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1. 

Since Biot’s pioneering work on wave propagation in fluid-saturated porous solids [1],
there have been numerous studies on various aspects of such a subject. Among them
analytical study of boundary value (source) problems associated with a saturated
half-space has increasingly attracted attention [2, 3]. Recently, an interesting attempt was
made by Philippacopoulos [4] to analyze the response of a partially saturated layered
half-space due to surface loads based on his previous work [2, 5]. Similar to previous
studies, the Helmholtz decomposition suggested by Deresiewicz [6] was used to resolve the
displacement vectors into potential functions and the classical formulation established by
Biot was introduced. The integral solutions for surface displacements were derived, but
numerical evaluations of the inverse Hankel transforms were not obtained since the
solutions were complicated and intractable.

A similar problem is considered in this note for the purpose of applications in
geomechanics and earthquake engineering. The present work differs from the previous
study in that (1) a simple but useful, so called u–p formulation is adopted here to describe
the dynamic behavior of saturated soils, where the terms relating to the fluid acceleration
are neglected and the number of variables is effectively reduced [7, 8]. This approximation
has been examined to be reasonable for most problems of earthquake analysis and soil
dynamics (frequencies lower than this) and to be particularly economical and convenient
in numerical analysis. Moreover, all the material properties are clearly defined and can be
easily obtained from conventional soil tests. Therefore, the formulation is advantageous
in engineering applications compared to the complete one of Biot’s and has been widely
used in geomechanics. (2) A simple and direct analysis approach is presented, which does
not involve the complicated Helmholtz decomposition in poroelasticity. In references [4]
and [5], however, altogether six potential functions were used to formulate the boundary
problem. Analytic solutions are derived by Hankel transforms and verified by reducing to
classical solutions of Lamb’s problem. The evaluation of surface displacements in the space
domain is given by using numerical integration. It should be mentioned that the present
analysis formulation may also be applied to solve the problems corresponding to other
loading cases (e.g., vertical ring loads at the surface or at a finite depth) and thereafter
a set of fundamental solutions may be obtained. Further, it may be employed in
conjunction with the initial parameter method [9] to conveniently derive the fundamental
solutions for the quasi-static and dynamic responses of a multi-layered saturated soil
deposit.

2.     

The system considered here is symmetric with respect to the z-axis, the plane z=−h
defines the free surface at which a point load is acting (Figure 1). Next, one considers the
vibrations of the elastic dry soil layer and saturated half-space.
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Figure 1. Saturated layer half-space.

2.1. Vibration of elastic dry layer
For the axisymmetric problem, the governing equations can be written as follows for

a harmonic motion with a time-dependence exp(ivt) (e.g., ur = ūr eivt)

(92 −1/r2)ūr +[(l'+ m')/m'] 1ē/1r+(r'/m')v2ūr =0, (1)

92ūz +[(l'+ m')/m'] 1ē/1z+(r'/m')v2ūz =0, (2)

where l', m' are Lamé constants of the elastic dry layer; r' is mass density; e is volumetric
strain; ur , uz are radial and vertical displacements, respectively; and 92 denotes the
Laplacian operator.

By taking (1/1r)(1)+ (1/r)(1)+ (1/1z)(2), one can get

D'92ē+ r'v2ē=0, (3)

where D'= l'+2m'. Applying zeroth order Hankel transforms [10] of equations (2) and
(3), respectively, one can obtain

d2ũz /dz2 − q2ũz +[(l'+ m')/m'](dẽ/dz)=0, d2ẽ/dz2 − p2ẽ=0, (4, 5)

where

p2 = j2 − r'v2/D', q2 = j2 − r'v2/m'

and the symbols ‘‘0 ’’ on the top of the quantities denote Hankel transforms, j is the
transform parameter.

Equations (4) and (5) can be solved as follows:

ẽ=A1 cosh (pz)+B1 sinh (pz), (6)

ũz =A2 sinh (qz)+B2 cosh (qz)− (D'p/r'v2)[A1 sinh (pz)+B1 cosh (pz)], (7)

where A1, B1, A2, B2 are integral constants.
With the definition of volumetric strain and (6) and (7), it is easy to give ũr as

jũr =(D'j2/r'v2)[A1 cosh (pz)+B1 sinh (pz)]− [A2q cosh (qz)+B2q sinh (qz)]. (8)
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From the familiar stress–strain relations and after some substitution, one obtains the
stresses

t̃rz

2m'
=

D'pj

r'v2 [A1 sinh (pz)+B1 cosh (pz)]−
q2 + j2

2j
[A2 sinh (qz)+B2 cosh (qz)], (9)

s̃z

2m'
=0D'

2m'
−

D'2j2

r'v21[A1 cosh (pz)+B1 sinh (pz)]+ q[A2 cosh (qz)+B2 sinh (qz)]. (10)

Finally, equations (7–10) can be conveniently rewritten as the following matrix form

{V}=[f]{W}, (11)

in which

{V}=[ũr ũz t̃rz s̃z ]T, {W}=[A1 B1 A2 B2]T.

The elements of matrix [f] are listed in the Appendix.

2.2. Vibration of saturated half-space
As stated previously, for most problems in earthquake analysis and soil dynamics, the

terms involving the fluid acceleration in Biot’s equations can be neglected with confidence.
The governing equations can thus be written as follows for the axisymmetric problem
without body forces (see reference [7], equations 5, 7 and 10):

m(92 −1/r2)ur +(l+ m) 1e/1r− 1pf /1r= r 12ur /1t2, (12)

m92uz +(l+ m) 1e/1z− 1pf /1z= r 12uz /1t2, (13)

−1pf /1r=(rfg/k) 1wr /1t+ rf 1
2ur /1t2, −1pf /1z=(rfg/k) 1wz /1t+ rf 1

2uz /1t2,

(14, 15)

where l and m are Lamé constants, ur , uz and wr , wz are solid and fluid phase displacements,
respectively; e is volumetric strain of solid phase; pf is pore pressure, r and rf are mass
densities of the total unit and the pore fluid, respectively, r=(1− n)rs + nrf , n is porosity,
rs is the density of soil grains, k is the coefficient of permeability with unit of (m/s).

For incompressible pore fluid, which is a generally acceptable notation in soil mechanics
[8, 11], the flow continuity is given as (the upper dots denote the derivation with respect
to time)

1ẇr /1r+ ẇr /r+ 1ẇz /1z+ 1u̇r /1r+ u̇r /r+ 1u̇z /1z=0. (16)

The constitutive laws and the effective stress principal (tension positive) for saturated soils
can be written as

s'z = le+2m 1uz /1z, trz = m(1ur /1z+ 1uz /1r), sz = s'z − pf , (17–19)

where s'z and sz are the effective and total stresses in soil mechanics [7], respectively.
Conventionally, the governing equations are solved by introducing displacement

decomposition based on Helmholtz representation, in which four potentials are employed,
two are associated with the solid phase, while the other two are associated with the flow
of the pore fluid relative to the solid [4–6]. Next, we proceed to solve the equations without
the aid of potential theory.

By taking (1/1r)(14)+ (1/r)(14)+ (1/1z)(15) and with equation (16), one has

92pf =(1/k')ė− rf ë, (20)

where k'= k/rfg.
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Similarly, taking (1/1r)(12)+ (1/r)(12)+ (1/1z)(13) and with the above equation gives

92e=(1/k'D)ė+[(r− rf )/D]ë. (21)

where D= l+2m. Now the governing equations can be converted into four alternate
uncoupled equations (12), (13), (20) and (21). It should be noted that only three of these
four equations are independent. Similarly, with the assumption that the motion is
time-harmonic, and applying the first order Hankel transform to equation (12) and zeroth
order Hankel transforms to equations (13), (20) and (21), respectively, one has

d2ũr /dz2 − d2ũr =[(l+ m)/m]jẽ−(1/m)jp̃f , (22)

d2ũz /dz2 − d2ũz =−[(l+ m)/m] dẽ/dz+(1/m) dp̃f /dz, (23)

d2p̃f /dz2 − j2p̃f = b2ẽ, d2ẽ/dz2 − a2ẽ=0, (24, 25)

where

a2 = j2 − h2, b2 = rv2 −Dh2, h2 =
r− rf

D
v2 −

iv
k'D

, d2 = j2 −
rv2

m
. (26)

It is seen that these equations can be easily solved one by one. First, under the wave
radiation condition, only outgoing waves are allowed in the half-space. Thus, with the
assumptions of Re(a)Q 0 and Re(d)Q 0, equation (25) can be solved for ẽ and then given
ẽ, equation (24) can be solved for p̃f . Similarly, the expressions for ũz , ũr can be obtained
from equations (23) and (22). Finally the solutions are given as follows

ẽ=A'1 eaz, p̃f =−(b2/h2)A'1 eaz +A'2m e−jz, (27, 28)

ũz =−(a/h2)A'1 eaz −(mj/rv2)A'2 e−jz +(1/j)A'3 edz, (29)

ũr =(j/h2)A'1 eaz −(mj/rv2)A'2 e−jz +(1/d)A'4 edz. (30)

Among the four integral constants in the above equations, only three are independent.
With the relations of (27), (29) and (30), one obtains

A'4 =−(d/j)A'3 . (31)

Similarly, based on the stress–strain relations (17)–(19), the stresses can be given as

t̃rz

2m
=

aj

h2 A'1 eaz +
mj2

rv2 A'2 e−jz − 1
20j2 + d2

dj 1A'3 edz, (32)

s̃z

2m
=0 l

2m
−

a2

h2 +
b2

2mh21A'1 eaz +0mj2

rv2 −
1
21A'2 e−jz. (33)

One can now arrange equations (29), (30), (32) and (33) in matrix form as

{Y}=[8]{X}, (34)

where

{Y}=[ũr ũz t̃rz s̃z ]T, {X}=[A'1 A'2 A'3 ]T.

The elements of matrix [8] are given in the Appendix.
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3.   

First, one considers the hydraulic interface condition. The interface is usually assumed
to be free draining, that is the pore pressure is zero. With this condition, the integral
constant A'2 in equation (34) can be eliminated and can thus be simplified as

{Y}=[8]d{X}, (35)

where

{X}=[A'1 A'3 ]T.

The elements of matrix [8]d are listed in the Appendix.
Placing z=−h, z=0− over equation (11) and placing z=0+ over equation (35), and

introducing the following continuity conditions at the interface

ur ur

uz uz

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j
trz

=
trz

, (36)

sz z=0− sz z=0+

one has

{V}z=−h =[Q]{X}, (37)

where

[Q]= [f]z=−h[f]−1
z=0[8]z=0. (38)

The two integral constants in equation (37) can be determined from the following
boundary conditions at z=−h (d(r) is Dirac delta function)

t̄rz =0, s̄z =−p0d(r)/2pr. (39, 40)

Then, the surface radial and vertical displacements can be further achieved as follows:

6ũr

ũz7z=−h

=$Q11

Q21

Q12

Q22%$Q31

Q41

Q32

Q42%
−1

6 0
−p0/2p7. (41)

Applying the inverse Hankel transforms of the above two equations, one obtains the
solutions in terms of integration:

ūr =
p0

2p g
a

0

j
Q11Q32 −Q12Q31

Q31Q42 −Q41Q32
J1(jr) dj, (42)

ūz =
p0

2p g
a

0

j
Q21Q32 −Q22Q31

Q31Q42 −Q41Q32
J0(jr) dj. (43)

After the surface displacements are given, the stresses and displacements in the dry layer
and the saturated half-space can be conveniently achieved. In this note, one only focuses
on the surface displacements.
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4.   

One now proceeds to demonstrate the accuracy of the solutions by considering a limiting
case. When the thickness of the overlying dry layer goes to zero (h:0), the model
considered would become the saturated half-space model. Equation (37) becomes

{V}z=−h =[8]d,z=0{X}. (44)

By introducing the boundary conditions, the solutions can be obtained as

ūr =
p0

2p g
a

0

j2 D1

D
J1(jr) dj, ūz =

p0

2p g
a

0

j
D2

D
J0(jr) dj, (45, 46)

where

D1 = m(rv2 − b2)(j2 + d2)−2md(arv2 + b2j), (47)

D2 = m(arv2 + b2j)(j2 − d2)−4mb2j3, (48)

D= mrv2(2ma2 − lh2)(j2 + d2)− m2b2j2(j2 + d2)−4m2j2d(arv2 + b2j). (49)

When there is no pore fluid in the material (rf =0), the above model can be further
simplified as a conventional half-space (one phase media). The parameters in equation (26)
are reduced to

h2 = rv2/D, b2 =0, a2 = j2 − rv2/D (50)

Then, D1, D2 and D can be simplified and the solutions for the surface displacements of
the conventional half-space take the following forms:

ūr =
p0

2pm g
a

0

j2 j2 + d2 −2ad

(j2 + d2)2 −4adj2 J1(jr) dj, (51)

ūz =
p0

2pm g
a

0

j
a(j2 − d2)

(j2 + d2)2 −4adj2 J0(jr) dj. (52)

In view of the assumptions of Re(a)Q , Re(d)q 0, it is found that equation (51) and (52)
are the conventional solutions of Lamb’s problem [12].

5.  

A simple example is presented in this section to illustrate applications of the present
theory. To obtain the surface displacements (42) and (43), numerical integration has to
be employed. In the calculation, the physical properties of the dry soil layer are:
m'=8·6 MPa; n'=0·3; r'=1800 kg/m3 where n' is Poisson’s ratio. The properties of
saturated soils are: m=6·6 MPa; n=0·35; rs =2600 kg/m3; rf =1000 kg/m3 n=0·4
k=10−5 m/s.

The exciting load is taken to be 100 N, with frequency of 10 Hz. Figure 2 shows the
variations of surface vertical and radial displacements in the near field. Two cases for the
ground water table are presented. In case 1, the water table is assumed to be located at
the depth of 1·5 m and in the other case, it is located at 1·0 m.
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Figure 2. Surface vertical and radial displacements in the near field: — — —, vertical (h=1·5 m); ----, radial
(h=1·5 m); — - —, vertical (h=1·0 m); ——, radial (h=1·0 m).

6. 

An analysis has been made of the response of a saturated layered half-space subjected
to a harmonic surface loading based on the u–p dynamic formulation for two-phase
material. A simple and direct approach is presented, which does not rely on the use of
conventional Helmholtz representation in poroelasticity. Analytic solutions are obtained
and verified and an example application is given. The analysis formulation presented in
this note shows potential applications in solving other related boundary value problems
associated with saturated uniform or layered soils in practical engineering.
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

The elements of matrix [f]

f11 =
D'j
r'v2 cosh (pz), f12 =

D'j
r'v2 sinh (pz), f13 =−

q
j

cosh (qz),

f14 =−
q
j

sinh (qz),

f21 =−
D'p
r'v2 sinh (pz), f22 =−

D'p
r'v2 cosh (pz), f23 = sinh (qz),

f24 = cosh (qz),

f31 =
2m'D'pj

r'v2 sinh (pz), f32 =
2m'D'pj

r'v2 cosh (pz), f33 =−
q2 + j2

j
m' sinh (qz),

f34 =−
q2 + j2

j
m' cosh (qz), f41 =0D'−

2m'D'j2

r'v2 1 cosh (pz),

f42 =0D'−
2m'D'j2

r'v2 1 sinh (pz),

f43 =2m'q cosh (qz) f44 =2m'q sinh (qz).

The elements of matrix [8] are as follows

811 =
j

h2 eaz, 812 =−
mj

rv2 e−jz, 813 =−
1
j

edz, 821 =−
a

h2 eaz,

822 =−
mj

rv2 e−jz, 823 =
1
d

edz,

831 =
2maj

h2 eaz, 832 =
2m2j2

rv2 e−jz, 833 =−m
j2 + d2

dj
edz,

841 =0l−
2ma2

h2 +
b2

h21 eaz 842 =0mj2

rv2 −11m e−jz 843 =2m edz.

The elements of matrix [8]d

811 =
j

h2 eaz −
b2j

h2rv2 e−jz, 812 =−
1
j

edz, 821 =−
a

h2 eaz −
b2j

h2rv2 e−jz,

822 =
1
d

edz, 831 =
2maj

h2 eaz +
2mj2b2

h2rv2 e−jz, 832 =−m0j2 + d2

jd 1 edz,

841 =0l−
2ma2

h2 +
b2

h21 eaz +0mj2b2

h2rv2 −
b2

h21 e−jz, 842 =2m edz.


