+1 − fn e
Dfn+1

2
, (12)
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fn+1 − fn e
Dfn

2
, (13)

fn+1 − fn Q
Dfn

2
+

Dfn+1

2
. (14)

Equations (12) and (13) impose that there should never be an overlap of more than two
subdomains. When the equalities are verified, both subdomains have identical width. The
third condition (14) imposes that there should always be a non-zero overlap between two
consecutive subdomains. For identical width, this overlap occurs completely between the
two central frequencies, i.e., on each half width.

Assuming that equations (12)–(14) are verified, the condition given by equation (10)
reduces to

ĝn ( f− fn )h
 n ( f− fn )+ ĝn+1 ( f− fn+1)h
 n+1 ( f− fn+1)=1, [f $ [ fn , fn+1]. (15)

Since an overlap must occur, three frequency ranges have to be separated between the
two successive central frequencies fn and fn+1 to apply equation (15).

According to equations (12) and (13), for the first [ fn , fn+1 − 1
2 Dfn+1] and the third

[ fn + 1
2 Dfn , fn+1] range, the calculated response is the solution computed for the two

subdomains n and n+1, respectively. Consequently, condition (15) gives

h
 n ( f− fn )=
1

ĝn ( f− fn )
, [f $ [ fn , fn+1 − 1

2 Dfn+1]; (16)

h
 n+1 ( f− fn+1)=
1

ĝn+1 ( f− fn+1)
, [f $ [ fn + 1

2 Dfn , fn+1]. (17)

According to equation (14), for the second range [ fn+1 − 1
2 Dfn+1, fn + 1

2 Dfn ], the solution
depends on the two calculated solutions for the subdomains n and n+1. The influence
of each subdomain on the overlapping band is described using the maximum likelihood
principle which ensures a smooth transition. In that case, equation (15) gives

h
 n ( f− fn )=
ĝ*n ( f− fn )

=ĝn ( f− fn ) =2 + =ĝn+1 ( f− fn+1) =2

and h
G

G

G

G

J

j

[f $ [ fn+1 − 1
2 Dfn+1, fn + 1

2 Dfn ],

h
 n+1 ( f− fn+1)=
ĝ*n+1 ( f− fn+1)

=ĝn ( f− fn ) =2 + =ĝn+1 ( f− fn+1) =2
(18)

where * designates the complex conjugate and > the magnitude.
By applying the three conditions given by equations (16)–(18), the complete

displacement field solution defined by equation (8) is easily computed as presented in
Appendix B.

For the case where the frequency width is the same for all subdomains, such that
Dfn =Df, only one filter g and one filter h are needed. In that case, according to the
conditions given by equations (12)–(14), no weight function is used because the overlap
concerns the overall subdomain from fn to fn+1. Nevertheless, it can be noted that, if
necessary, the present method can be applied to study a partial overlap for identical width.

5. PROTOTYPE FILTER

The algorithm of the method has been presented from a signal processing point of view.
The last point concerns the choice of the low-pass filters gn or hn . According to equations
(16)–(18), it is sufficient to choose one set of filters only, for instance,
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{gn (t), n=1, . . . , N}. As a Newmark scheme is applied to solve equation (5), it is ensured
that all low-pass filter functions gn (t) will obey the zero intital conditions of time domain
integration.

To simplify the numerical implementation, a mother causal filter g0 of compact time
support has been chosen to define the low-pass filters gn by use of a dilation coefficient
an such that

gn (t)= g0 0 t
an1 and ĝn (f )= an ĝ0 (an f ).

Thus, the frequency width Dfn of each subdomain n is given in terms of the frequency
support Df0 =1/T0 of the Fourier transform ĝ0 ( f ) as follows:

Dfn =
Df0

an
and therefore Tn = an T0.

The Fourier transform ĝn ( f ) is low-pass over the range [−1
2 (Dfo /an ), 1

2 (Df0 /an )].
It is worth pointing out that the choice of a causal filter with a time compact support

eliminates the problem of defining a beginning criterion for the time domain integration.
Therefore, this choice always verifies the initial conditions of the numerical scheme.
Moreover, the choice of a causal excitation allows the sampling values to be computed
at positive times only.

According to the previous analysis, the proposed filter function g0 (t) is defined by

g0 (t)= a0 + a1 cos $2pt
6T0%+ a2 cos $4pt

6T0%, [t $ [0; 6T0],

g0 (t)=0, elsewhere, (19)

with the following optimized coefficients: a0 =0·5786, a1 =−1·052 and a2 =0·4734.
Figure 2 shows the impulse response of the filter g0 (t) versus a time normalized with respect
to T0.

Coefficients a0, a1 and a2 must verify

a0 + a1 + a2 =0, (20)

in order to ensure that the initial conditions of zero value and zero first derivative needed
by the Newmark scheme are verified.

According to the frequency analysis, the Fourier transform ĝ0 ( f ) of g0 (t) (equation
(19)) is used as given by

ĝ0 ( f )= {a0 sinc [ f6T0] exp [−jpf6T0]

−
a1

2
sinc [ f6T0 −1] exp [−jp( f6T0 −1)]

−
a1

2
sinc [ f6T0 +1] exp [−jp( f6T0 +1)]

+
a2

2
sinc [ f6T0 −2] exp [−jp( f6T0 −2)]

+
a2

2
sinc [ f6T0 +2] exp [−jp( f6T0 +2)]}6T0, (21)
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Figure 2. Prototype low-pass analysis filter g0(t/T0).

where the cardinal sine function is defined by: [y real, sinc [ y]= sin [py]/(py).
Figure 3 shows the magnitude of the function ĝ0 ( f ) versus a normalized frequency with

respect to Df0. According to the frequency range of each shifted subdomain, the useful part
of the magnitude lies between −1/2 and 1/2. Outside this region, the attenuation is greater
than 30 dB and this is considered sufficient to apply the sampling theorem.

6. NUMERICAL TIME DOMAIN INTEGRATION

For each subdomain, the differential equation given by equation (5) is solved
numerically using a Newmark scheme. This time domain integration has to be computed
for every positive and negative times. However, according to the causal property of the
presented analysis–Newmark–synthesis process, the investigated response is zero for the
negative times, i.e., the excitation occurs for positive times only. Thus, the numerical
integration requires determination of two time parameters.

First, a time increment dt has to be specified to compute the time solution step by step.
To simplify the numerical implementation, this time increment is defined by dividing the
sampling time Tn by a non-zero integer mT as follows:

dt=
Tn

mT
with mT q 0. (22)

This is equivalent to dividing Tn into dt regular steps. Hence, the positive non-zero integer
mT constitutes a given numerical parameter of the method. For the unit value, the solution
is computed at sampling time only.

Second, a final time tF has to be found for stopping the numerical integration. It is chosen
to obtain the final time by applying a numerical test on an energetic quantity associated
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with the signals un (t). Recall that the global energy balance applied to the structure
indicates that the viscous dissipated energy over the whole frequency range has a finite
value. In the present numerical approach, this global energy is related to the reconstructed
displacement field taking into account the overlap between the different subdomains. To
stop the time domain integration, the difficulty lies in defining an energy quantity related
to the particular response of the structure for the nth subdomain which does not represent
the complete response. It is proposed to use an equivalent dissipated energy Ed

n related to
the displacement field solution of each subdomain n such that

Ed
n =g

a

−a

Dn (t) dtQa, (23)

where Dn (t) is a time domain dissipated power defined in relation to the viscous damping
matrix [Cn ] as follows:

Dn (t)= 1
2 r� n (t)T · [Cn ] · r� *n (t). (24)

The signal r� n (t) represents the velocity field for the narrow low-frequency range:
r� n (t)= v� n (t)+ j2pfn u� n (t). The velocity v� n (t) is directly computed by applying the
Newmark scheme to equation (5).

It follows that the total dissipated energy related to the structure is an unknown function
of the different energy quantities Ed

n defined for each frequency subdomain n. However,
by reducing the overlap to a null frequency range and by choosing an ideal low-pass filter,
the calculated dissipation Ed

n tends to the physical value of the dissipation energy in the
given frequency subdomain n.

Figure 3. Magnitude of the Fourier transform ĝ0( f/Df0) of the prototype low-pass analysis filter.
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The numerical test chosen to stop the time integration is applied on the bounded energy
Ed

n . The integral of equation (23) is evaluated by computing a cumulated dissipation power
in the time domain. The test is used to verify that this sum tends to a limit value. Hence,
the power quantity Dn defined by equation (24) is computed for each time step to obtain
the cumulated power Pc as follows:

Pc (k)= s
k

i=0

Dn 0iTn

mT1. (25)

The zero value of the integer step i designates the initial time of the integration. The test
criterion is on the magnitude of the first variation of Pc (equation (25)) to find the limit
value which indicates that the end of the time integration is reached. The numerical
requirement leads to compare this variation to an error value Y for each time step, such
that

Pc (k+1)−Pc (k)
Pc (k+1)

E Y. (26)

When equation (26) is verified for a given error value Y, the last value of k characterizes
the end of the time integration. This value allows the number mF of time samples required
to compute the solution to be known. The final time tF of the integration is given by
tF =mF Tn . The smaller is the error value Y, the larger is the value of mF and hence the
larger is the duration of the time domain integration.

The choice of the criterion can now be discussed. For instance, as the filter has a compact
time support, energy of the excitation related to each subdomain can easily be calculated
if the impulse response is studied. Therefore, a criterion would be defined by comparing
the time dissipated energy value to the time excitation energy value. However, the chosen
criterion seems to be convenient for any realistic bounded energy excitation.

The presented numerical time integration needs (mF mT +1) time increments dt
(equation (22)). This number has to be kept in mind because a trade off exists between
the quality of the response signal and the computing requirement in terms of CPU time
and memory resources. It follows that the values of parameters mT and Y have to be
sufficient to ensure that an accurate computation of equation (5) is obtained. Especially,
a low value of Y is needed to take into account the major part of the response. It is clear
that a large value of Y cuts out the time integration too early and hence, leads to a loss
of informations on of the response. The influence of the time step mT is less important but
also exists. For low values of mT , the computation gives a weak approximation of the
solution of the differential equation (5). Consequently, the precision of the numerical
results depends on the two parameters mT and Y.

7. VALIDATION USING A FINITE ELEMENT METHOD

In this first example, matrices describing the structure are obtained by a classical finite
element method. The damping matrix [C( f )] is replaced by the stiffness matrix [K( f )]
using a loss factor h. Accordingly, for each subdomain n, the impedance operator of
equation (3) becomes

[Ẑ( f, fn )]=−(2pf )2[Mn ]+ [Kn ] (1+ jh).

The present case deals with the flexural vibrations of a point loaded steel plate.
Geometry and boundary conditions are given in Figure 4. The thickness of the plate is
h=0·01 m. Steel is characterized by a Young’s modulus E=2×1011 Pa, a Poisson ratio
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Figure 4. In vacuo steel plate clamped on one side, excited to harmonic flexure force F.

n=0·3 and a density r=7800 kg/m3. The loss factor is h=0·01. The finite element mesh
contains 40×40 elements. Using the classical finite element method criterion of six
elements per wavelength, such a mesh is valid for a frequency domain of 800–4000 Hz.

The response of the plate is evaluated by computing the mean square velocity which
refers to a spatial average over the plate surface. It is chosen to compare the numerical
results with the solution given by a direct computation of equation (1). Results could also
be compared with a modal method because matrices do not depend on frequency.
However, modal methods are not appropriate in the medium frequency range, while direct

Figure 5. Comparisons of the mean square velocity of the in vacuo steel plate obtained by the proposed filter
bank method (——) and by a direct method (- - - -).
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T 1

Comparative values for different number N of frequency subdomains with mT =10 and
Y=10−6 for the in vacuo plate

N 12 17 33 81 120 321 640
Df (Hz) 581·82 400 200 80 53·78 20 10
Relative CPU time (%) 6 6 7 10 12 17 50
mF max 117 82 44 22 16 9 7

computation is classically used in this range. The results are presented in Figure 5. A
perfect agreement between the two solutions is obtained.

The proposed analysis–synthesis method needs to break the whole frequency domain
into several subdomains. Using assigned values for both numerical parameters mT and Y,
i.e., mT =10 and Y=10−6, the following discussion deals with the choice of the subdivision
scheme and of the overlapping of the frequency subdomains. The main objective is to show
the influence of this choice on the performance of the method in terms of CPU time and
memory resources.

Using identical widths for each frequency range such that Dfn =Df, [n , the effect of the
number N of subdomains has been studied as indicated in Table 1. Resulting CPU times
are given as a percentage relative to the CPU time given by the direct computation of
equation (1). The main result is that the presented method is faster than the direct
computation. Table 1 shows that as the number of subdomains increases, CPU time also
increases. Consequently, by computing more and more subdomains, the limiting CPU time
would tend to that of the direct method giving the displacement field for each frequency.
The main reason to explain why the presented method can be faster is that the impedance
operator of equation (1) has to be calculated for every frequency in a direct approach while
matrices of equation (5) have to be evaluated only once for each subdomain.

However, the presented values indicate that a lower limit exists on the rapidity of the
computation. Below a given number of subdomains, for instance 33, no more CPU time
can be gained. Memory requirements can be evaluated from the number mF of samples
computed for each subdomain. It is related to the final time value such that tF =mF /Df.
Moreover, by reducing the number of subdomains, the width Df increases. For instance,
it can be doubled as demonstrated by the two cases N=17 and N=33 (Table 1).
Nevertheless, for these two cases, the time domain computation for the first two
subdomains takes a similar duration of integration. According to the different time
sampling rates, it follows that the number mF is greater for N=17 than for N=33. This
number has a great importance for optimizing the memory resources taken by the
Newmark scheme. To construct the global solution, both displacement field values and
velocity field values are required at each time sample. Hence, the dimension of resulting
complex vectors is the product of the number of finite element nodes by the number mF

of time samples. Therefore, to limit the memory requirement, it appears more interesting
to choose more subdomains for a comparable CPU time. Nevertheless, the present
computation method can require almost twice the memory resources of the direct
computation.

To illustrate the time domain integration, Figure 6 shows the time domain power
defined by equation (24) and the cumulated dissipation power of equation (25) as a
function of time for N=33 frequency subdomains of identical width. The plotted curves
are limited to five subdomains only for clarity but all curves are similar. It is shown that
for lower frequency ranges where resonance peaks have great amplitudes (Figure 5), a long
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duration of time domain integration is needed while for higher frequency ranges, the time
domain duration is shorter. it is worth pointing out that the different values of time domain
powers indicate the frequency range where the structure would be more likely to vibrate.

Because the problem lies in the computation in low frequency ranges, previous results
point out that a non-uniform filter bank is more appropriate to optimize the numerical
requirements. For instance, it is chosen to break the frequency domain into N=18

Figure 6. (a) Five time domain powers and (b) cumulated powers for the frequency division into N=33
frequency subdomains of identical width for the case of the in vacuo plate referring to subdomains 1 (——), 8
(———), 15 (––––), 22 ( . . . ) and 33 (–·–).
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Figure 7. Non-uniform analysis filter bank.

frequency subdomains having different widths Dfn as indicated in Table 2. Using this
frequency division, relative CPU time reaches 4% and the number mF stays in a small range
of values over the complete frequency domain. Hence, numerical requirements have been
improved. Time domain cumulated powers depend on the different time sampling rates
as shown in Figure 8. Curves are shifted to the right when compared to Figure 6 as the
frequency width Dfn decreases.

8. VALIDATION USING A SEMI-ANALYTICAL METHOD

This second example deals with the flexural vibration of a point loaded steel plate
radiating in air. The radiation effect is modelled as a frequency-dependent added mass and
added damping on the structure. A semi-analytical approach computing Rayleigh integrals

T 2

Non-uniform division into N=18 frequency subdomains with mT =10, Y=10−6 for the in
vacuo plate. Relative CPU time becomes 4%

n 1 2 3 4 5 6 7 8 9
Dfn (Hz) 60 80 100 120 140 160 180 200 220
fn (Hz) 800 855 930 1020 1125 1245 1380 1530 1695
mF 18 21 23 23 25 26 27 26 26

n 10 11 12 13 14 15 16 17 18
Dfn (Hz) 240 260 280 300 340 380 420 430 440
fn (Hz) 1875 2070 2275 2500 2745 3025 3335 3660 4000
mF 26 25 25 25 25 25 26 24 23
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Figure 8. Five time domain cumulated powers for the non-uniform division into N=18 frequency subdomains
for the case of the in vacuo plate referring to subdomains 1 (——), 3 (———), 7 (–––), 11 ( . . . . ) and 18 (–·–).

[12] is used to define the frequency dependent matrices of the vibroacoustic system
(equation (1)).

Boundary conditions are given on Figure 9. Dimensions of the rectangular plate are
Lx =1·4 m, Ly =1 m and Lz =0·01 m. The point force is located at x=0·1 m, y=0·1 m.
Steel properties were given in the previous section. The loss factor of the plate is h=0·01.
The air is characterized by density rair =1·2 kg/m3 and sound velocity cair =344·8 m/s.

Figure 9. Simply supported baffled steel plate submitted to harmonic point force.



–70

–90

–95

–85

–80

–75

–100
1000500 1500 2000 2500 3000

Frequency (Hz)

M
ea

n
 s

q
u

a
re

d
 v

el
o

ci
ty

 (
d

B
)

.   . 50

T 3

Non-uniform division into N=21 frequency subdomains with mT =10, Y=10−6 for the
radiating plate

n 1 2 3 4 5 6 7 8 9 10
Dfn (Hz) 60 65 70 75 80 85 90 95 100 110
fn (Hz) 500 553 605 663 725 795 870 945 1025 1115
mF 52 52 52 44 37 40 36 23 19 14

n 11 12 13 14 15 16 17 18 19 20 21
Dfn (Hz) 120 140 160 180 200 220 240 260 280 300 300
fn (Hz) 1210 1320 1450 1590 1750 1920 2110 2310 2530 2770 3000
mF 14 14 14 17 20 22 25 27 29 31 31

The critical frequency is used to separate the weak radiation effect from the strong
radiation effect [12]. For the case presented, this critical frequency is around 1300 Hz. The
method presented has been applied in a frequency range of 500–3000 Hz to study both
effects. The mean square velocity referring to a spatial average over the radiating plate
surface is computed as the vibroacoustic indicator.

According to previous results, solutions in low frequency subdomains are computed with
narrow bandwidths and solutions in high frequency subdomains are computed with large
ones. This progressive frequency subdivision is given in Table 3.

Results given in Figure 10 are compared to a step by step frequency computation of
equation (1). An excellent agreement is obtained below as well as above the critical
frequency. It is worth recalling that the solution obtained is equal to the solution of the
direct method at central frequencies only. Between two central frequencies, solutions are

Figure 10. Comparison of the mean square velocity of the radiating, air loaded steel plate obtained by the
proposed filter bank method (——) and by a direct method (–––).
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computed according to Appendix B. Therefore, the global solution obtained results from
a smooth transition between the solutions computed for two successive subdomains.

To have a similar approximation with the direct frequency computation, one approach
is to use a linearization of the system properties. Since the radiation effect is modelled as
an impedance matrix whose coefficients result from Rayleigh integrals [12], such a
mathematical study would be complicated. Another approach is to assume constant
properties on different frequency bandwidths. Due to the linearization of the method
presented, this latter approach requires very narrow bandwidths to have a similar solution
quality, i.e., to avoid discontinuities. Thus, it is equivalent to a step by step frequency
computation. However, computing the radiation coefficients at every frequency requires
a large CPU time. The resolution presented computes these coefficients at the central
frequencies only. Consequently, the method proposed is about 40 times faster in terms of
CPU time than the direct method.

The number mF of sampling values depending on frequency subdomains is given in
Table 3. Large values of mF are obtained in lower frequency ranges, i.e., below the critical
frequency. This confirms the importance of the progressive frequency subdivision as
regards to numerical requirements.

9. CONCLUSION

Using a classical matrix approach (F.E.M., B.E.M., semi-analytical methods, . . . ), the
aim of this paper was to propose an efficient numerical vibroacoustic method to compute
the displacement field of a structure submitted to harmonic forces in the medium frequency
range. The prsent method has been developed in continuation of the work of Soize [5, 6].
The dynamic equation is transformed into a set of time domain differential equations of
motion by dividing the whole frequency range of interest into several frequency
subdomains. The method consists of analysing the force signal to get its contribution on
each frequency subdomain and then, to reconstruct the complete investigated displacement
field from the different time domain solutions. The development was carried out within
the framework of non-uniform modulated filter banks.

Because vibroacoustic indicators are evaluated in the frequency domain, low-pass
analysis and synthesis filters have been designed to ensure a whole frequency
decomposition and reconstruction. A prototype causal filter with compact time support
(equation (19)) is proposed to define the analysis filter bank. The condition of frequency
reconstruction (equation (10)) provides the synthesis filter bank. Using the presented
analysis filters, no criterion is needed for the beginning of time domain integration.
Furthermore, sampling values are computed at positive times only. To stop the time
domain integration, a test on the first derivative of a cumulated dissipated power quantity
(equation (23)) is proposed since signal energies are bounded. Consequently, the numerical
computation of the time domain integration needs two numerical parameters, i.e., the time
increment and an error value to stop the integration. These two parameters influence the
quality of the signal response in relation to the numerical scheme used to solve the time
domain equations.

Note that the time domain integration in the low frequency ranges needs too many CPU
resources but, at these frequencies, modal or direct methods give excellent results.
Therefore, greater benefits will be obtained if the presented computation method is applied
to higher frequencies. This paper avoided the discussion of an appropriate description of
the structure for the medium frequency range. On the one hand, the limitation of the
method is related to the variational approach used to obtain the initial matrices. For
instance, the mesh size of a finite element model as to be sufficiently small to accurately
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capture the vibroacoustic displacement field. On the other hand, if one wants to consider
the uncertainities of the dynamical behaviour of the structure, probability aspects could
be introduced in the method.

It is emphasized here that the presented method deals with frequency dependent
matrices. Therefore, the division of the complete frequency domain should be adapted to
the fluctuations of the system properties. Furthermore, the efficiency of the presented
method also depends on that division of the whole frequency domain into several
subdomains. It has been found that progressively increasing frequency bandwidths gives
better numerical performance. Hence, a non-uniform filter bank as shown in Figure 7 is
proposed. Validations show that the method presented is very accurate.

Finally, two remarks are given about the signal processing aspects of the method. First,
the progressive time-frequency mesh can be connected to a wavelet approach [13]. Second,
the chosen framework of modulated filter banks allowed a complete time analysis to be
given and therefore a time reconstruction could be investigated. These two points are
appropriate for studying the dynamical behaviour of structures for the medium frequency
range and call for further developments.
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APPENDIX A: CONDITION FOR FREQUENCY RECONSTRUCTION

The numerical resolution of equation (5) gives a set of time samples u� n (kTn ) to describe
the solution u� n (t). A sampled signal u� en (t) is used to define this solution such that

ue
n (t)= s

k

un (kTn )d(t− kTn ).

Using Poisson’s formula, the Fourier transform ux e
n (f ) of u� en (t) is

ux e
n ( f )=

1
Tn

s
k

ux n 0f− k
Tn1.

If ux n (f ) is a low-pass signal cutting off at Dfn /2, one can conclude that

ux e
n ( f )=

1
Tn

ux n ( f ) [f $ $−Dfn

2
,
Dfn

2 %.

The Fourier transform xx n ( f) of the time excitation (equations (6)) is
xx n ( f )= xx ( f+ fn )ĝn ( f ).

Under these conditions, the equation of motion (4) becomes

[Ẑn ( f )]Tn ux e
n ( f )= ĝn ( f )xx ( f+ fn ), [f $ $−Dfn

2
,
Dfn

2 %. (27)

The task is now to build the complete resulting equation of motion by adding the N
equations given by equation (27) over the whole frequency domain. Using the property
[Ẑn ( f− fn )]= [Ẑ( f, fn )], each frequency equation (27) is translated from fn to zero and
multiplied by hn ( f ). Hence, the addition of the N subdomains gives the frequency
equation of motion (9) with

xx r( f)= xx ( f) s
N

n=1

ĝn ( f− fn )h
 n ( f− fn ).

It follows that xx r( f ) is constructed from xx ( f ) by applying the condition given by equation
(10).

APPENDIX B: FREQUENCY RECONSTRUCTED DISPLACEMENT FIELD

Conditions given by equations (16)–(18) being verified, the frequency reconstructed
displacement field ux r( f ) (equation (8)) is given by

ux r( f )=
ûn ( f− fn )
ĝn ( f− fn )

, [f $ $fn , fn+1 −
Dfn+1

2 % ;

ux r( f )=
ux n ( f− fn )ĝ*n ( f− fn )

=ĝn ( f− fn ) =2 + =ĝn+1 ( f− fn+1) =2
+

ux n+1 ( f− fn+1)ĝ*n+1 ( f− fn+1)
=ĝn ( f− fn ) =2 + =ĝn+1 ( f− fn+1) =2

,

[f $ ] fn+1 −
Dfn+1

2
, fn +

Dfn

2
[;
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ux r( f )=
ux n+1 ( f− fn+1)
ĝn+1 ( f− fn+1)

, [f $ $fn +
Dfn

2
, fn+1 $.

For identical width (Dfn =Dfn+1 =Df), the displacement field solution is given by

ux r( f )= 1
2 [ux n ( f− fn )ĝ( f− fn )+ ux n+1 ( f− fn+1)ĝ( f− fn+1)], [f $ [ fn , fn+1].

The frequency solution ux n (f ) is computed by using sampling values such that

ux n ( f)= s
k

u� n (kTn ) exp [−j2pfkTn ].


