
Journal of Sound and Vibration (1998) 213(1), 55–73

SIMULATION OF COMBINED SYSTEMS BY
PERIODIC STRUCTURES: THE WAVE TRANSFER

MATRIX APPROACH

H. M. S  F. V

Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma ‘‘La Sapienza’’,
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An exact closed-form method is presented for frequency domain analysis of linear
uniform combined systems. The proposed method is based on the idea that such systems
can be treated as if they were periodic structures under multiple excitations. In other words,
the continuous system is viewed as subdivided into small equispaced subsystems so that
all the arbitrarily located point-wise discontinuities (i.e., external and boundary
disturbances, forces exerted by constraints and attached discrete systems) appear as acting
at subsystem interfaces. By adapting the periodic structure wave solution, the response of
the combined system is found to be formed by a free wave field incorporating the dynamics
of the entire system and a forced wave field generated by discontinuities in both directions,
as if the system were infinite in extent. In order to validate the theory, two examples are
considered. In the first example, the phase closure principle is invoked to predict the free
and forced motion of a translating string constrained by arbitrarily spaced linear springs.
In the second example, formulas for natural frequencies of beams on multiple constraint
supports with different boundary conditions are obtained from those of beams with simply
supported ends.
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1. INTRODUCTION

Many engineering structures can be modelled as an assemblage of one-dimensional
continuous systems arbitrarily combined with discrete elements and supports. The dynamic
behaviour of such systems has been extensively investigated by many authors using various
techniques. Without any attempt at a complete survey, there are approaches such as the
Lagrange multiplier method by Dowell [1, 2], the receptance method by Bishop and
Johnson [3], the transfer matrix method by Pestel and Leckie [4], the Green’s function
method by Bergman and co-authors [5, 6] and Kelkel [7], and recently the transfer function
method by Yang [8] and Tan and Chung [9].

The object of the present paper is to show how frequency domain analysis of
combined/constrained systems can be performed by adapting the multi-excited periodic
structures wave solution, a concept developed by the first author in his recent dissertation
[10]. A structure is termed periodic if it is composed of spatially repeated elements coupled
in identical ways. The basic idea behind the theory described in this work is that any
continuous system can be seen as being arbitrarily subdivided into small subsystems of
equal length in such a way that all the external and constraint forces coincide at numbers
of such imaginary subsystem interfaces. It should be mentioned that a similar concept was
used by Engels and Meirovitch [11] although their study was limited to (the case of) single
span beams under distributed loads. On the other hand, periodic structure wave analysis
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methods, which fully exploit their spatial properties, may be interpreted as based on
simulating continuous systems. This is because both systems exhibit similar behavior in
terms of wave propagation. This similarity has rendered the analysis of periodic structures
computationally simple. In other words, irrespective of the dimensions and degrees of
complexity of these structures, their global dynamic behavior, as in continuous systems,
is captured once their corresponding dispersion relation has been determined, which can
be derived from the single periodic element dynamics alone in conjunction with the
boundary conditions. This has enabled several authors to develop basically similar
methods that are applicable to both periodic and continuous system networks. Among
these, one would mention the wave transfer matrix by von Flotow [12], the phase closure
method by Signorelli and von Flotow [13], the wave receptance analysis developed by
Mead [14] for periodic structures and extended by Mead and Yaman [15] to continuous
beams on multiple supports, the ‘‘decaying wave method’’ presented by Yong and Lin [16]
for piecewise periodic truss beams and subsequently extended by Cai and Lin [17] to
include frame structures.

The procedure of analysis presented here begins by describing the dynamics of combined
systems using a discrete equation of motion borrowed from the multi-excited periodic
structure solution algorithm developed by Meirovitch and Engels [18]. A wave perspective
is then incorporated into the solution in order to simplify the computational effort and
to gain a physical insight into the dynamics of these systems. The formal response of
combined systems is found to be formed by two parts: a globally circumnavigating free
wave field, which contains the implicit contribution of the detailed dynamics of the entire
system, expressible in terms of one of the system’s extreme ends incoming wave vector;
and a forced wave field consisting of the direct contribution of constraint forces, which is
therefore independent of the system’s extreme boundary conditions. These two wave fields
are determined by accounting the reflection process at the extreme ends of the system in
conjunction with force constraint conditions at all points of discontinuity along the
combined systems.

In order to verify and assess the accuracy of the proposed method two example systems
are considered in which numerical results are given and compared with those quoted by
other investigators. In the first example, the phase closure principle is invoked to determine
the natural frequencies and mode shapes of a translating string constrained by arbitrarily
spaced linear springs. In the second example, natural frequency formulas of
multi-constrained beams with simply supported ends (a simpler end condition) are used
to derive those of beams with other extreme boundary conditions.

Wave propagation is central to the method presented in this paper; therefore, for the
sake of clarity, the subsequent section offers a brief review of wave propagation description
of continuous system dynamics.

2. WAVE DYNAMICS OF CONTINUOUS SYSTEMS

2.1.     

The motion of a continuous uniform segment of a one-dimensional system, vibrating
with frequency v, can be described by a 2n first order ordinary state space equation as

(1/1x)h(x, v)=F(v)h(x, v) (1)

where the state vector h(x, v) may be given in terms of cross-sectional deflection variables
d(x, v) and their spatial derivatives, or forces f(x, v), each of order n. The state matrix
F(v) may incorporate the distributed mechanical properties of a general damped
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non-self-adjoint continuous model. Since all these quantities are assumed to be frequency
dependent, the time factor ejvt is omitted in (1) and in the remainder of this paper.

The solution of (1) defines the relations of the sectional mechanical state vector at an
arbitrary point x by means of that at reference point x0 as

h(x, v)= eF(x− x0)h(x0, v)=A(x, x0, v)h(x0. v), (2)

where matrix A is the transfer matrix. Following von Flotow [12], the wave propagation
characteristic of the segment is revealed by introducing the transformation

h(x, v)=P(v)n(x, v), (3)

where columns in P(v) are the eigenvectors of F(v) and the wave state vector n(x, v) may
be given as an arrangement of the positive-going n+(x, v) and negative-going n−(x, v)
wave components of any of the cross-sectional physical variables. Then, the equivalent of
(2) in wave state description is

6n+(x, v)
n−(x, v)7=[T(x, x0, v)]6n+(x0, v)

n−(x0, v)7=$L+(x, x0, v)
L−(x, x0, v)%6n+(x0, v)

n−(x0, v)7,
(4)

where the diagonal matrix T is the wave transfer matrix and

L+(x, x0, v)= &e
g1(x− x0)

···
egn(x− x0)', L−(x, x0, v)= &e

gn+1(x−x0)

···
eg2n(x− x0)'

(5)

The distinct eigenvalues gj (v) of F(v) are known as propagation constants, which are
generally complex. Their imaginary parts (wave numbers) indicate the phase variation and
their real parts (attenuation coefficients) represent the rate of decay of the associated wave
components. Generally, the eigenvalues of stationary structural models occur in pairs
(−gi = gi+ n , i=1, . . . , n) implying that the positive-going and their negative-going wave
counterparts travel with the same phase. This property is lost in gyroscopic systems such
as axially moving and rotating models.

2.2.    :  

Now suppose that the continuous system’s left and right boundaries are located at points
x0 and xm , respectively. With reference to Figure 1, wave states at the system boundaries
are described by the following equations

v−(x0, v)=L−(x0, xm , v)v−(xm , v), v−(xm , v)=R(xm )v+(xm , v),

v+(xm , v)=L+(xm , x0, v)v+(x0, v) v+(x0, v)=R(x0)v−(x0, v), (6–9)

Figure 1. Wave motion along a finite continuous system.
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where R is the reflection matrix and may be frequency dependent. This matrix is formed
by transforming the system’s homogeneous boundary conditions in terms of state vectors
h,

Bih(xi , v)=i=0,m = 0, (10)

into wave vectors n,

[Bi ][P(v)]6v+(xi , v)
v−(xi , v)7bi=0,m

= 0, (11)

where B is the frequency domain equivalent of the time domain boundary operators
matrix. Hence, the system ends reflection matrices are determined by comparing equations
(7) and (9) with equations (11).

The phase closure principle [19] states that natural frequencies occur when all wave
components, after multiple reflection at all constraints along its path, complete a
circumnavigation of the entire system maintaining the same phase and amplitude. Hence,
for the continuous system in consideration, resonance will occur provided that the
circumnavigating wave vector n−(x0, v) satisfies the following relation

[L−(x0, xm , v)R(xm )L+(xm , x0, v)R(x0)− I]n−(x0, v)= 0, (12)

where I is a unitary matrix. Thus,

det [L−(x0, xm , v)R(xm )L+(xm , x0, v)R(x0)− I]0 det D0 =0 (13)

gives the continuous system natural frequencies. From equations (3), (4) and (9), the
corresponding mode shapes are given by

d(x, v)=P11n
+(x, v)+P12n

−(x, v)

= [P11L
+(x, x0, v)R(x0)+P12L

−(x, x0, v)]n−(x0, v). (14)

Similar derivations of such solutions are reported in [13, 20] for periodic truss beams.

3. WAVE DYNAMICS OF SYSTEMS UNDER POINT-WISE DISCONTINUITIES

3.1.    

It is well known that the dynamics of a periodic structure under multiple excitations can
be described in terms of any two neighbouring periodic elements [18]

h(xi+1, v)=A(xi+1, xi , v)h(xi , v)+ h*(xi+1, v), (15)

where h(xi , v) denotes the modified mechanical state, i.e., it contains the internal state plus
the applied disturbances at, say the left end of the periodic element i, A(xi+1, xi , v) is the
transfer matrix of the generic periodic element, and h*(xi+1, v) is the net applied
disturbance between elements i and i+1.

The solution of equation (15) gives the response of the periodic structure in the form

h(xi , v)=A(xi , x0. v)h(x0, v)+ s
i−1

k=0

A(xi , xk , v)h*(xk , v). (16)
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Figure 2. Schematic of a continuous system under arbitrarily spaced pointwise discontinuities viewed as
composed of repeated continuous subsystems of length Dx.

3.2.   

Consider a continuous one-dimensional system under arbitrarily located point-wise
discontinuities h*(xi , v); i=0, 1, . . . , m; as shown in Figure 2. Here, discontinuities
include: applied and boundary disturbances and forces exerted by supports or discrete
systems, f*(xi , v), and imposed deflections d*(xi , v). All these discontinuities, although
arbitrarily distanced, appear as acting at numbers of the repeated continuous subsystems
of equal length Dx. Thus, the combined system in question, viewed as being under multiple
excitations, may be described equally by the discrete equation of motion (15) and
consequently admits the solution (16), which can be appropriately written as

h(x, v)=A(x, x0, v)h(x0, v)− s
xk Q x

A(x, xk , v)h*(xk , v). (17)

It can be seen from the above solution that there is no limitation on either the excitations
or the response locations, in contrast to the periodic structure solution (16) where both
are restricted at points corresponding to integer multiples of the single periodic length. The
negative sign on the right-hand side of this solution is due to the assumption that all
h*(xi , v), are applied in the positive direction on the left face (negative face) of the repeated
continuous subsystems, except the boundary disturbance at the right end, which is assumed
to be applied to the right face (positive face) but oriented in a negative direction (Figure
2).

Transfer matrices in (17) can be conveniently diagonalized by wave coordinate
transformation of equation (3), by premultiplying both sides by P−1(v), then

6n+(x, v)
n−(x, v)7=$L+(x, x0, v)

L−(x, x0, v)%6R(x0)n−(x0, v)
n−(x0. v) 7

− s
xk E x $L

+(x, xk , v)
L−(x, xk , v)%[P]−16d*(xk , v)

f*(xk , v)7, (18)

where n+(x0, v) is replaced by R(x0)n−(x0, v). P−1 is the inverse matrix of P and is called
the generation matrix since it generates wave components of n type due to the applied
disturbances (or constraints) at their point of application.

The wave solution of (18) may be though of as a sum of two parts: a) a free wave field;
b) a forced wave field generated by discontinuities h*(xi , v) along the (system) portion
x− x0 as if the system were infinite in extent. It is apparent that the information regarding
the detailed dynamics of the entire system is conveyed through the left boundary incoming
wave n−(x0, v).
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The left boundary incoming wave vector is determined by letting x= xm in equation (18),
where xm is the system’s right end co-ordinate, to give

6 n+(xm , v)
R(xm )n+(xm , v)7=$L+(xm , x0, v)

L−(xm , x0, v)%6R(x0)n−(x0, v)
n−(x0, v) 7

− s
m

k=0 $L
+(xm , xk , v)

L−(xm , xk , v)%[P]−16d*(xk , v)
f*(xk , v)7,

(19)

where n−(xm , v) is replaced by R(xm )n+(xm , v). Then, by premultiplying the first rows of
equation (19) by R(xm ) and subtracting the result from the second rows of the same
equation to eliminate the right boundary incoming wave n+(xm , v), one has

n−(x0, v)=D−1
0 s

kEm

{L−(x0, xm , v)R(xm )L+(xm , xk , v)(P−1)12

−L−(x0, xk , v)(P−1)22}f*(xk , v), (20)

where the matrix D0 is defined in equation (13).
Notice that, if disturbances are given in terms of imposed deflections (not included in (20)
for the sole purpose of simplicity) the positive and negative wave generation matrices
(P−1)12, (P−1)22 must be replaced by (P−1)11, (P−1)21, respectively.

The physical response can be obtained by use of the transformation equation (3). Thus,
the response in terms of deflection variables is given by

d(x, v)= [P11L
+(x, x0, v)R(x0)+P12L

−(x, x0, v)]n−(x0, v)

− s
xk E x

[P11L
+(x, xk , v)(P−1)12 +P12L

−(x, xk , v)(P−1)22]f*(xk , v). (21)

As expected, the continuous system homogeneous solution in (12) and (14) is recovered
by (20) and (21), respectively, when all f*(xk , v) along the entire system are set to zero.

Equations (20) and (21) give the formal response of the system subjected to point-wise
discontinuities. The response in terms of the internal forces at any point along the
combined systems is determined by replacing P11, P12 by P21, P22, respectively, in (21) and
subtracting the external applied forces at that point (if any) from it. Clearly, the complete
solution of combined system dynamics is obtained by imposing the appropriate constraint
conditions in this solution, as will be shown through some examples in the next two
sections.

Although the response is formulated for constrained/combined systems under pointwise
external disturbances, it can easily be modified to accommodate distributed disturbances
in terms of applied forces or initial deflections. This can be done by considering the latter
as a limiting case of the former. Consequently, this implies that, as the length of the periodic
subsystem approaches zero, the summation process in (21) and (20) becomes an integration
process. Note that the first expression in (21) has no explicit dependency on any type of
discontinuity. The integral can be evaluated explicitly and exactly. Indeed, it involves the
wave transfer submatrices, which are given in exponential form.
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4. APPLICATIONS

4.1.  -  

Consider a linear uniform string of density r and tension T that travels with constant
speed c̄ between two eyelets separated by a distance L. The string moves across m−1
linear elastic springs of stiffness s̄i located at x̄i , i=1, 2, . . . , m−1. While the left eyelet
remains fixed, the right eyelet is subjected to a prescribed transverse motion of amplitude
ū*(L, v) as shown in Figure 3. The well known non-dimensional equation that governs
the homogeneous motion of the unconstrained string is [21]

12u/1t2 +2c 12u/1x 1t−(1− c2)12u/1x2 =0, (22)

or, equivalently in the frequency domain as

1

1x 6 u(x, v)
1u(x, v)/1x7=$ 0

−v2/(1− c2)
1

2jcv/(1− c2)%6 u(x, v)
1u(x, v)/1x7, (23)

where j=z−1 and the non-dimensional parameters are defined as

x= x̄/L, u= ū/L, si = s̄iL/T, v= v̄Lzr/T, c2 = c̄2/(r/T). (24)

It follows that the eigenvalues of F(v), the propagation constants of the positive- and
negative-going wave components, respectively, are

g1,2 = (jv/1− c2)(c3 1)0 j(a3 b), (25)

where due to the gyroscopic effect −g1 $ g2. Therefore, each wave component travels at
a different wave speed; i.e. the positive- and the negative-going wave components travel
with speed 1+ c and 1− c, respectively.

The mechanical state vector is transformed into positive- and negative-going wave
components by the transformation matrix P,

6 u(x, v)
1u(x, v)/1x7=$1

g1

1
g2%6n+(x, v)

n−(x, v)7. (26)

The wave generation matrix is

P−1 =
1

(g2 − g1) $g2

g1

−1
1 %. (27)

Figure 3. A translating string moving across m-l point springs and subjected to a prescribed motion at the
right end.



. .   . 62

The homogeneous boundary conditions of the string with fixed eyelets may be written in
the form

[1 0]6 u(x, v)
1u(x, v)/1x7x=0,1

=0,

which can be transformed into wave components by equation (26), then

[1 1]6n+(x, v)
n−(x, v)7x=0,1

=0,

consequently, the system reflection coefficients are

r(x)=x=0,1 =−1. (28)

Pointwise slope discontinuities exerted by the elastic springs are expressed as

1u(xi , v)
1x

=
f*(xi , v)
(1− c2)

=−
si

(1− c2)
u(xi , v), i=1, . . . , m−1. (29)

Substituting equations (27)–(29) into (21), the response of the multi-constrained translating
string under boundary disturbance u*(1, v) is

u(x, v)= (eg2x −eg1x)n−(0, v)+ s
xk Q x

(eg2(x− xk) − eg1(x− xk))
sk

2jv
u(xk , v), (30)

where, according to (20), the incoming wave at the left eyelet is

n−(0, v)=
1

(eg1 − g2 −1) $ s
m−1

k=1

(e−g2gk −eg1(1− xk)− g2)
sk

2jv
u(xk , v)− e−g2u*(1, v)]. (31)

As outlined in section 3, the contribution to the response of the imposed displacement is
accounted for by replacing (P−1)12 and (P−1)22 by (P−1)11 and (P−1)21 in (19) and (20). Notice
that since the imposed deflection is applied at the right eyelet, its contribution appeared
only through the left eyelet incoming wave, equation (31).

Equations (30) and (31) suggest two procedures to provide the solution of the forced
multi-constrained axially moving string.

4.1.1. Method 1.

This method consists of the direct substitution of (31) into (30), which leads to

u(x, v)=−
sin bx
sin b $ s

m−1

k=1

eja(x− xk) sin b(1− xk )
sk

v
u(xk , v)− eja(x−1)u*(1, v)%

+ s
yk Q x

eja(x− xk) sin b(x− xk )
sk

v
u(xk , v), (32)

where a and b are defined by (25).
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A matrix simultaneous equation of order m−1 is formed by letting x:xi ,
1, 2, . . . , m−1 in (32). This can then be solved numerically to determine the unknown
displacements u(xi , v), i=1, 2, . . . , m−1. For the free vibration case, u*(1, v)=0, the
solution of this matrix equation furnishes the constrained system eigenvalues vr and
eigenvectors u(xi , vr ), r=1, 2, 3. . . . The eigenvectors may then be substituted into the
general response (32) to determine the system modal shapes. Apart from the relative ease
with which this solution is obtained and the simplicity of the solution itself, classical
methods would lead to a set of simultaneous equations of 2m unknowns (two boundary
conditions plus two constraint conditions at each point of the m−1 springs location).

Since no explicit solution of this type of problem is available in the literature, consider
the free vibration limiting case in which the string moves across a single spring of stiffness
s1 located at point x1. Then, from solution (32), it is clear that the characteristic equation
is

sin b+(s1/v) sin b(1− x1) sin bx1 =0, (33)

which is identical to that given in [22].

4.1.2. Method 2.

The second method consists of implementing the phase closure principle stated in section
2. This is accomplished by expressing the forced field (the second term on the right side
of (30)) through the boundary incoming wave n−(0, v). The physical implication of this
is to account for the multiple reflections of n−(0, v) encountering the intermediate
constraints before completing its global round-trip path and returning to the starting
position. Due to the readily included continuity conditions in equation (30), the
contribution of the forced field constraint forces, sku(xk , v), to the displacement at each
constraint location is composed of those positioned to the left of this point. Therefore, it
is evident that all sku(xk , v) in equation (30) are expressible in terms of n−(0, v) by repeated
substitution of the preceding point displacements. To be more specific, let one consider
the case of the string that is vibrating freely (with frequency v) and passes over three point
springs. By (30) the displacement at x1 is

u(x1, v)= (eg2x1 − eg1x1)n−(0, v)=2j ejax1 sin bx1n
−(0, v). (34)

The displacement at x2 is given by

u(x2, v)= (eg2x2 − eg1x2)v−(0, v)+ [(eg2(x2 − x1) − eg1(x2 − x1))/2jv]s1u(x1, v)

=2j ejax2[sin bx2 + (s1/v)sin bx1 sin b(x2 − x1)]v−(0, v), (35)

where the u(x1, v) is substituted by the expression given in (34).
Similarly, the displacement at x3:

u(x3, v)= (eg2x3 − eg1x3)v−(0, v)+ s
2

k=1

(eg2(x2 − xk ) − eg1(x2 − xk ))
2jv

sku(xk , v)

=2j ejax3{sin bx3 + (s1/v)sin bx1 sin b(x3 − x1)

+ (s2/v)sin b(x3 − x2)[sin bx2 + (s1/v)sin bx1 sin b(x2 − x1)]}v−(0, v),

(36)
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Figure 4. The first eight natural frequencies for a fixed–fixed translating string with three equispaced linear
springs having equal ND stiffness (a) s=2·5 and (b) s=10.

where u(x1, v) and u(x2, v) are replaced by equations (34) and (35), respectively. By
inserting (34)–(36) into (31), on finds

Dc /D0v−(x0, v)=0, (37)

where the system poles (D0 =0) correspond to the natural frequencies of the classical
threadline [21]. According to the phase closure principle, the natural frequencies of the
constrained translating string satisfy:

Figure 5. Schematic of a beam system with simple end supports and interior constraint discontinuities Di ; D0

and Dm represent the system inhomogeneous boundary conditions.
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T 1

Eigenvalues (non-dimensional wave number mL) of a six-span beam on equispaced
translational spring supports with simply supported ends (non-dimensional (ND) stiffness

s= s̄L3/EI)

ND stiffness parameter ND stiffness parameter ND stiffness parameter
(s=2·16) (s=216) (s=2·16×106)

ZXXXXXCXXXXXV ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Present method Ref. [5] Present method Ref. [5] Present method Ref. [5]

3·2412 3·241 6·1076 6·108 18·8496 6p
6·2962 6·296 7·3080 7·308 19·5536 19·554
9·4286 9·429 9·7892 9·789 21·3037 21·304

12·5680 12·568 12·7259 12·725 23·4866 23·487
15·7088 15·709 15·7903 15·790 25·6568 25·657
18·8496 6p 18·8496 6p 27·4084 27·408
21·9915 21·991 22·0218 22·022 37·6991 12p
25·1329 25·133 25·1532 25·153 38·3872 38·387

Dc =−sin b−(s1/v)sin bx1 sin b(1− x1)− (s3/v)sin b(1− x3)

× [sin bx3 + (s1/v)sin bx1 sin b(x3 − x1)]

− (s2/v)[sin bx2 + (s1/v)sin bx1 sin b(x2 − x1)]

× [sin b(1− x2)+ (s3/v)sin b(1− x3)sin b(x3 − x2)]=0. (38)

Of course the same frequency equation as (38) could be obtained using method 1 and in
this case no computational advantage should be attributed to the phase closure in finding
the natural frequencies, even though the use of phase closure appeared to reduce the
characteristic equation to the order of the cross-sectional negative wave components.
However, some superiority may be noticed in finding the system mode shapes. This is
because all system complex mode shapes can be given in terms of v−(0, v) by inserting
equations (34)–(36) into (30), without the need to find the eigenvectors u(x1, vr ) for each
frequency as required by method 1.

Figure 6. Graphical solution to eigenvalue equation of a four equal span beam on simple interior supports:
with simply supported ends (solid curves) and clamped ends (dashed curves).
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Figure 7. Mode shapes of a four equal span simply supported beam: (a) mode 1; (b) mode 2; (c) mode 3; (d)
mode 4.

If the system is subjected to a boundary motion at the right eyelet, from (31) and (37) it
is clear that

v−(x0, v)=
e−g2u*(1, v)

Dc
(39)

The forced mode shapes are determined by the same procedure that gives the free modes
except that here the incoming wave is uniquely defined by (39).

In order to verify this method, let us examine the following especial cases. For the free
vibration limiting case s1 = s2 = s3 : a, the characteristic equation (38) reduces to

sin bx1 sin b(x2 − x1)sin b(x3 − x2)sin b(1− x3)=0, (40)

T 2

Eigenvalues (non-dimensional wave number mL) of a equispaced-four-span beam on simple
interior supports

Clamped–simply
Simply supported ends Clamped ends supported ends

ZXXXXXCXXXXXV ZXXXXXCXXXXXV ZXXXXXCXXXXXV
Present Periodic structures Present Periodic structures Present Periodic structures
method theory method theory method theory

12·5664 12·56 13·5729 13·57 12·8403 12·84
13·5729 13·57 15·7064 15·71 14·5816 14·58
15·7064 15·71 17·8533 17·85 16·8322 16·83
17·8533 17·85 18·9202 18·92 18·6210 18·62
25·1327 25·13 26·1817 26·18 25·4276 25·43
26·1817 26·18 28·2743 28·27 27·1795 27·18
28·2743 28·27 30·3665 30·37 29·3691 29·37
30·3665 30·37 31·4128 31·41 31·1191 31·12
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which provides four sets of natural frequencies corresponding to four decoupled classical
threadlines of length x1, x2 − x1, x3 − x2 and 1− x3, respectively. If s2 : a, then the
characteristic equation (38) becomes

[sin b(1− x2)+ (s3/v)sin b(1− x3)sin b(x3 − x2)][sin bx2

+ (s1/v)sin bx1 sin b(x2 − x1)]=0, (41)

which yields two sets of natural frequencies corresponding to two decoupled string systems
of length x2 and 1− x2 constrained by springs of stiffness s1 and s2. As expected, each set
in this solution agrees with that obtained by method 1 in (33).

A numerical solution of frequency equation (38) is performed for the case with three
equal-equispaced springs of non-dimensional (ND) stiffness s. It is found that the system
natural frequencies tend to occur in groups (four natural frequencies in each group). The
first two groups of natural frequencies are plotted in Figure 4 as a function of the
translation speed and spring stiffness, for s=2·5 (Figure 4a) and s=10 (Figure 4b). The
spacing between these groups, for fixed translation speed c, is proportional to the spring
stiffness s. This is because the upper natural frequencies of each group coincide with the
natural frequencies of the classical threadline of length 0·25 and hence are independent of
the value of the spring stiffness, while the lower frequencies increase with s. For fixed s,
the system natural frequencies decrease monotonically with translation speed c and vanish
when this speed approaches unity. Hence, the spring constraints do not influence the
string’s critical speed, in agreement with [22].

4.2.    

Figure 5 shows a schematic diagram of an Euler–Bernoulli beam system of total length
xm − x0 =L with simply supported ends. The beam is connected to m−1 pointwise
support discontinuities Di at sections xi , i=1, 2, . . . , m−1. Each support discontinuity
may generate a shear force V*(xi , v) and/or a bending moment M*(xi , v). Additionally,
boundary disturbances in terms of M*(xi , v) and w*(xi , v), i=0, m, are introduced to
include other end conditions in the solution without the need to modify the system
reflection matrices.

The partial differential equation governing the free flexural motion of the undamped
beam is

EI 14w/1x4 + rA 12w/1t2 =0 (42)

where EI is the beam flexural stiffness, r is the mass density and A is the cross-sectional
area of the beam. For a given frequency v, the equivalent state space representation of
equation (42) is

w(x, v) 0 1 0 0 w(x, v)

8(x, v) 0 0 1 0 8(x, v)
g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j

1

1x M(x, v)/EI
=

0 0 0 1 M(x, v)/EI
, (43)

−V(x, v)/EI v2Ar/EI 0 0 0 −V(x, v)/EI

where w, 8, M and V are the transverse displacement, slope, bending moment and shear
force of the beam, respectively. The eigenvalues of the matrix in equation (43) are

g1,3 = 3 jm, g2,4 = 3 m, m= 4zArv2/EI, (44)
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where g1, g2(g3, g4) are the frequency dependent propagation constants of positive-going
(negative-going) travelling and evanescent wave components.

The cross-sectional mechanical state of the beam transformed into wave state as follows

w(x, v) 1 1 1 1 n+
t (x, v)

8(x, v) −jm −m jm m n+
e (x, v)

g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
M(x, v)/EI

=
−m2 m2 −m2 m2 n−

t (x, v)
, (45)

−V(x, v)/EI jm3 −m3 −jm3 m3 n−
e (x, v)

where subscripts t and e denote travelling and evanescent wave components. The wave
generation matrix is

1 j/m −1/m2 −j/m3

1 −1/m 1/m2 −1/m3

G
G

G

K

k

G
G

G

L

l

P−1(v)=
1
4 1 −j/m −1/m2 j/m3 , (46)

1 1/m 1/m2 1/m3

The system homogeneous boundary conditions,

w(xi , v)

1 0 0 0 8(xi , v) 0

0 0 1 0 M(xi , v)/EI
=

0
, (47)6 7 g

G

G

F

f

h
G

G

J

j
6 7

−V(xi , v)/EI i=0,m

are transformed into wave state

$ 1
−m2

1
m2

1
−m2

1
m2%6n+(xi , v)

n−(xi , v)7i=0,m

=0. (48)

By comparing (7) and (9) with the above equations, the beam reflection matrices are
given by

R(xi )=i=0,m =$−1
0

0
−1%. (49)

According to the wave transfer matrix method described in section 3, the beam system’s
formal wave response is determined by equation (18) and consequently the system
mechanical states can be obtained by using the transformation equation (3). As the
procedure for doing this is straightforward, the response in terms of the beam’s
cross-sectional entire mechanical state will not be given. The main purpose of this example
is to show how the free response of the beam on multiple supports under arbitrary
boundary conditions can be determined in terms of simpler boundary conditions, as the
case of simple end supports. This procedure is described in detail for beams with
simple–free ends and clamped–simple ends, while for the clamped–clamped beam the
results are given directly in Appendix A. Other types of boundaries or constraints
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may likewise be included without difficulties. The beam system’s vertical displacement is
given as

w(x, v)=6sin mx cos mL
sin mL

−
sinh mx cosh mL

sinh mL
+(cosh mx−cos mx)7M*(x0, v)

2m2EI

−6sin mx
sin mL

−
sinh mx
sinh mL7M*(xm , v)

2m2EI
+6sin mx

sin mL
+

sinh mx
sinh mL7 w*(xm , v)

2

−6sin mx cos mL
sin mL

+
sinh mx cosh mL

sinh mL
−(cosh mx+cos mx)7 w*(x0, v)

2

+ s
m−1

k=1 6sin mx sin m(L− xk )
sin mL

−
sinh mx sinh m(L− xk )

sinh mL 7 V*(xk , v)
2m3EI

+ s
xk Q x

{sinh m(x− xk )− sin m(x− xk )}
V*(xk , v)

2m3EI
. (50)

where, for brevity, interior constraints in terms of M*(xi , v) are not included. On the basis
of this solution, let one consider the following end condition cases.

4.2.1. Simply–supported ends

As this case corresponds to a beam system with homogeneous boundary conditions, all
boundary disturbances are set to zero, leading to

w(x, v)= s
m−1

k=1 6sin mx sin m(L− xk )
sin mL

−
sinh mx sinh m(L− xk )

sinh mL 7 V*(xk , v)
2m3EI

+ s
xk Q x

{sinh m(x− xk )− sin m(x− xk )}
V*(xk , v)

2m3EI
. (51)

4.2.2. Clamped–simply supported ends

The left boundary condition for this case is the vanishing of 8(x0, v). Since the right
boundary remains homogeneous (M*(xm , v)=0), the disappearance of the slope at x0

enables one to write the unknown reaction moment at that location in terms of all
unknown reaction forces along the beam. This is given by

M*(0, v)
2EI

=−
1

DC−S
s
m

k=1

{sin m(L− xk ) sinh mL−sinh m(L− xk ) sin mL} V*(xk , v)
2mEI

,

(52)

where DC−S =cos mL sinh mL−cosh mL sin mL.



. .   . 70

By substituting the above equation in (50), the system’s transverse deflection for these
boundary conditions is

w(x, v)=

1
DC−S 6−(cosh mx−cos mx) s

m

k=1

[sin m(L− xk ) sinh mL−sinh m(L− xk ) sin mL]

+ (sinh mx−sin mx) s
m

k=1

[sin m(L− xk ) cosh mL−sinh m(L− xk ) cos mL]7 V*(xk , v)
2m3EI

+ s
xk Q x

sinh m(x− xk )− sin m(x− xk )]
V*(xk , v)

2m3EI
. (53)

4.2.3. Simply supported-free ends
For this case, the additional boundary condition is the disappearance of the shear force

V(xm , v) due to the imposed deflection w*(xm , v). This leads to

w*(xm , v)
2

=+
1

DS−F
sin mL sinh mL s

xk Q x

[cosh m(L− xk )+ cos m(L− xk )]
V*(xk , v)

2m3EI

−
1

DS−F
s

m−1

k=1

{cos mL sin m(L− xk ) sinh mL

+cosh mL sinh m(L− xk ) sin mL} V*(xk , v)
2m3EI

, (54)

where DS−F =cos mL sinh mL−cosh mL sin mL.
By inserting (54) into (50), the displacement for this case is

w(x, v)=
1

DS−F 6sinh mx sin mL+sin mx sinh mL) s
m

k=1

[cosh m(L− xk )+ cos m(L− xk )]

− (sinh mx cos mL+sin mx cosh mL) s
m

k=1

[sinh m(L− xk )+ sin m(L− xk )]7
×

V*(xk , v)
2m3EI

+ s
xk Q x

[sinh m(x− xk )− sin m(x− xk )]
V*(xk , v)

2m3EI
. (55)

Numerical verifications of these solutions are conducted and compared with those
appearing in the literature; namely, a beam system with flexible intermediate supports and
simply supported ends. The matrix characteristic equation of the combined system is
constructed by letting w(x, v):w(xi , v) and inserting constraint conditions
V*(xi , v)=−s̄iw(xi , v) in (51). The special case of a six-span beam system on equispaced
transverse spring supports all of stiffness s̄ is solved numerically. This system’s natural
frequencies (in terms of the non-dimensional wave number mL) are given in Table 1 and
compared with those given in reference [5]. It is clear that these results are in agreement.
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Another example consists of a four-equal-span beam system on simple intermediate
supports; w(xi , v)=0, i=1, 2, 3; and with: simply supported ends, clamped–simply
supported ends and clamped–clamped ends is also considered. The first four natural
frequencies of the beam system with simply supported ends (solid curves) and clamped ends
(dashed curves) are evaluated graphically in Figure 6. Note that for the simply supported
ends case (solid curves inFigure 6) the system’s homogeneous boundary conditions are taken
as simple–free end supports in order to capture the degenerate mode (the constrained system
natural frequency (which coincides with that of the unconstrained one; the first natural
frequency in Figure 6 for the present case). This frequency, otherwise, could be missed if
the homogeneous boundary conditions are considered as simple end supports as discussed
by Bergman and McFarland [5]. The corresponding mode shapes of these frequencies are
plotted in Figure 7. Table 2 contains the natural frequencies of this beam system with
different end conditions. These frequencies are compared with those obtained by periodic
structures theory using Sen Gupta’s graphical method [23]. Again, both methods are in
agreement.

5. CONCLUSIONS

It has been shown that frequency domain dynamic analysis of combined systems can
be performed in an exact closed form and a unified manner by adopting multiexcited
periodic waveguide solution. It is found that analyzing constrained/combined systems by
the method described in this paper has advantages over the conventional analytical
methods:

The acquired unity due to the consideration of the system as a whole (as a multi-excited
periodic structure) has the merit of reducing the computational efforts, since one needs
only to enforce constraint conditions along the combined system while displacements
continuity at all constraints locations are automatically taken into account. Note that
conventional methods require the enforcement of both continuity and force balance at each
point of constraint discontinuity.

The discrete formulation of the solution enables one to treat different problems in a
unified and compact manner. It does not matter if the system is stationary or gyroscopic
subjected to boundary or interior disturbances and constraints: the formulation of the
solution remains basically the same.

The spatial description due to the introduced wave propagation viewpoint gives a
physical insight into the dynamics of combined systems. Moreover, a further reduction in
the computational efforts is gained, because the solution derived by this method is given
in terms of wave vectors through the formulation of the wave transfer matrix, which is
diagonal, rather than in terms of the mechanical vector through the formulation of the
fully populated mechanical transfer matrix (a procedure used in the conventional transfer
matrix method and the transfer function method).

Two examples demonstrate the proposed approach, which can be conveniently used in
structural vibration power flow analysis and wave control.
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APPENDIX A

Clamped–Clamped Beam System
The transverse displacement of a clamped-clamped beam system under multiple

constraint forces V*(xi , v) is

w(x, v)=

1
DC−C $(sinh mx−sin mx) s

m−1

k−1

{(sinh mL+sin mL)[sinh m(L− xk )− sin m(L− xk )]

− (cosh mL−cos mL)[cosh m(L− xk )− cos m(L− xk )]}
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+ (cosh mx−cos mx) s
m−1

k−1

{(sinh mL−sin mL)[cosh m(L− xk )− cos m(L− xk )]

− (cosh mL−cos mL)[sinh m(L− xk )− sin m(L− xk )]}% V*(xk , v)
2m3EI

+ s
xk Q x

sinh m(x− xk )− sin m(x− xk )]
V*(xk , v)

2m3EI

where DC−C =2(1−cos mL cosh mL).


