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In this work, the transmission of energy through a compliant and dissipative joint
between two thin rectangular plates is investigated using a receptance approach. Exact
formulae for the spectral density of the energy flow through the joint, the energy dissipated
at the joint, the power input by the external excitation and the vibrational energies of the
two plates are established when the plates are subject to random ergodic forcing. The more
general case of a row of plates which are simply supported along the two longitudinal edges
and coupled through compliant and dissipative joints is also investigated. The aim of this
study is to examine the effect of joint damping and compliance on the magnitudes of energy
flows through the joints and energy levels of the plates. Interest is focused on the energy
dissipation at the joints and the conditions for which it is maximised.
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1. INTRODUCTION

Considerable attention has been focused on the dynamic behaviour of rectangular plates
coupled together. Such configurations can be found in many real structures such as aircraft
[1] or buildings [2]. The solution of the problem of energy flow between two plates coupled
together has been reported in the literature for many configurations and using various
analytical methods. Methods based on semi-infinite models with various types of joints
between the plates have been described by Craven and Gibbs [3], Petersson et al. [4] and
Cremer et al. [5]. The displacements in such models are expressed as waves propagating
in the structure. However, they are not easily applied to systems with multiple joints
without recourse to some kind of ray tracing approach.

Coupled plates have also been analysed based on models of finite-sized plates using
several approaches. Guyader et al. [6] and Shen and Gibbs [7] used a theoretical method
based on finding the global modes of the coupled structure and vibrational energy flows
were then calculated based on a modal approach using these global modes. This method
becomes very cumbersome for large numbers of plates coupled together. An alternative
method which can also be used in some cases is the dynamic stiffness method which has
been applied by Langley [8] to calculate the transverse response of a row of coupled plates
subject to an acoustic pressure field. The solution is restricted to the case when two
opposing edges are simply supported so that the problem can be reduced from second to
first order. The dynamic stiffness matrix of one uncoupled plate can then be derived and
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using standard assembly techniques, the dynamic stiffness matrix for the whole structure
produced. The degrees of freedom in this method are the deflections at the joints. This
approach was also used by Bercin and Langley [9] to study the in-plane vibrations of
similar plate structures. Other methods reported in the literature include the mobility
approach adopted by Cuschieri [10, 11] to calculate energy flow through ‘‘L’’ shaped finite
plates, as well as various numerical solutions based on finite element analyses; see for
example Simmons [12]. FE methods are, however, not suitable for the prediction of
vibrational energy flow at higher frequencies.

Another method which is extensively reported in the literature is the receptance
approach. This was used by Azimi et al. [13] to find the mode shapes and natural
frequencies for the free vibrations of rectangular plates coupled together. Dimitriadis and
Pierce [14] used this method to gain an exact solution for the energy flow between two
plates coupled together. Fredo [15] used the method for the analysis of energy flows in
three thin rectangular plates connected along two simply supported joints. Kim et al. [16]
extended the method for a general situation such that there are no limitations on the
number of plates connected or the junction type. The receptance method is similar to the
dynamic stiffness method in that it also finds the solution in terms of the characteristics
of the uncoupled plates. However, the degrees of freedom in this approach are the coupling
forces at the joints rather than the displacements used in the dynamic stiffness method.
These unknown coupling forces are calculated by utilizing the compatibility conditions at
each joint. In this method, as in all exact approaches, the solutions reported in the
literature are restriced to the case of plates simply supported along two opposite edges.

In this work, the examples considered are again restricted to having simply supported
edges along two opposite sides but now they are taken to be coupled together by compliant
and dissipative joints, as little attention seems to have been focused on this case. First, the
case of just two simply supported plates coupled together by a compliant and dissipative
joint is considered, which is the simplest model possible. Exact solutions for the energy
flows and energy levels are found for the two cases of point and ‘‘rain-on-the-roof’’ forcing.
The results obtained are compared to those for the related one-dimensional case which has
been discussed before [17]. Next, the more general case of multiple rectangular plates
coupled together by compliant and dissipative joints is cast in a matrix form and a general
solution for the various energy resources derived. The same results can be derived by the
dynamic stiffness method but the number of degrees of freedom in the receptance method
is less than that of the equivalent dynamic stiffness method for the case of compliant joints.
Numerical examples are provided which illustrate the effect of damping in the coupling
on the characteristics of the energy flows and energy levels of the plates. The conditions
for which the energy dissipated at the joints is maximised are also discussed.

2. THEORY

Consider a system which consists of two rectangular plates coupled together along one
compliant and dissipative joint as shown in Figure 1. The plates are assumed to be thin,
isotropic and homogeneous so that the classical thin plates theory holds. Each plate n has
mass per unit area rn , viscous damping coefficient cn and bending rigidity Dn given by

Dn =
En h3

n

12(1− n2
n )

n=1, 2. (1)

Note that other damping models could be assumed and somewhat different results
achieved. Here En is the elastic modulus and nn the Poisson ratio of the material. The
dimensions of plate n are Lxn and Ly so that the two plates have the same length along
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Figure 1. Two simply supported plates coupled together.

the joint, which is assumed to have a constant complex rotational stiffness V=K+igv,
per unit of length. First, the two plates are assumed to be simply supported along all edges
so that energy is transmitted through the joint by moments only and the modal
components in the y direction are identical for both plates (note, this kind of coupling
implies that the plates may be at arbitrary angles to each other). The two plates are excited
by arbitrary forces fn (xn , y, v) which are taken to be random, stationary and ergodic
processes. The resulting displacements have the same properties because the system is
linear.

The compatibility conditions at the joint require that the total rotation of plate n at the
coupled edge, denoted by un (0, y, v), is equal to the rotation due to the external forces
applied to the uncoupled plate u0

n (0, y, v) plus the rotation due to the coupling moments
which act along the edge unc (0, y, v). These conditions can be written as follows

un (0, y, v)= u0
n (0, y, v)+ unc (0, y, v) n=1, 2. (2)

The rotation un (0, y, v) can be written in a series form in terms of the modes of the
uncoupled plate as follows

un (0, y, v)= s
i

s
j

Wn,ij (v)C'n,i (0)Fj ( y) (3)

where Cn,i (xn ) is the ith mode shape in the xn direction, Fj ( y) is the jth modal component
in the y direction (which is the same for both plates because they have identical boundary
conditions along the x1 and x2 directions) and the prime indicates differentiation with
respect to x. These mode shapes are independent in the x and y directions when the plate
is simply supported along two opposing edges. For the case of uniform plates simply
supported along all edges considered here, the mode shapes are sinusoidal. The
orthogonality condition requires that

g
Lxn

0 g
Ly

0

Ci (xn )Ck (xn )Fj ( y)Fr ( y) dxn dy=
an

4
dik djr , (4)
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where an is the area of the nth plate. Also the modal components in the y direction satisfy
the orthogonality conditions such that

g
Ly

0

Fj ( y)Fr ( y) dy=
L
2

dr . (5)

The modal component of the Fourier transform of transverse displacement of plate n,
Wn,ij (v), is then given by

Wn,ij (v)=
4
mn g

Lxn

0 g
Ly

0

vn (x, y, v)Ci (xn )Fj ( y) dxn dy, (6)

where mn is the total mass of plate n. Based on modal analysis of the plates, the rotation
at any point of the coupled edge due to the external forces alone (i.e., when the plate is
uncoupled) may be given as an expansion in terms of the mode shapes of the plate by

u0
n (0, y, v)= s

i

s
j

Fn,ij (v)C'n,i (0)Fj ( y)
mn /4Hn,ij (v)

= s
j

u0
n, j (0, v)Fj ( y), (7)

where

u0
n, j (0, v)= s

j

Fn,ij (v)C'n,i (0)
mn /4Hn,ij (v)

. (8)

Fn,ij (v) is the modal component of the external forcing and is given by

Fn,ij (v)=g
Lxn

0 g
Lv

0

fn (xn , y, v)Ci (xn )Fj ( y) dxn dy (9)

and Hn,ij (v) is the frequency response function of mode ij of plate n which yields the modal
displacement due to a modal force and is given by

Hn,ij (v)=v2
n,ij −v2 − icn v, (10)

where vn,ij is a natural frequency of plate n.
The coupling moment along the edge of plate one arises due to the relative rotation

between the two sides of the joint and is defined at any point along the y-axis by

M1c ( y, v)=V6sr s
j

W2,rj (v)C'2,r (0)Fj ( y)− s
i

s
j

W1,ij (v)C'1,i (0)Fj (y)7d'(x1 −0). (11)

Here d' is the first derivative of the delta function with respect to its argument. This last
equation can be written as

M1c ( y, v)= s
j

V(u2, j (0, v)− u1, j (0, v))Fj ( y)d'(x1 −0). (12)

As shown in the above equation, the coupling moment which acts along the joint is written
as an expansion in terms of the modal components in the y direction, which are sinusoidal
in the case considered here. u1, j (0, v) and u2, j (0, v) are the jth components of modal
expansions of the rotation at the common edge of plates one and two, respectively, along
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the y-axis. The coupling moment which acts on the second plate at the common edge has
the same amplitude but is in the opposite direction. Utilizing modal analysis of the plates,
it can be shown that a moment distributed along an edge of plate n which has a distribution
shape along the y-axis as defined in equation (12) gives rise to rotation of the edge given
by

un,c (0, y, v)= s
i

s
j

Ly /2C'2n,i (0)
mn /4Hn,ij (v)

V(u2, j (0, v)− u1, j (0, v))Fj ( y). (13)

This can also be written as

un,c (0, y, v)= s
j

Gn, juu
(0, 0, v)V(u2, j (0, v)− u1, j (0, v))Fj ( y). (14)

Here Gn, juu (x, x0, v) is the Green function which gives the jth component of rotation at
the point x of plate n, denoted by un, j (x, v), due to unit jth component of a modal
expansion along the y-axis of moment Mn, j (x, v) applied at point x0 and is given by

Gn, juu
(x, x0, v)= s

i

C'n,i (x)C'n,i (x0)
rn Lxn /2Hn,ij (v)

. (15)

The main equations can thus be rewritten as follows

s
j

u1, j (0, v)Fj ( y)= s
j

u0
1, j (0, v)Fj ( y)+G1, juu

(0, 0, v)V(u2, j (0, v)− u1, j (0, v))Fj ( y)

(16a)

and

s
j

u2, j (0, v)Fj ( y)= s
j

u0
2, j (0, v)Fj ( y)+G2, juu

(0, 0, v)V(u1, j (0, v)− u2, j (0, v))Fj ( y).

(16b)

Multiplying both equations by any Fj ( y) and taking the integral over Ly , these last two
expressions can be written as

u1, j (0, v)= u0
1, j (0, v)+G1, juu

(0, 0, v)V(u2, j (0, v)− u1, j (0, v)) (17a)

and

u2, j (0, v)= u0
2, j (0, v)+G2, juu

(0, 0, v)V(u1, j (0, v)− u2, j (0, v)). (17b)

Solving these equations together gives the jth modal components of rotation along the
common edge as

u1, j (0, v)= u0
1, j (0, v)+

V

Dj (v)
G1, juu

(0, 0, v) (u0
2, j (0, v)− u0

1, j (0, v)) (18a)

and

u2, j (0, v)= u0
2, j (0, v)+

V

Dj (v)
G2, juu

(0, 0, v) (u0
1, j (0, v)− u0

2, j (0, v)), (18b)
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where

Dj (v)=1+V(G1, juu
(0, 0, v)+G2, juu

(0, 0, v)). (19)

It is clear from the above analysis that the double summations implied in equations (16)
have been reduced to single summations over the modes in the x direction of both plates.
The problem is thus transformed from one in two dimensions to a one-dimensional
problem in the variable x.

It is seen that the modal components in the y direction act independently of one
another, and this means that the jth modal rotation un, j (0, v) depends only on the
characteristics of mode j of the two plates (i.e., their corresponding mode shapes and
natural frequencies) and that the other modal components in the y direction have no effect.
This is a direct result of the fact that the two plates have identical mode shapes in the y
direction.

It follows that the joint in this case couples each mode j in the y direction of the first
plate with its counterpart in the second plate. Each mode j of plates one and two can thus
be thought of as being those of beams of length Lx1 and Lx2, respectively, with mode shapes
and natural frequencies of those of mode j in plates one and two, coupled by a joint which
has a complex stiffness V and subject to modal forces F1, j (x, v) and F2, j (x, v) defined
as

Fn, j (x, v)=
2
Ly g

Ly

0

fn (x, y, v)F( y) dy n=1, 2. (20)

When the compatibility conditions are applied at the coupling boundary point of these
two beams, equations (17) are recovered.

3. ENERGY FLOWS AND ENERGY DISSIPATION AT THE JOINT

The spectral density of the energy flow from plate one to plate two through the joint
is given by

Pl
12 (v)=g

Ly

0

iVvSu1u2 ( y, v) dy+g
Ly

0

gv2Su1u1 ( y, v) dy, (21)

where Su1u2 ( y, v) is the cross spectral density of the rotation of plates one and two at the
common edge and for a stationary random process is taken to be

Su1u2 ( y, v)= lim
T:a

2p

T
u*1 (0, y, v)u2 (0, y, v). (22)

Substituting in terms of modal expansions along the y-axis gives

Pl
12 (v)= iVvlim

T:a

2p

T g
Ly

0

s
j

s
k

u*1, j (v)u2,k (v)Fj ( y)Fk ( y) dy

+ gv2 lim
T:a

2p

T g
Ly

0

s
j

s
k

u*1, j (v)u1,k (v)Fj ( y)Fk ( y) dy. (23)
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Introducing the orthogonality conditions, the last expression reduces to

Pl
12 (v)= iVvLy /2 lim

T:a

2p

T
s
j

u*1, j (v)u2, j (v)+ gv2Ly /2 lim
T:a

2p

T
s
j

=u1, j (v) =2, (24)

so that the energy flow from plate one to plate two can be written as an infinite sum over
the modal components in the y direction as

Pl
12 (v)= s

j

(iVLy /2vSu1, j u2, j (v)+ gLy /2v2Su1, j u2, j (v))= s
j

Ly /2Pl
12, j (v). (25)

It may be seen from the above equation that there is no flow of energy from mode j of
the first plate to a different mode k of the second plate. This is a direct result of the fact
that the modes of the two plates in the y direction are identical and orthogonal. Therefore,
the energy flow is the sum of the energy flow from mode j in the first plate to its counterpart
in the second plate taken over all the modes in the y direction multiplied by a factor of
Ly /2 which results from the integration of energy flow over the lengthof the joint. As has
already been mentioned, the energy flow due to one individual mode is analogous to the
energy flow between two simply supported beams coupled through a rotational spring and
damper.

To proceed with the analysis, an exact expression for the jth component of the energy
flow is recovered. First the expression for the cross spectral density Su1, j u2, j (v) is written
as

Su1, ju2, j (v)= lim
T:a

2p

T
u*1, j (v)u2, j (v). (26)

Next, substituting the expressions for u1, j (v) and u2, j (v) from equations (18) and
assuming that the forces acting on the two plates are incoherent, so that the cross spectral
density Su

1, j
, u

2, j
(v) becomes

Su1, j u2, j (v)=
VG2, juu

(0, 0, v)+ =VG2, juu
(0, 0, v) =2

=Dj (v) =2 Su
0
1, j

u
0
2, j

(v)

+
V*G1, juu

(0, 0, v)+ =VG1, juu
(0, 0, v) =2

=Dj (v) =2 Su
0
2, j

u
0
2, j

(v). (27)

Incoherence is assumed here, in common with most published work on energy flow, since
this makes the analysis considerably simpler and also reflects the common situation in
engineering problems where the noise sources affecting different parts of a structure are,
in practice, often incoherent.

Proceeding in an entirely similar fashion, the spectral density Su1, ju1, j (v) is given by

Su1, j u1, j (v)=
=1+VG2, juu

(0, 0, v) =2
=Dj (v) =2 Su

0
1, j

u
0
1, j

(v)+
=VG1, juu

(0, 0, v) =2
=Dj (v) =2 Su

0
2, j

u
0
2, j

(v). (28)



.   . . 518

The jth component of the energy flow thus becomes

Pl
12, j (v)= iVvLy /20VG2, juu

(0, 0, v)+ =VG2, juu
(0, 0, v) =2

=Dj (v) =2 Su
0
1, j

u
0
1, j

(v)

+
V*G1, juu

(0, 0, v)+ =VG1, juu
(0, 0, v) =2

=Dj (v) =2 Su
0
2, j

u
0
2, j

(v)1
+ gv2Ly /20=1+VG2, juu

(0, 0, v) =2
=Dj (v) =2 Su

0
1, j

u
0
1, j

(v)

+
=VG1, juu

(0, 0, v) =2
=Dj (v) =2 Su

0
2, j

u
0
2, j

(v)1. (29)

In order to obtain the final expression for the energy flow, only the real part of the last
expression needs to be considered and, after the necessary mathematical manipulations,
the modal component of the energy flow from plate one to plate two is found to be given by

Pl
12, j (v)=

−v =V =2Ly /2
=Dj (v) =2 Im 6sr C'22,r (0)

Lx2 /2H2,rj (v)7Su
0
1, j

u
0
1, j

(v)+
gv2Ly /2
=Dj (v) =2 Su

0
1, j

u
0
1, j

(v)

+
v =V =2Ly /2
=Dj (v) =2 Im 6si

C'21,i (0)
Lx1 /2H1,ij (v)7Su

0
2, j

u
0
2, j

(v). (30)

The spectral density of the modal rotation of plate n along the common edge is written
in terms of the spectral density of the modal forces as follows

Su
0
n , j

u
0
n , j

= s
i

s
k

C'n,i (0)C'n,k (0)
(mn /4)2H*n,ij (v)Hn,kj (v)

SFn ,ijFn ,kj (v) n=1, 2 (31)

so that the expression for the energy flow becomes

Pl
12, j (v)=$−v =V =2Ly /2

=Dj (v) =2 Im 6sr C'22,r (0)
Lx2 /2H2,rj (v)7+

gv2Ly /2
=Dj (v) =2%

× s
i

s
k

C'1,i (0)C'1,k (0)
(m1 /4)2H*1,ij (v)H1,kj (v)

SF1,ij F1,kj (v)+
v =V =2Ly /2
=Dj (v) =2

× Im 6si

C'21,i (0)
Lxi /2H1,ij (v)7 s

r

s
m

C'2,r (0)C'2,m (0)
(m2 /4)2H*2,rj (v)H2,mj (v)

SF2,rj F2,mj (v). (32)

The total energy flow is then calculated from equation (25). The expression for the energy
flow from plate two to plate one is derived similarly. Lastly, the energy dissipated at the
joint can be recovered from the energy balance at the joint. It is given by

PDC (v)= s
j

PDC, j (v), (33)
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where PDC, j (v) is the sum of Pl
12, j (v) and Pl

21, j (v) and is given by

PDC, j (v)=
gv2Ly /2
=Dj (v) =2 s

i

s
k

C'1,i (0)C'1,k (0)
(m1 /4)2H*1,ij (v)H1,kj (v)

SF1,ij F1,kj (v)

+
gv2Ly /2
=Dj (v) =2 s

r

s
m

C'2,r (0)C'2,m (0)
(m2 /4)2H*2,rj (v)H2,mj (v)

SF2,rj F2,mj (v). (34)

4. INPUT POWER

The spectral density of the input power due to a vertical force applied to plate one is
calculated from the product of force and velocity at the point of its application and is given
by

PIN,1 (v)=−iv lim
T:a

2p

T g
Lx1

0 g
Ly

0

v*1 (x1, y, v)f1 (x1, y, v) dx1 dy

=−iv lim
T:a

2p

T
s
i

s
j

W*1,ij (v)F1,ij (v). (35)

Substituting W1,ij (v) by its value in terms of the modal forcing components deduced from
equation (18), this can be written as

PIN,1 (v)=−iv lim
T:a

2p

T
g
G

G

F

f
F1,ij (v)

×
G
G

G

K

k
s
i

s
j

F*1,ij (v)+
Ly /2V*C'1,i (0)

D*j (v) $sk F*2,kj (v)C'2,k (0)
m2 /4H*2,kj (v)

− s
m

F*1,mj (v)C'1,m (0)
m1 /4H*1,mj (v) %

m1 /4H*1,ij (v)
G
G

G

L

l
h
G

G

J

j
.

(36)

Since the forces acting on the two plates are incoherent, then SF2,kj F1,ij (v) is zero, and this
last equation reduces to

PIN,1 (v)=−iv s
i

s
j

SF1,ij F1,ij (v)
m1 /4H*1,ij (v)

+
ivLy /2V*

(m1 /4)2 s
i

s
j

s
m

C'1,i (0)C'1,m (0)SF1,mj F1,ij (v)
H*1,ij (v)H*1,mj (v)D*j (v)

.

(37)

Taking only the real part, the expression for the spectral density of the input power to
the first plate is written as

PIN,1 (v)=
v

m1 /4
s
i

s
j

Im 6 1
H*1,ij (v)7SF1,ij F1,ij (v)

+
vLy /2
(m1 /4)2 s

i

s
j

s
m

Im 6 C'1,i (0)C'1,m (0)V
H1,ij (v)H1,mj (v)Dj (v)7SF1,mj F1,ij (v). (38)

The expression for the input power to plate two can be derived similarly.
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5. TWO FORCING MODELS

To proceed further, the expressions for the various energy flows and energy levels are
deduced for the two special cases of point and ‘‘rain-on-the-roof’’ driving. The reason for
choosing these two models is that both give rise to modal forcing spectral densities which
are separable in space and frequency. Moreover, both have simple physical interpretations,
i.e., localized or distributed but uncorrelated excitation. The spectral density of the modal
force is given by

SFn ,ij Fn ,kj (v)

=g
Lxn

0 g
Lxn

0 g
Ly

0 g
Ly

0

SFnFn (v, xn , x̂n , y, ŷ)Cn,i (xn )Cn,k (x̂n )Fj ( y)Fj ( ŷ) dxn dx̂n dy dŷ,

(39)

where x̂n and ŷ are dummy variables.

5.1.  

In the case of a force applied at a single point x0
n , y0 on plate n the spectral density of

the driving forces is given by

SFn Fn (v, xn , x̂n , y, ŷ)=SFn Fn (v)d(xn − x0
n )d(x̂n − x0

n )d( y− y0)d( ŷ− y0), (40)

and the spectral density of the modal forces is

SFn ,ij Fn , kj (v)=SFnFn (v)Cn,i (x0
n )Ck,i (x0

n )F2
j ( y0), (41)

and therefore

Su
0
n , j

u
0
n , j

= s
i

s
j

C'n,i (0)C'n,k (0)Cn,i (x0
n )Cn,k (x0

n )F2
j ( y0)

(m1 /4)2H*n,ij (v)H*n,kj (v)
SFn Fn (v). (42)

5.2. ---

In this case the spectral density of the driving forces is given by

SFn Fn (v, xn , x̂n , y, ŷ)=SFn Fn (v)d(xn − x̂n )d( y− ŷ)
4
mn

, (43)

and the spectral density of the modal forces is

SFn ,ij Fn ,kj (v)=SFn Fn (v)dik , (44)

so that

Su
0
n , j

u
0
n , j

= s
j

C'2n,i (0)
(m1 /4)2=Hn,ij (v) =2 SFn Fn (v). (45)

The spectral densities of the energy flows, energy dissipation at the joint and input power
due to external forcing can then be recovered when these expressions for the modal forcing
spectral densities are substituted into equations (32), (34) and (38) above. Note that in the
case of point driving, closed form solutions are available for each jth component of the
energy receptances.
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6. THE CASE OF UNSUPPORTED JOINTS

In the previous section, the case of two coupled plates simply supported along all edges
was discussed in detail. The joint was taken to be supported so that only the bending
moments at the joint transfer energy. In this section, a more general case of a row of
rectangular plates which are simply supported along the longitudinal edges is considered.
The plates have the same width Ly in the y direction so that the modal components in this
direction are again identical for all plates. In this case, however, the joints are unsupported
so that both the shear forces and moments contribute in the transmission of energy
through the structure. The row contains N+1 plates with different lengths Lxn in the x
direction, as shown in Figure 2. In what follows, the quantity Xj (x, v) represents the jth
component of a modal expansion of the quantity X(x, y, v) along the y-axis such that

X(x, y, v)= s
j

Xj (x, v)Fj ( y), (46)

where X(x, y, v) stands for any dynamic quantity in the following analysis.
Each joint n connects two plates n and n+1 at edges B and A, respectively. Let {Y}An, j

and {Y}Bn, j be the vector of modal displacements of joint n at edges A and B, and {Y0}An, j

and {Y0}Bn, j be the modal displacements at edges A and B of joint n due to the external
forcing only. The vector of modal displacements at any point (x, y) of plate n is denoted
by {Yn, j (x, v)}. These displacements are defined in the local co-ordinates for each plate.
Notice that the in-plane displacements are neglected so that the vector of modal
displacements at each point of plate n includes the vertical displacement and rotation about
the y-axis, i.e.,

{Yn, j (x, v)}=6vn, j (x, v)
un, j (x, v)7. (47)

The vector of modal displacements at edge A of joint n is thus related to the vector of
modal displacements of plate n+1 as

{Y}An, j = {Y(n+1), j (0, v)}, (48)

while the vector of modal displacements at edge B of joint n is related to the vector of
modal displacements of plate n as

{Y}Bn, j = {Yn, j (Lxn , v)}. (49)

Figure 2. A row of rectangular plates simply supported along their longitudinal edges.
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The matrix of Green functions of plate n which relates the vector of the modal
displacements {Yn, j (x1, v)} of plate n to the vector of harmonic modal forces {Fn, j (x2, v)}
is defined as

[Gn, j (x1, x2, v)]=$Gn, jvv (x1, x2, v)
Gn, juv (x1, x2, v)

Gn, jvu (x1, x2, v)
Gn, juu

(x1, x2, v)%. (50)

The functions which constitute the matrix are

Gn, jvv (x1, x2, v)= s
i

Cn,i (x1)Cn,i (x2)
rn Lxn /2Hn,ij (v)

, (51a)

Gn, jvu (x1, x2, v)= s
i

Cn,i (x1)C'n,i (x2)
rn Lxn /2Hn,ij (v)

(51b)

and

Gn, juu
(x1, x2, v)= s

i

C'n,i (x1)C'n,i (x2)
rn Lxn /2Hn,ij (v)

. (51c)

Closed form solutions for these functions are available. Next the flexibility matrix of plate
n which relates the modal displacements at the two edges A, B with the corresponding
modal forces is defined as

[Gn, j ]=$[Gn, j ]AA

[Gn, j ]BA

[Gn, j ]AB

[Gn, j ]BB %, (52)

where

[Gn, j ]AA = [Gn, j (0, 0, v)], [Gn, j ]AB = [Gn, j (0, Lxn , v)], (53a, b)

[Gn, j ]BA = [Gn, j (Lxn , 0, v)], [Gn, j ]BB = [Gn, j (Lxn , Lxn v)]. (53c, d)

Writing [V]n as the diagonal matrix of the complex stiffness of joint n and {DY}n, j as the
vector of relative displacements between the edges A and B of joint n, then the
compatibility conditions for joint n at edge A require that

{Y}An, j = {Y0}An, j −[G(n+1), j ]AA [V]n {DY]n, j +[G(n+1), j ]AB [V](n+1) {DY}(n+1), j (54)

and the compatibility conditions for joint n at edge B that

{Y}Bn, j = {Y0}Bn, j −[Gn, j ]BA [V](n−1) {DY}(n−1), j +[Gn, j ]BB [V]n {DY}n, j . (55)

Following similar steps to those given in the previous sections it may be shown that the
main equations of the receptance approach can be written for the whole assembled system
of plates in the form

{Y}A, j = {Y0}A, j −[Aj ]A {{Y}A, j − {Y}B, j} (56a)

and

{Y}B, j = {Y0}B, j +[Aj ]B {{Y}A, j − {Yj}B, j}. (56b)
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Here {Y}A, j , {Y}B, j are the vectors of modal displacements at the edges A, B of all the joints.
The matrices [Aj ]A and [Aj ]B are constructed by assembly and given by

[G2, j ]AA −[G2, j ]AB (0) · · · [0]

[0] [G3, j ]AB −[G3, j ]AB · · · [0]
[Aj ]A =G

G

G

K

k
[0] [0] [G4, j ]AA · · · [0]

G
G

G

L

l

[V] (57a)

[0] [0] [0] · · · [GN+1, j ]AA

[G1, j ]BB [0] [0] · · · [0]

−[G2, j ]BA [G2, j ]BB [0] · · · [0]
[Aj ]B =G

G

G

K

k
[0] −[G3, j ]BA [G3, j ]BB · · · [0]

G
G

G

L

l

[V], (57b)

[0] [0] [0] · · · [GN, j ]BB

where [V] denotes the diagonal matrix of the complex stiffness of the joints in the
assembled system. Equations (56) can now be solved and the expressions for the modal
displacements at the edges A, B of the joints recovered. This is similar to the case of
multiple beams coupled together which was considered in a previous study [18]. The results
for the modal displacements may be recapitulated as follows

{Y}A, j =[([I]+ [Aj ]B) = [Aj ]A]$[Dj ]−1

[0]
[0]

[Dj ]−1%6{Y0}A, j

{Y0}B, j7, (58a)

{Y}B, j =[[Aj ]B = ([I]+ [Aj ]A)]$[Dj ]−1

[0]
[0]

[Dj ]−1%6{Y0}A, j

{Y0}B, j7, (58b)

where

[Dj ]= [I]+ [Aj ]A + [Aj ]B. (59)

The displacements at the joints can also be derived using the dynamic stiffness method.
However, since the joints in the system considered here are compliant so that the
deflections at the two ends of each joint are not equal, the degrees of freedom will be the
displacement and rotation about the y-axis at each end of the plate thus making the total
number of degrees of freedom for the whole system 4(N+1). In the method introduced
here, there are only two degrees of freedom at each joint (which are the coupling shear
force and moment) so that the total number of degrees of freedom in the proposed method
is only 2N.

7. ENERGY FLOWS AND ENERGY DISSIPATION AT EACH JOINT

The energy flow that leaves plate n+1 at edge A is given by

{P}coupAn (v)=g
Ly

0

iv[V]n {SYA,nYB,n ( y, v)} dy+g
Ly

0

v2[g]n {SYA,nYA,n ( y, v)} dy. (60)

Writing {Y}A,n and {Y}B,n as an expansion in terms of the modal components in the y
direction, and making use of the orthogonality of the mode shapes, the integrals may be
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eliminated and the expression for the energy flow given in terms of modal displacements
spectral densities as

{P}coupAn (v)= s
j

(Ly /2) [iv[V]n {SYAj ,nYBj ,n (v)}+v2[g]n {SYAj ,n,YAj ,n (v)}]

= s
j

(Ly /2){P}coupAn, j (v). (61)

The energy flow is therefore the sum of the energy flow from each mode j to its counterpart
and again there is no coupling between the modal components in the y direction. The
modal spectral density is written in terms of the modal spectral density of the displacements
due to external forcing and is given by the diagonal elements of the product

$[([I]+ [Aj ]B) = [Aj ]A]$[Dj ]−1

[0]
[0]

[Dj ]−1%%*n [SY
0
Aj

Y
0
Bj
]

×$$[Dj ]−1

[0]
[0]

[Dj ]−1%
T

[[Aj ]B = ([I]+ [Aj ]A)]T%n

. (62)

The matrix of spectral densities [SY
0
Aj

Y
0
Bj

(v)] is related to all the forces acting on the plates.
If the external forces acting on the various subsystems are assumed to be uncorrelated
and the components of the vector of forces acting on any one subsystem are also
uncorrelated then the matrix is diagonal. The following analysis is again restricted to
the case when the spectral density of the modal forces is separable in space and
frequency. Under these conditions, the matrix [SY

0
Aj

Y
0
Bj

(v)] is written as
[SY

0
Aj

Y
0
Bj

(v)]=an [Q]n SFn , j Fn , j where [Q]n contains integrals of Green functions and forces
acting on the subsystems. Finally, the energy that flows into edge A of joint n from plate
n+1 is written as

{P}coupAn, j = s
k

{H}Ank, j SFk , j Fk , j , (63)

where

{H}Ank, j =Re6iv[V]n $[([I]+ [Aj ]B)* = [Aj ]*A ]$[Dj ]−1

[0]
[0]

[Dj ]−1%*%n

×[Q]k $$[Dj ]−1

[0]
[0]

[Dj ]−1%
T

[[Aj ]B = ([I]+ [Aj ]A)]T%n

+[g]n v2$[([I]+ [Aj ]B)* = [Aj ]*A ]$[Dj ]−1

[0]
[0]

[Dj ]−1%*%n

×[Q]k $$[Dj ]−1

[0]
[0]

[Dj ]−1%
T

[([I]+ [Aj ]B = [Aj ]A]T%n7 (64)

and k is a dummy counter in the summations. These expressions are similar to those
which were derived in a previous study for the case of multiple beams coupled together
[18].



    525

8. INPUT POWER

The input power to plate n is written in the frequency domain as

{P}INn =Re 6g
Lxn

0 g
Ly

0

−iv[(Y*n (x, y, v)} {Fn (x, y, v)}T]diag dx dy7
=−v Im 6g

Lxn

0 g
Ly

0

[{Yn (x, y, v) = {Fn (x, y, v)}T]diag dx dy7. (65)

Introducing equation (45), the integration over y may be eliminated and the input power
is then given by

{P}INn = s
j

−cLy /2 Im 6g
Lxn

0

[{Yn, j (x, v)} {Fn, j (x, v)}T]diag dx7. (66)

The input power due to the external forcing alone, without the coupling forces is written
as

{P}0
INn = s

j

−v Im 6g
Lxn

0 g
Lxn

0

[Gn, j (x, x̂, v)]diag {SFn , j Fn , j (x, x̂, v)} dx dx̂7. (67)

The modal displacement at point x of plate n due to the coupling forces {Ync, j (x, v)} can
then be written as

{Ync, j (x, v)}=−[Gn, j (x, 0, v)] [V]n−1 {DY}(n−1), j +[Gn, j (x, Lxn , v)] [V]n {DY}n, j . (68)

The vector {DY}n, j is related to the relative displacements due to the external forces alone
{DY0}n, j by

{DY}n, j = s
k

[D]−1
nm {DY0}k, j ,

(where k is again a dummy counter in the summation) which may be written as

{DY}n, j = s
k

[D]−1
nk g

Lxk+1

0

[G(k+1), j (0, x, v)]{F(k+1), j (x, v)) dx

−g
Lxk

0

[Gk, j (Lxk , x, v)]{Fk, j (x, v)} dx], (69)

so that the input power due to the coupling forces is given by

{P}INnc = s
j

−vLy /2 Im 6g
Lxn

0

[{Ync, j (x, v)} {Fn, j (x, v)}T]diag dx7. (70)
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Substituting equations (68) and (69) into equation (70) and noting that the forces acting
on the various subsystems are uncorrelated and their cross spectral densities are therefore
zero, the expression for the input power due to the coupling forces is given by

{P}INnc = s
j

vLy /2 Im 6g
Lxn

0 g
Lxn

0

[[Gn, j (x, 0, v)] [V]n−1 [D]−1
(n−1,n−1)

× [Gn, j (0, x̂, v)] [SFn , j Fn , j (x, x̂, v)]

− [Gn, j (x, 0, v)] [V]n−1 [D]−1
(n−1,n) [Gn, j (Lxn , x̂, v)] [SFn , jFn , j (x, x̂, v)]

− [Gn, j (x, Lxn , v)] [V]n [D]−1
(n,n−1) [Gn, j (0, x̂, v)] [SFn , jFn , j (x, x� , v)]

+ [Gn, j (x, Lxn , v)] [V]n [D]−1
(n,n) [Gn, j (Lxn , x̂, v)] [SFn , j Fn , j (x, x̂, v)]]diag dx dx̂7

(71)

The total input power to plate n is then the sum of the two components given by equations
(67) and (71) above.

9. NUMERICAL EXAMPLES

9.1.  

Consider two simply supported plates coupled together. The properties of the two plates
have been chosen arbitrarily for the purposes of illustration and are given in Table 1. The
joint between the two plates comprises a stiffness K and a damping strength g, both per
unit length of plate. Plate one is driven by point forcing. The aim is to study the effects
of variation in the coupling strength on the various energy receptances derived in the
previous sections.

The power input to the first plate may be divided into three parts: some of it will be
dissipated in the joint damper and the remainder in the two plates. Interest is focused on
the ratios of these three energy dissipations to the power input by the external forcing,
denoted by Rd , R1 and R2, respectively.

To begin with the spring stiffness is given the values 104 N (=Nm/rad/m), 106 N and
108 N, respectively, which leads to weak, transitional and strong coupling for the plates
considered. The damper strength (in Nms/rad/m) is increased and the various energy
receptances are plotted for a constant value of the driving frequency. It is noticed that for
the weak spring of stiffness 104 N, the energy transferred to the undriven plate increases
as the damper strength increases until it reaches a maximum constant level when the
coupling becomes very strong. When the joint has a stiff spring of 108 N it is noted that

T 1

Parameters used in the examples

Parameter Plate one Plate two Units

Mass density (r) 78·0 78·0 kg/m2

Length (Lx ) 1·2 0·8 m
Width (Ly ) 1·0 1·0 m
Rigidity (D) 1·923×104 1·923×104 Nm
Damping strength (c) 10·0 10·0 s−1
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Figure 3. Variation in P12 with gu for v=10 000 rad/s for the case of two simply supported plates coupled
through rotation: ——, Ku=1×104 N; ––––, Ku =1×106 N; – ·– ·– ·– ·– ·–, Ku =1×108 N.

the energy transferred to plate two is at the limit level for a rigid coupling regardless of
the damper strength, as shown in Figure 3.

The energy dissipated at the joint has a different pattern of changes. It is seen that the
energy dissipated increases as the damper strength increases until it reaches a maximum
level at a specific value of g after which it falls again to minimum levels when the damper
becomes very strong. This is to be expected since the damper is then blocked and unable
to dissipate much energy. Maximum dissipation at the joint is thus related to a damping
strength for which the overall joint strength is transitional between weak and strong. When

Figure 4. Variation in PDC with gu for v=10 000 rad/s for the case of two simply supported plates coupled
through rotation; key as per Figure 3.
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Figure 5. Variation in Pl
12 with gu for v=10 000 rad/s for the case of two simply supported plates coupled

through rotation; key as per Figure 3.

the spring stiffness increases, it is seen that the energy dissipated at the joint will have the
same pattern of changes, however, it is seen that in the case of a stiff spring, the maximum
dissipation of energy at the joint is associated with a damper strength which is equal to
g=K/v, but the position of this maximum value decreases as the value of the spring
stiffness increases, as shown in Figure 4.

The energy that leaves plate one increases as the damper strength increases and it reaches
a maximum level at the value of damper strength for which the energy dissipation is also
maximum. For this value of damping strength, the bulk of the energy leaving plate one
is dissipated at the joint. As the joint damper strength increases further the energy that
leaves plate one decreases until it reaches a constant level which represents the limit for
the case of rigid joint. For this increased level of joint damping, most of the energy that
leaves plate one is then transferred to plate two and is dissipated there. For the case of
strong spring of stiffness 108 N, the energy that leaves plate one is at almost the same level,
but it reaches a maximum level at a value associated with the maximum dissipation at the
joint, as shown in Figure 5.

For the case of the weak spring, the input power also increases as the damping strength
increases until it becomes maximum for a value of the damper strength which lies in the
transitional region. As the damping increases, it falls rapidly and then remains at a
constant low level for strong coupling. For the case of the strong spring of stiffness 108 N,
the power input into the first plate is also at a constant level and does not show changes
with the damper strength unlike the previous case. It is also found that the level of input
power depends on the driving frequency.

Next, the ratios Rd , R1 and R2 are plotted in Figure 7 in order to gain some
understanding of how these ratios change with the damper strength. For the case of a weak
spring, it is seen that when the damper strength is weak, most of the input power is
dissipated in the first plate, while the energy transferred through, and dissipated in, the
damper are at minimum levels. As the damper strength increases, the energy dissipated
in plate one drops until it reaches a minimum level for moderate coupling strength. The
energy of plate two on the other hand increases as the coupling strength increases, as does
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Figure 6. Variation in PIN with gu for v=10 000 rad/s for the case of two simply supported plates coupled
through rotation; key as per Figure 3.

the energy dissipated in the damper. It is seen that in this case the bulk of the input power
is being dissipated in the damper with only a small percentage being dissipated in plates
one and two. When the damper strength increases further, the ratio R2 decreases as the
damper becomes blocked while, on the other hand, Rd and R1 increase again to reach
constant levels for the limit of a rigid joint.

When the ratios Rd , R1 and R2 are plotted versus frequency for this case for different
values of the damper strength, similar behaviour is noticed over a range of frequencies (see
Figure 8). It is clear from the figure that the maximum dissipation of energy in the damper
occurs for a damper strength which lies in the transitional region between weak and strong
coupling.

Figure 7. Variation in R1, R2 and Rd with gu for v=10 000 rad/s for the case of two simply supported plates
coupled through rotation; key as per Figure 3.
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Figure 8. Variation in R1, R2 and Rd with v for Ku =10 000 N for the case of two simply supported plates
coupled through rotation: ——, gu=1×10−2 Ns; ––––, gu =1 Ns; – ·– ·– ·– ·– ·–, gu =1×102 Ns;
........, gu =1×104 Ns.

When the three ratios Rd , R1 and R2 are plotted for the case of a stiff spring, it is noticed
that the ratio Rd has the same pattern of behaviour as before and reaches a maximum at
g=K/v but is seen that this ratio is very small for all values of the damper strength, as
might be expected since the damper is blocked by the very stiff spring. It follows that the
power input is dissipated mostly in the plates. In this case, the ratios R1 and R2 remain
at nearly constant levels for all values of the damper strength, which represents the limit
for a rigid joint. This idea is confirmed when the ratios are plotted against frequency for
different values of the damper strength (see Figure 9).

Figure 9. Variation in R1, R2 and Rd with v for Ku =108 N for the case of two simply supported plates coupled
through rotation: ——, gu=1×102 Ns; ––––, gu =1×104 Ns; –·–·–·–·–·–, gu =1×106 Ns.
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Figure 10. Variation in the energy flow through the joints in a row of six plates for Ky =106 N m−2 amd
Ku =102 N and light internal damping in the plates: ——, joint 1; ––––, joint 2; –·–·–·–·–·–, joint 3; ........, joint
4; . . . . . . , joint 5.

Lastly, it should be noted that the summations over the transverse modal components
used in the various energy receptances expressions need only a small number of modes to
converge. For the examples presented here, it was found that 10 modes were enough to
guarantee convergence in the frequency band of interest for the examples given.

9.2.  

In the second set of examples, a row of six identical plates is considered, with the first
plate driven by a point force. The properties of the plates are the same as given for plate

Figure 11. Variation in the energy flow through the joints in a row of six plates for Ky =106 N m−2 and
Ku =102 N and heavy internal damping in the plates; key as per Figure 10.
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T 2

Damping distributions considered in the examples

Case no. g1 g2 g3 g4 g5

1 g 0 0 0 0
2 0 g 0 0 0
3 0 0 g 0 0
4 0 0 0 g 0
5 0 0 0 0 g
6 0·5g 0·5g 0 0 0
7 0·5g 0 0 0 0·5g
8 0·2g 0·2g 0·2g 0·2g 0·2g
9 0·6g 0·1g 0·1g 0·1g 0·1g

one in Table 1. Figure 10 shows the energy that is transferred through each joint for the
case of weak and conservative coupling. It is seen that the energy is lost through the
internal damping as the energy flows through the plates of the panel. It can also be seen
that resonant transmission occurs at some frequencies which is characterized by sharp
increases in the energy flow (the beginning of ‘‘stop’’ and ‘‘pass’’ band behaviour is
apparent).

When the damping in the individual plates becomes heavy, it is seen that the plots
become smoother than those in Figure 10 and the spikes which occur at resonance are
eliminated (see Figure 11). The energy levels of the various plates also decrease as the
energy travels from the driven plate through the panel.

Next, a row of plates is considered where the joints have compliance in rotation only.
The first plate is driven by a point force and the joints are damped in a variety of ways
by distributing the same total amount of damping g over the joints in different proportions
(see Table 2). Here the ratio Rd denotes the ratio of the total energy dissipated due to

Figure 12. Variation in Rd with g in a row of six identical plates for Ky =1010 N m−2 and Ku =102 N in all
joints and light internal damping in the plates: ——, case 1; ––––, case 2; ........, case 3; – ·– ·– ·– ·– ·–, case 4;
. . . . ., case 5; —×—, case 6; —*—, case 7; —w—, case 8; —+—, case 9.
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Figure 13. Variation in R2 with g in a row of six identical plates for Ky =1010 N m−2 and Ku =102 Nms in
all joints and light internal damping in the plates; key as per Figure 12.

coupling damping in all joints to the power input by the external forcing. The ratio Rn

denotes the ratio of the energy dissipated in plate n to the total input power (i.e., R2

measures the energy dissipated in the second plate and R6 that in the sixth plate).
Figures 12–14 show Rd , R2 and R6 plotted for increasing values of g for the cases shown
in Table 2 above. It is seen that for each case, the dissipation of energy is maximized at
a particular value of the damper strength. Moreover, it is seen that for some, relatively

Figure 14. Variation in R6 with g in a row of six identical plates for Ky =1010 N m−2 and Ku =102 N in all
joints and light internal damping in the plates; key as per Figure 12.
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high values of g, the greatest degree of power dissipation in the joints is achieved by
distributing the damping throughout the structure, while for lesser amount of damping a
more significant effect is achieved by inserting all the available damping in the joint nearest
the drive point. Additionally, it is never worthwhile concentrating the damping wholly in
the second, third, fourth or fifth joints. No doubt the best distribution of damping between
the joints could be sought by optimization. It is also worth noting that when the coupling
between plates is stiff, the damping in the joints has no effect on the ratio Rn in the plates,
since the ratio of the energy dissipated in the damper is then very small, regardless of the
damper strength.

10. CONCLUDING REMARKS

A receptance approach has been presented for the analysis of energy flows and energy
levels in thin rectangular plates coupled together by compliant and dissipative joints. The
main purpose of the analysis presented is to examine the effects of including damping in
the joints on the various energy receptances of the system. It is shown that joint damping
is most effective when the couplings are not very strong and that for any combination of
joints and total quantity of damping, there will be a particular distribution of the damping
for which the bulk of the input power is dissipated in the joints, minimizing the energy
levels in the unforced plates. For the case of a row of plates coupled together, coupling
damping is seen to be most effective either when it is relatively evenly distributed among
all the joints or, alternatively, placed wholly in the joint nearest the drive point, depending
on the precise strengths of the coupling elements.
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APPENDIX: NOMENCLATURE

A, B left and right hand edges of a subsection
D subsection rigidity
E Young’s modulus
F modal component of external forcing
G Green function
H frequency response function of a mode of a subsection
K stiffness per unit of length
Lxn , Ly dimensions of subsections, see Figures 1 and 2
M coupling moment
N total number of joints in the system
S cross-spectral density
T period of oscillation
W modal component of the Fourier transform of deflection
a subsection area
c viscous damping coefficient
f excitation force
h subsection thickness
i number of half sine waves in x direction
j number of half sine waves in y direction
k dummy summation counter
m mass
n subsection counter in the x direction
v velocity
x, y rectangular co-ordinates
Dj (v) 1+V(G1, juu

(0, 0, v)+G2, juu
(0, 0, v))

P spectral density of energy flow
C mode shape variation in the x direction
F mode shape variation in the y direction
V complex rotational stiffness per unit of length
g damping per unit of length
u plate rotation
n Poisson’s ratio
r mass per unit area
v radian frequency of oscillation.


