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This paper presents a mixed time finite element method for vibration response analysis.
The underlying variational formulation is developed from the principle of virtual work.
Conventional spatial discretization techniques are adopted. Time discretization is
implemented by using mixed time finite elements. The proposed formulation not only forms
a unified variational basis for spatial and temporal discretization; it also derives many other
robust time step integration algorithms. Unconditionally stable and high order accurate
algorithms with variable numerical dissipation can be constructed systematically.
Moreover, the proposed formulations can be used to solve linear as well as non-linear
problems. The accuracy and stability of the derived algorithms are presented.
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1. INTRODUCTION

Recently there has been a lot of interest in the development of time finite elements. There
are several attributes in this approach. First, it presents a unified scheme for space–time
domain problems. Second, the mature approaches of the conventional spatial finite
elements can be readily extended to space–time finite elements. Third, the approach could
be applied to the energy directly as well as the governing differential equations. The general
framework could cover temporal boundary value problems (e.g. periodic problems,
optimal control problems etc.) as well as initial value problems. It turns out to be a robust
tool for dynamics.

Early work on variational space–time finite element method can be found in [1–3]. The
work was based on the direct numerical application of Hamilton’s principle. Bailey [4, 5]
proposed a direct numerical solution algorithm using the more general Hamilton’s law of
varying action. The work was then extended by many others. A comprehensive review can
be found in [6].

Though the concept of finite elements in the time domain was proposed in the late sixties,
for a long time it has not appeared to have significant advantages over other numerical
integration schemes. The general perception of the time domain finite elements was
therefore one where numerical divergence and instability were frequently encountered.

Recently, Borri et al. [7, 8] re-treated the tailing term and introduced a modified energy
functional to the Hamilton’s law. Apart from the inherent merits of the finite element
method, time marching algorithms based on the hybrid or mixed time finite element
formulation of Hamilton’s law were shown to be competitive with the conventional time
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marching schemes. On the other hand, it is also noted that the time-discontinuous Galerkin
method is a powerful time finite element method [9, 10]. The method has been extended
to tackle many other dynamic problems [11, 12].

1.1.    

In this paper, a mixed time finite element method is presented for vibration response
analysis. The underlying variational formulation is developed from the principle of virtual
work. Conventional spatial discretization techniques are adopted. Time discretization is
implemented by the mixed time finite elements. The formulation yields a set of
unconditionally stable high-order-accurate algorithms with variable algorithmic damping.
Many existing time finite elements are re-derived as special cases. The accuracy and
stability of the derived algorithms are analysed. Several illustrative examples are given.

2. VARIATIONAL FORMULATION

For a general linear or nonlinear structural dynamic system, the principle of virtual
displacement can be written as

gV

doTs dV− dWext +gV

mdqTq̇ dV+gV

rdqTq̈ dV=0, (1)

where q, q̇, q̈ denote the displacement, velocity and acceleration of a structure point
respectively; q=(q1, q2, q3), qi = qi (x, y, z, t), (i=1, 2, 3); V, r, m represent volume, mass
density and viscosity density of an undeformed body respectively; Wext is the work done
by external loads; the d symbol denotes virtual quantities; s is the second Piola–Kirchhoff
stress vector; o is the Green–Lagrangian strain vector and can be defined as

oij = oL
ij + oNL

ij = 1
2 (qi, j + qj,i )+ 1

2 qk,i qk, j , (2)

where i, j, k can each take integer values of 1, 2, 3 (representing the x, y and z coordinate
axes respectively), the commas denote partial derivatives with respect to the initial
configuration.

Integrating equation (1) over a time interval from t0 and t1 and applying integration by
parts of the last term,

g
t1

t0
gV

doTs dV dt−g
t1

t0

dWext dt+g
t1

t0
gV

mdqTq̇ dV dt−g
t1

t0
gV

rdq̇Tq̇ dV dt

+$gV

rdqTq̇ dV]t1t0
=0, (3)

which can be re-written as

−d g
t1

t0
gV

V(q) dV dt+g
t1

t0

dWext dt−g
t1

t0
gV

mdqTq̇ dV dt+ dg
t1

t0
gV

T(q, q̇) dV dt

−$gV

rdqTq̇ dV%
t1

t0

=0, (4)
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where V and T denote the stored stain energy density and the kinetic energy density
respectively.

If dq(t0)= dq(t1)=0 and m=0, equation (4) is equivalent to Hamilton’s principle for
continuous media (e.g. [13]). Hamilton’s principle can be modified to a multi-field form
via Lagrangian multiplier method. In these mixed formulations, q, q̇, p, s, e (p= rq̇) can
be chosen as independent variables. These mixed formulations have been applied to tackle
eigenvalue problems. However, it is found to be more efficient and flexible to tackle initial
value problems by Hamilton’s law using a two-field (q and p) mixed form.

In order to cast the Hamilton’s law into the Hamiltonian framework, the usual canonical
transformation can be used (e.g. [13]). Let

L(q, q̇)=V(q)−T(q, q̇)= pq̇−H(q, p), (5)

where L is the Lagrange density function; p= rq̇ is the momentum density;
H(q, p)= p2/(2r)+V(q) is the Hamiltonian density. Substituting equation (5) into
equation (4) yields the following canonical form (cf. [14])

d g
t1

t0
gV 0pTq̇−

p2

2r
−V(q)1 dVdt+g

t1

t0

dWext dt−g
t1

t0
gV 0mr1dqTp dV dt

−$gV

dqTp dV%
t1

t0

=0, (6)

where q, p are independent variables. Equation (6) can also be derived from equation (4)
directly by using the Lagrange multiplier method.

3. MIXED TIME FINITE ELEMENT FORMULATIONS

There are two main approaches to the implementation of space–time finite elements to
solve structural dynamic problems. The first one is to discretize the spatial domain first.
The original partial differential equations are transformed into a system of ordinary
differential equations in time. The resultant system is then discretized by means of time
finite elements. It is a decoupled method.

The second method is to discretize the spatial and temporal variables simultaneously.
Usually, the interpolation functions are in a tensor product form based on the Lagrangian
functions. This results in a regular space–time finite elements. Irregular space–time finite
elements are in general not required for conventional structural dynamic problems.
However, irregular space–time finite elements are useful in some special cases, such as
impulsive loading problems [15], adaptive mesh refinement in contact dynamic problems
[16], deployment problems as well as robotics problems [14].

Even though it is believed that decoupling the space and time domains may result in
severe limitations to simulate the actual physical process accurately [17], if tensor
product-type shape functions or rectangular elements are used, the second approach can
be shown to be equivalent to the first approach [18]. In this paper, the space and time
domains are decoupled. The formulation, however, can be extended to distorted elements
in the space–time domain. This work will be reported in subsequent papers.

There are also two schemes to implement the time finite elements for initial value
problems. One is to couple all the time finite element equations together and to solve the
assembled equations for all time finite elements simultaneously. The procedure is similar
to solving boundary value problems. The other scheme is to solve the equations of one
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element or one layer of elements at a time in a sequential manner. The procedure is similar
to a time-marching scheme. The results at the final time become the initial value of the
next time level. The drawback of the first approach is that it would involve too many
simultaneous variables. For problems with very sparse matrices, efficient computational
algorithms are available [14, 19, 20]. Besides, by treating the Lagrange multipliers as a
natural by-product of the mixed method, a coupled mesh can be solved a layer at a time
[21]. However, it is found that the time-marching schemes are still very commonly used
in practice.

Assume equation (6) is implemented on a space–time finite element mesh organized into
space-time ‘‘slabs’’ Sn =V× In , where V is the underlying spatial domain and In =[tn−1, tn ]
is a time interval corresponding to a partition of the time domain I=[0, T]:
0= t0 Q t1 Q · · ·Q tN =T. Complying with the conventional finite element discretization
technique, the variables and variations are expressed as

q=Nq̂=NFu, q̇=NF� u, p=Np̂=NFv,

dq=Ndq̂=NF	 du, dp=Ndp̂=NF	 dv, (7)

where the nodal vectors are

q̂T = {q̂1, q̂2, . . . , q̂Ns}, p̂T = {p̂1, p̂2, . . . , p̂Ns}, uT = {u1, u2, . . . , uNs},

vT = {v1, v2, . . . , vNs},

uT
i = {ui0, ui1, . . . , uik}, vT

i = {vi0, vil , . . . , vik}, duT = {du1, du2, . . . , duNs},

dvT = {dv1, dv2, . . . , dvNs}, duT
i = {dui0, dui1, . . . , duil},

dvT
i = {dvi0, dvi1, . . . , dvil}; (8)

N is the shape function matrix in the spatial dimensions with nodes p̂i , q̂i (i=1, 2, . . . , Ns );
F is the shape function matrix in the time dimension with nodes uij , vij (i=1, 2, . . . , Ns ;
j=0, 1, . . . , k); F	 is the shape function matrix in the time dimension with nodes duij , dvij

(i=1, 2, . . . , Ns ; j=0, 1, . . . , l). It is noted that in the present formulation both p and
q are treated as independent variables. Hence the same shape functions can be used for
p and q to maintain symmetry.

Different choices of F	 and F could yield different algorithms, ranging from
non-dissipative to dissipative. This will be presented in the next few sections. In the
following, non-linear problems are discussed.

3.1.  

Since

doT = dqT01o

1q1T, dWext = dqTL, L=NFF, (9)

where L is the load which can be discretized via N and F; F is the corresponding nodal
load vector. Substituting equations (7)–(9) into equation (6) and considering the time
interval In , one has

g
tn

tn−1
gV 6dvTF	 TNTNF� u+ duTF	

.
TNTNFv− dqT01o

1q1
T

s(o)+ duTF	 TNTNFF
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−
m

r
duTF	 TNTNFv−

1
r

dvF	 TNTNFv7 dV dt+$gV

duF	 TNTNFv dV%
tn

tn−1

=0

(10)

where the non-linearity of materials and geometry enter through

R=g
tn

tn−1
gV

dqT01o

1q1
T

s dV dt. (11)

For convenience, re-cast equation (11) as

R=g
tn

tn−1

dq̂TR
 (q̂) dt, (12)

which is a nonlinear function q̂. For nonlinear ‘‘rate-type’’ viscoelastic materials, R may
also be a function of momentum (velocity).

Because R
 is a nonlinear function of the current displacements, the conventional
equilibrium iteration procedure should be used to solve the nonlinear equations. For this
purpose two approaches are usually used: the tangent stiffness method and the pseudo-load
method [22, 23]. The tangent stiffness method is considered to be more stable and is widely
used. The pseudo-load method has the advantage that the effective stiffness matrix is
formulated only once for constant time step and can be used repeatedly for the entire
analysis. This makes the method extremely efficient in computation. In the pseudo-load
method, R
 can be divided into linear and nonlinear parts as

R
 (q̂)=Kq̂−R�(q̂), (13)

where K can be the linear part of the stiffness or the average stiffness over the range of
expected displacement. R�(q̂) denotes the pseudo-load, which will be predicted and then
corrected in successive iterations so as to maintain dynamic equilibrium. Let

D=gV

NTN dV, M� =gV

1
r

NTN dV, C�=gV

m

r
NTN dV, R�(q̂)=FF�. (14)

Substituting equations (12)–(14) into equation (10), one has

g
tn

tn−1

F	 TDF� dt −g
tn

tn−1

F	 TM�F dt u

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

F	 TKF dt g
tn

tn−1

(F	 �TDF−F	 TC�F) dt v

0 0
0 tn

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j
g
F

f
h
J

j
G
G

G
= g

tn

tn−1

F	 TFF� dt
+ g

tn

tn−1

F	 TDFF dt
+

F	 TDFv tn−1

. (15)

Equation (15) is the governing equation for time marching and can be solved iteratively.
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If the structural system is semi-discretized by the conventional finite element method, and
p̂=Mq̇, it can be verified that equation (15) can be written as

−g
tn

tn−1

F	 �TMF dt −g
tn

tn−1

F	 TMF dt u

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

F	 TKF dt g
tn

tn−1

(F	 �TMF−F	 TC�F) dt v

0 0
0 tn

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j
g
F

f
h
J

j
G
G

G
= g

tn

tn−1

F	 TFF� dt
+ g

tn

tn−1

F	 TDFF dt
+

F	 TDFu̇ tn−1

, (16)

where M, K, C are the usual mass, stiffness and damping matrices respectively. Hence the
discretization in the space domain of the proposed formulation is consistent with the
conventional semi-discretized formulations.

4. DEVELOPMENT OF TIME FINITE ELEMENTS

Based on equation (15), three kinds of time finite elements are developed.

4.1. -   

For convenience, consider a single-degree-of-freedom system. The results are known to
be valid for the original multi-degree-of-freedom system. For the unforced and undamped
case, equation (16) yields the following equations

g
tn

tn−1

F	 F� T dt −g
tn

tn−1

m−1F	 FT dt
u u0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

kF	 FT dt g
tn

tn−1

F� FT dt
v

=
v0

, (17)

where uT
0 = {0, . . . , 0}, vT

0 = {−v0, 0, . . . , vk}. If F and F	 are the kth and (k−1)th order
Lagrange polynomials respectively, it can be shown that equation (17) yields a set of
unconditionally stable, non-dissipative algorithms [24]. Some simple cases are given as
below:

Second-order-accurate time finite element (ND2)
If the test function is constant F	 h = {1} and the trial functions are linear Fh = {1− t, t},

where t=(t− tn−1)/(tn − tn−1) $ [0, 1], the derived algorithm is second-order-accurate.

Fourth-order-accurate time finite element (ND4)
If the test functions are linear F	 h = {1− t, t} and the trial functions are parabolic

Fh = {(1−2t) (1− t), 4t(1− t), t(2t−1)}, the derived algorithm is fourth-order-
accurate.
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Sixth-order-accurate time finite element (ND6)
If the test functions are parabolic F	 h = {(1−2t) (1− t), 4t(1− t), t(2t−1)} and

the trial functions are cubic Fh = {9(1/3− t) (2/3t) (1− t)/2, 27t(1− t) (2/3− t),
27t(1/3− t) (1− t)/2, 9t(1/3− t) (2/3− t)/2}, the derived algorithm is sixth-order-
accurate.

It is noted that the above algorithms are equivalent to the non-dissipative algorithms
given by Borri et al. [7, 8], in which either reduced integration of bi-discontinuous form
is used. In the actual implementation, the original space–time formulation equation (15)
can be used via the present time interpolation, without using equations (16) and (17).

4.2. -   

Integrating equation (6) by parts, one has

g
tn

tn+1
gV 0pTdq̇− dṗTq−

pdp
r

− dV(q)) dV dt+g
tn

tn−1

dWext dt

−g
tn

tn−1
gV 0mr1dqTp dV dt+$gV

(dpTq− dqTp) dV%
tn

tn−1

=0. (18)

It is noted that in equation (18) the variables p and q have no continuity requirements (C−1

continuity); whereas the variations dp and dq have to be continuous at the boundaries and
piece-wise differentiable in the time domain (C0 continuity). Assume that F admits
discontinuous piece-wise (C−1 continuity) Lagrange polynomials which interpolate k nodes
while F	 admits continuous (C0 continuity) Lagrange polynomials which interpolate k−1
nodes. Equation (18) becomes:

g
tn

tn−1

F	 �FT dt g
tn

tn−1

m−1F	 FT dt
u u0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

kF	 FT dt g
tn

tn−1

m−1F	 FT dt
v

=
v0

, (19)

where uT
0 = {−u0, 0, . . . , uk}, vT

0 = {−v0, 0, . . . , vk}. By choosing the interpolation
functions properly, it can be shown that equation (19) could yield unconditionally stable,
dissipative algorithms [24].

First/second-order-accurate time finite element (DC12)
Assume that the test function is constant F	 h = {1} and the trial functions are {1, f1 (t)}

where f1 (t)=1− t/s if 0E tE s and 0 if 1e tq s. It can be seen that the trial functions
vary linearly from t=0 to t= s and then maintain a constant value when 1e tq s. In
other words, the trial functions are continuous and not differentiable only at t= s. It can
be shown that the dissipative algorithms with first-order-accurate to second-order-accurate
can be obtained from equation (19). Various numerical dissipation can be obtained by
adjusting s.

Consider the limiting case when s:0. The trial functions would be constant within the
time interval but the nodal value may have a different value, i.e. q(0) and q(0+) may be
different. Equation (19) yields an algorithm equivalent to the first-order-accurate
asymptotic annihilating algorithm [11, 12, 25]. When s=1, equation (19) leads to a
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second-order-accurate non-dissipative algorithm [26–28]. Other dissipative algorithms can
be obtained by varying s.

It may seem that the ‘‘first/second-order-accurate elements’’ are not appropriate because
the trial functions are not differentiable at t= s. However, they are admissible since the
derivatives of the trial functions are not required in the basic formulation in equation (19).

Third/fourth-order-accurate time finite element (DC34)

Assume that the test functions are linear F	 h = {1− t, t} and the trial functions are given
by{1, f1 (t), f2 (t)} where f1 (t) is the function defined previously and f2 (t)=0 if 0E tE s

and (t− s)/(1− s) if 1e tq s. It can be seen that the trial functions vary linearly from
0 to s and s to 1, with a possible kink at t= s. In other words, the trial functions are
continuous and not differentiable only at t= s. It can be shown that dissipative algorithms
with third and fourth-order-accurate can be obtained from equation (19).

Consider the limiting case when s:0. Equation (19) yields an algorithm equivalent to
the third-order-accurate asymptotic annihilating algorithm [11, 12, 25]. When s=0·5,
equation (19) leads to a fourth-order-accurate non-dissipative algorithm [26–28].

4.3.    

The extrapolated time finite elements can be obtained by using equation (7) and
assuming F=F	 . Equation (15) yields

g
tn

tn−1

FTDF� dt g
tn

tn−1

FTM�F dt
u

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

FTKF dt g
tn

tn−1

(F� TDF−FTC�F) dt
v

0 0
0 tn

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j
g
F

f
h
J

j
G
G

G
= g

tn

tn−1

FTFF� dt
+ g

tn

tn−1

FTDFF dt
+

FTDFv tn−1

. (20)

If the structural system is spatially semi-discretized according to the conventional finite
element method and p̂=Mq̂, equation (20) leads to

−g
tn

tn−1

F� TMF dt −g
tn

tn−1

FTMF dt
u

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

F

f
h
G

G

J

j−g
tn

tn−1

FTKF dt g
tn

tn−1

(F� TMF−FTCF) dt
u

0 0
0 tn

g
G

G

F

f
h
G

G

J

j
g
G

G

F

f
h
G

G

J

j
g
F

f
h
J

j
G
G

G
= g

tn

tn−1

FTFF� dt
+

−g
tn

tn−1

FTDFF dt
+

FTDFu̇ tn−1

(21)

�

�
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where M, K, C are the conventional mass, stiffness, damping matrices respectively. Both
equations (20) and (21) can be extrapolated in the time domain. For simplicity, assume
that both the test and trial functions are linear F=F	 = {1− t, t}. Based on equation (20)
or (21) with time step Dt, the initial value of the (n-1)th slab Sn−1,
n−1

0uT = {u10, u20, . . . , uNs0}, n−1
0 vT = {v10, v20, . . . , vNs0} can be used to obtain the initial

value of the nth slab Sn . In using the extrapolated time finite elements, the initial value
of the nth slab Sn can be obtained by evaulating the responses at bi Dt from the (n−1)th
slab Sn−1 and summing them up using various weighting factors ai . The extrapolation
parameters ai and bi are chosen so that the resultant algorithms are higher order accurate
and stable. The extrapolation parameters are given as follows [24, 29].

Second-order-accurate parameters (EX2)

a0 =−1/3, b0 =0, a1 =4/3, b1 =3/4 "22)

Third-order-accurate parameters (EX3)

a0 =−
1
6

4b2
2 −6b2 +3

b2 (2b2 −1)
b0 =0 (23a)

a1 =
1
3

64b3
2 −144b2

2 +108b2 −27
(2b2 −1) (8b2

2 −12b2 +3)
b1 =

3
2

2b2 −1
4b2 −3

(23b)

a2 =−
3

2b2 (8b2
2 −12b2 +3)

b2 q 3/4 (23c)

Fourth-order-accurate parameters (EX4)

a0 =−
1
12

64b2
2 b2

3 − (96b2 b3 +36) (b2 + b3)+48(b2
2 + b2

3 )+108b2 b3 +9
b2 b3 (16b2 b3 −8b2 −8b3 +3)

(24a)

a1 =
64
3

(8b2 b3 −6b2 −6b3 +3)4

(16b2 b3 −8b2 −8b3 +3)G(b2, b3)G(b3, b2)
(24b)

a2 =−
3
4

(16b2
3 −12b3 +3)

b2 (b3 − b2)G(b3, b2)
(24c)

a3 =−
3
4

(16b2
2 −12b2 +3)

b3 (b2 − b3)G(b2, b3)
(24d)

b0 =0 (24e)

b1 =
3
8

16b2 b3 −8b2 −8b3 +3
8b2 b3 −6b2 −6b3 +3

(24f)

where G(x, y)=−96xy+64y2x−48y2 +48y+24x−9. The parameters b2 and b3 can
be chosen from Figure 1.

The extrapolation algorithm can be summarized as follows [29]: let

Xn−1 =6n−1
0 u

n−1
0 v7, Xn =6n

0 u
n
0 v7.

Xn is the result to be obtained from Xn−1 via equation (21) with Dt. Suppose Xni is the result
obtained from Xn−1 via equation (21) with Dti = bi Dt(i=0, 1, . . . , s−1). Then Xn is given
by
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Xn = s
s−1

i=0

ai Xni . (25)

5. STABILITY AND ACCURACY CHARACTERISTICS

Equations (15) and (16) are recursive. The characteristics of the algorithms can be
assessed by studying the numerical amplification matrices. In general, the stability of mixed
finite elements in space and time cannot be proved except for very special cases [30]. In
the following, only the stability and accuracy characteristics for linear problems are
considered.

Furthermore, since a multi-degree-of-freedom system can be decomposed into a set of
single-degree-of-freedom systems, it has been rigorously established that the entire coupled
system reduces to the consideration of the individual modal equation (e.g. [31]). Thus the
analysis can be done on a single-degree-of-freedom system but the conclusions are valid
for the original multi-degree-of-freedom system.

The characteristics of an algorithm can be measured by accuracy and convergence.

5.1. 

Numerical approximations in the time domain normally result in period error and
amplitude error. It is a common practice to separate the errors of the numerical solution
into amplitude error and phase error. The former is specified as dissipation and the later
is specified as dispersion. The measures of numerical dissipation and dispersion are
normally in terms of algorithmic damping ratio and relative period error respectively.
Based on a scalar model, the error information can be obtained by comparing the
numerical solutions to the analytical solutions.

5.2. 

The convergence of a numerical formulation requires consistency and stability.
Consistency can be determined from the truncation error. An algorithm is consistent if the

Figure 1. Stable and unstable regions for the fourth order accurate formulation.
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order of accuracy is greater than zero. The stability can be determined from the magnitude
of the eigenvalues of the numerical amplification matrix. The stability condition is that the
modulus of all the eigenvalues should be less than or equal to unity. Moreover, an
algorithm with no time step restriction imposed by stability is called unconditionally stable.

Based on the above observation, it is more convenient and sufficient for the purpose of
investigating the characteristics of the proposed time finite elements to consider a
single-degree-of-freedom system with mass m and spring stiffness k only. The Hamiltonian
of the system can be written as H= p2/(2m)+ kq2/2, where q and p=mq̇ are the
displacement and momentum of the system respectively. The resultant recursive relation
are

Xn =AXn−1 (26)

where

Xn−1 =6n−1
0 u

n−1
0 v7, Xn =6n

0 u
n
0 v7,

A is the numerical amplification matrix. The corresponding numerical amplification
matrices for various algorithms are:

ND2

4− (vDt)2

4+ (vDt)2

4vDt
mv(4+ (vDt)2)

G
G

G

L

l
AND2 =G

G

G

K

k
−4mv(vDt)
4+ (vDt)2

4− (vDt)2

4+ (vDt)2

(27)

ND4

144−60(vDt)2 + (vDt)4

144+12(vDt)2 + (vDt)4

144vDt−12(vDt)3

mv(144+12(vDt)2 + (vDt)4)
AND4 =G

G

G

K

k
mv(12(vDt)3 −144vDt)
144+12(vDt)2 + (vDt)4

144−60(vDt)2 + (vDt)4

144+12(vDt)2 + (vDt)4

G
G

G

L

l
, (28)

ND6

14 400−6480(vDt)2 +264(vDt)4 − (vDt)6

14 400+720(vDt)2 +24(vDt)4 + (vDt)6

14 400vDt−1680(vDt)3 +264(vDt)5

mv(14 400+720(vDt)2 +24(vDt)4 + (vDt)6)
G
G

G

K

k

G
G

G

L

l

AND6 =
−mv(14 400(vDt)−1680(vDt)3 +264(vDt)5)

14 400+720(vDt)2 +24(vDt)4 + (vDt)6

14 400−6480(vDt)2 +264(vDt)4 − (vDt)6

14 400+720(vDt)2 +24(vDt)4 + (vDt)6

(29)

DC12

4− (2− s)s(vDt)2

4+ (2− s)2(vDt)2

4(vDt)
mv[4+ (2− s)2(vDt)2]

G
G

G

K

k

G
G

G

L

l

ADC12 = −4mv(vDt)
4+ (2− s)2(vDt)2

4− (2− s)s(vDt)2

4+ (2− s)2(vDt)2

, (30)
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DC34

36+ (4s2 −4s−14) (vDt)2 + (1− s)s(vDt)4

4+ (2− s)2(vDt)2

G
G

G

K

k
ADC34 = −[36+ (4s2 −4s−2)r2]mv(vDt)

4+ (2− s)2(vDt)2

[36+ (4s2 −4s−2) (vDt)2] (vDt)
mv[4+ (2− s)2(vDt)2]

G
G

G

L

l
36+ (4s2 −4s−14) (vDt)2 + (1− s)s(vDt)4

4+ (2− s)2(vDt)2

.

(31)

EXs (s=2, 3, 4)

AEXs (vDt)= s
s−1

i=0

ai A1 (bi vDt) (32)

where ai and bi are given by equations (22)–(24) with

A1 =
1

9+4v2Dt2 $9−2v2Dt2

−9v2Dt
9Dt

9−2v2Dt2%.

On the other hand, it can be verified that the analytical solution of the system is

X(tn )=Aa X(tn−1), (33)

where

cos vDt
1

mv
sin vDt

G
K

k
G
L

l
Aa =

−mv sin vDt cos vDt
, (34)

X=6qp7 and v=zk/m is the natural frequency of the system.

Spectral radius

The spectral radiusof A is defined as the largest magnitude of the eigenvalues of A, i.e.

r̄(A)=Max =li =; i=1, 2. (35)

The integration algorithm is unconditionally stable if and only if r̄(A)E 1 for any time
step size. It can be verified that all the spectral radii of the numerical amplification matrices
are less than or equal to unity.

Dissipation and dispersion

The errors can be expressed in terms of dissipation and dispersion, or amplitude error
and phase error respectively. From equations (27)–(32), the eigenvalue of the numerical
amplification matrices can be written as

l1,2 = exp[v̄Dt(−j�2 i)], (36)
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Figure 2. Spectral radii of DC algorithms.

where j� and v̄ are the algorithmic damping ratio and algorithmic frequency respectively.
The algorithmic damping ratio is regarded as a measure of the numerical dissipation. The
relative periodic error is defined as,

T=
v

v̄
−1, (37)

which is regarded as the measure of the numerical dissipation.
The spectral radii of the dissipative time finite elements (DC) and the extrapolated time

finite elements (EX) are plotted in Figures 2 and 3 respectively. It is noted that the
non-dissipative time finite elements (ND) are not discussed separately since they can be
treated as special cases of DC algorithms. Besides, DC12(s=1) (or ND2) is found to be

Figure 3. Spectral radii of EX algorithms. (EX3: b2 =3/2, EX4a: b2 =0·898883, b3 =1·2, EX4b: b2 =0·95,
b3 =1·2).
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Figure 4. Algorithmic damping ratios of DC algorithms.

identical to EX2. For comparison, the spectral radii of some conventional algorithms
including the Newmark method (trapezoidal rule), Wilson-u method and Houbolt method
are also plotted in Figures 2 and 3.

The algorithmic damping ratios of DC and EX algorithms are plotted in Figures 4 and
5 respectively. The algorithmic damping ratios of some conventional algorithms are also
plotted in Figures 4 and 5. The period errors of DC and EX algorithms are plotted in
Figures 6 and 7 respectively. The period errors of some conventional algorithms are also
plotted in Figures 6 and 7. Logarithms of errors are plotted in Figure 8. It can be verified
that the logarithms of errors are consistent with the absolute errors. From the above
figures, it can be seen that the proposed algorithms are competitive with the conventional
algorithms.

Figure 5. Algorithmic damping ratios of EX algorithms (EX3: b2 =3/2, EX4a: b2 =0·898883, b3 =1·2, EX4b:
b2 =0:95, b3 =1.2).
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Figure 6. Period errors of DC algorithms.

6. NUMERICAL EXAMPLES

6.1.  1

Consider a simply supported beam subjected to a harmonic excitation at the mid-span
as shown in Figure 9. Assume the elastic modulus EI=106, density per unit length
rA=420, length L=3 and the excitation P=106 sin(v1 t/2), where v1 is the fundamental
natural frequency of the beam. The analytical solution can be found in [32].

In the present study, the second-, third- and fourth-order-accurate extrapolation
formulations are used to calculate the responses. Some conventional second-order-accurate
algorithms are also used for comparison. The conventional Hermitian shape functions are
used to discretize the beam spatially. The linear interpolation shape functions are used for
temporal discretization, i.e.

Figure 7. Period errors of EX algorithms (EX3: b=3/2, EX4a: b2 =0·898883, b3 =1·24b: b2 =0·95, b3 =1·2).
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Figure 8. Convergent rate of DC and EX algorithms (EX3: b2 =3/2, EX4: b2 =0·898883, b3 =1·2).

N(x)= [(2x3 −3lx2 + l3)/l3, (x3 −2lx2 + l2x)/l2, −(2x3 −3lx2)/l3, (x3 − lx2)/l2],

and

F(t)= [(tn−1 − t)/Dt, (t− tn−1)/Dt]. (38)

Based on equation (20), it can be shown that the related element matrices are

−156l −22l −54 13l 156l 22l 54 −13l

−22l −4l2 −13l 3l2 22l 4l2 13l −3l2

−54 −13l −156 22l 54 13l 156 −22l

13l 3l2 22l −4l2 −13l −3l2 −22l 4l2g
tn

tn−1

FTDF� dt=
1

840 G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

−156l −22l −54 13l 156l 22l 54 −13l
,

−22l −4l2 −13l 3l2 22l 4l2 13l −3l2

−54 −13l −156 22l 54 13l 156 −22l

13l 3l2 22l −4l2 −13l −3l2 −22l 4l2

(39a)

Figure 9. Simply supported beam.
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Figure 10. Time history for Example 1 (EX3: b2 =3/2, EX4: b2 =0·898883, b3 =1·2).

g
tn

tn−1

F
TM�F dt=

−Dtl
2520rA

312l 44l 108 −26l 156l 22l 54 −13l
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16 beam elements for spatial discretization and 30 time elements with Dt=0·005 are used.
The results obtained from the extrapolation algorithms are shown in Figure 10. It can be
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Figure 11. Time history for Example 2.

seen that the results of the present formulations are competitive with those of the
conventional algorithms.

6.2.  2

Consider a nonlinear two-degree-of-freedom system governed by:

8ẍ1 +1200(x1 − x2)+8000(x1 − x2)3 = (1000/3) cos (6·009t)

24ẍ2 −1200(x1 − x2)−8000(x1 − x2)3 +1800x2 =0 (40)

with initial conditions x1 (0)=1, ẋ1 (0)=0, x2 (0)=2/3, ẋ2 (0)=0. The results of DC12
algorithm with Dt=0·025 are plotted in Figure 11. The curve coincides with the one
obtained using the trapezoidal rule with Dt=0·025. It can be seen that they agree well

Figure 12. Time history for Example 3.
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with the near-exact solution, which is obtained by using a very small time step via the
trapezoidal rule.

6.3.  3

Consider the beam in Example 1 now subjected to a moving load. The load has a
constant magnitude of P=106 with moving velocity v=10. The analytical solution can
be found in [33].

In the present study, DC12 algorithms with s=1 (ND2) is used for response
calculation. Some conventional algorithms are also used for comparison. 10 spatial finite
elements and 30 time finite elements with Dt=0·01 are used, and the results are shown
in Figure 12. It can be seen that the results of the present formulation are competitive with
those of the conventional algorithms.

7. CONCLUSIONS

In this paper, a mixed time finite element formulation for dynamic response analysis is
presented. The formulation, implementation and the associated stability and accuracy
characteristics are reported. The proposed formulation can be applied to linear and
non-linear problems. It provides a unifying approach for space–time discretization in
which the spatial discretization is consistent with the conventional finite element scheme
whereas new temporal discretization and solution schemes are developed. The derived
algorithms can also be used as time-marching algorithms. The present algorithms have the
following salient features: they can acquire higher order accuracy with variable numerical
dissipation and the higher order members of the family can be constructed systemically.
The unification and versatility of the algorithms make the method attractive.
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