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The mechanics of highly extensible cables are studied numerically. The governing
equations for the cable motion are reformulated using Euler parameters and we employ
a non-linear stress–strain relation. Also, bending–stiffness terms are included to ensure a
well-posed problem when tension becomes very low. Thus, the singularity associated with
Euler–angle formulation is removed and the model allows for shock formation, while it can
accommodate zero or negative tension along the cable span. Implicit time integration and
non-uniform grid along the cable are adopted for the numerical solution of the governing
equations. The model is employed to investigate (1) the dynamical behaviour of the
breaking and post-breaking of an initially taut cable; and (2) the dynamic response of a
tethered near-surface buoy subject to wave excitation. For a breaking cable we find that
the speed of snapback, which can have potentially catastrophic effects, is proportional to
the initial strain level, but the principal parameter controlling the cable behaviour is the
time it takes for the cable to fracture. In the case of a tethered buoy in waves, we find that
beyond a threshold wave amplitude the system begins to exhibit first zero tension, then
followed by snapping response, while the buoy performs chaotic motion.
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1. INTRODUCTION

The mechanics of extensible cables that have a linear stress–strain relation, as well as the
mechanics of inextensible chains, in air and in water, have been the object of substantial
research [1, 2]. More recently, the mechanics of cables under low or zero tension, situations
that are often encountered in the umbilical tethers of remotely operated vehicles (ROV),
have been considered. The problems arising in regions of low tension and the way to
address them are discussed in the work of Dowling [3], Triantafyllou and Triantafyllou
[4], Burgess [5], and Triantafyllou and Howell [6, 7].

Experimental methods have also been used to determine the breaking strength of
synthetic lines and how it is affected by various factors such as rope construction, wet or
dry condition, and cyclic loading. Bitting [8] determined that the dynamic stiffness of a
synthetic line is larger than its quasi-static stiffness. Leeuwen [9], Flory [10] and Shin et
al. [11] performed several similar experiments and found that the stress–strain relation of
synthetic lines is visco-elastic when the lines are new. The parameters of the stress–strain
relation seem to depend on the type of loading and also to vary during the life of the line.
In general, the visco-elastic effects get attenuated by prolonged use of the line and the
stress–strain relation settles to an expression which is non-linear but with weak memory
effects.
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In a more recent effort, Bitting [12] used experiments to determine the coefficients of a
visco-elastic model known as the standard linear solid model [13]. Recently, Triantafyllou
and Yue [14] used analytical methods to investigate the effects of the hysteretic
character of the stress–strain relation of synthetic cables on the damping of their transverse
motion.

In this work we develop a set of equations describing the motion of a highly-extensible
cable, using Euler parameters to represent the relative rotation of the reference frames to
avoid the singularity accompanying the Euler–angle representation. The bending stiffness
of the cable is included to avoid an ill-posed problem when the tension becomes small [15].
Finally an arbitrary tension–strain relation is allowed.

An implicit numerical integration scheme is used, which allows long-term simulation
with small overall error. To demonstrate the applications of this method, we studied two
problems: the post-breaking behaviour of a synthetic cable and the dynamic response of
a moored near-surface buoy in surface waves.

The problem of a breaking synthetic cable is significant because for the same external
load a highly extensible cable stores a much larger potential energy than a wire rope; this
can have catastrophic effects. Research on this subject has been so far mainly experimental.
Feyrer [16] conducted an experimental study of the snapback of synthetic cables using long
lines; hence he had to conduct his experiments outdoors. The motion of the breaking line
was filmed and measurements were made from the film, which provide qualitative, rather
than quantitative results of the motion of the line, due to the high speed of response. Bitting
[17] conducted similar experiments but he used shorter specimens and thus was able to
conduct his experiments in the laboratory. As a result, his measurements of the position
of the line at each frame are obtained more accurately. Paul [18] used analytic energy
calculations to determine the length and strength of synthetic ropes that can be safely used
to stop moving objects. He also used energy calculations to determine the snap-back
velocity of breaking lines. Whereas experimental results are difficult to quantify due to the
high speed response of the line, the numerical capability presented herein captures the
dynamic response very accurately and allows the study of the principal mechanisms
involved.

Tethered buoys are used extensively for oceanographic applications and for mooring
ships and floating structures. Grosenbaugh [19] addressed the problem of oceanographic
buoys with very long tethers, where an equivalent linearization of the drag force can
produce valuable information on the wave-induced dynamic tensions. Idris et al. [20]
addressed the problem of moored buoys using numerical simulation. The problem of the
motion of a underwater buoy tethered by cable to the bottom involves long-term
simulation of cable dynamics, which is possible under the present formulation, which uses
Euler parameters and an implicit time integration schemes.

2. PHYSICAL PROBLEM AND MATHEMATIC FORMULATION

We consider the dynamical behaviour of a highly-extensible cable. To derive the
equations of motion, we assume that: (1) at least piece-wise the cross-section of the cable
is homogeneous and circular or annular; (2) the Euler–Bernoulli beam model represents
adequately the effects of bending; (3) the tension is a single-valued function of the strain.
The partial differential equations of the cable motion are derived by considering the
balance of forces, the balance of moments and the compatibility relation for a cable
segment of infinitesimal length. The stress–strain relation is not necessarily linear but can
be any single-valued function. The fluid forces due to a current varying both in space and
time are taken into account.
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2.1.  

We define two coordinate systems: (X, Y, Z) is a space-fixed rectangular coordinate
system with unit vectors i
 , j
 and k
 ; (x, y, z) is a local, Lagrangian reference frame with
unit vectors t
 , n̂ and b
 , where t
 points in the direction of the local tangent of the cable,
n̂ in the direction of the maximum curvature (normal direction), and b
 in the bi-normal
direction. Next, it is necessary to obtain the transformation matrix between systems. The
unit vectors of the local reference frame t
 , n̂ and b
 can be written as linear combinations
of the unit vectors of the fixed reference frame i
 , j
 and k
 :

&t
n̂b
 '=C& i
j
k
 '. (1)

Here the matrix C, called the rotation matrix, varies both along the cable span and with
time, i.e. C=C(s, t).

Since the length of the cable is several orders of magnitude larger than its diameter,
its configuration and motion can be described by the shape and motion of its
centreline. We tag each point along the cable with the distance s from the end of the
cable to this point when the cable is not stretched. Considering an arbitrary vector
G=G(s, t), G=[GX , GY , GZ ] in the fixed reference frame. Going to the local
reference frame, G=[G1, G2, G3]. These two expressions of G are linked by the rotation
matrix

&G1

G2

G3'=C&GX

GY

GZ'. (2)

We denote the angular velocity of the local reference frame with respect to the fixed
reference frame by v(s, t) and the Darboux vector of the cable by V(s, t), then the
derivatives of G are given by

DG
Dt

=
1G
1t

+v×G,
DG
Ds

=
1G
1s

+V×G. (3, 4)

Note that the Darboux vector V(s, t) is defined as in Landau and Lifshitz [21], i.e.
the torsion is the material torsion of the cable and not the geometric torsion of the
line.

The most commonly used method to obtain the rotation matrix C is using three Euler
angles. Its disadvantage is a well-known singularity involved in Euler–angle methods. The
standard way to avoid it is to choose a sequence of rotations which become singular at
a position that we do not expect to occur. However, for long-time simulations, in which
the range of the motions can not be known in advance, the Euler–angle method is not
adequate.

An alternative method of describing the rotation from fixed to Lagrangian frames is the
method using Euler parameters, which shows no singularity. The method was first used
in cables by Hover [22], and is based on the principal rotation theorem derived by Euler:
an arbitrary orientation change can be achieved by a single rotation through a principal
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angle a about a principal unit vector l
 . The four Euler parameters are defined in terms
of a and components of l
 :

b0 cos (a/2)

b1 lX sin (a/2)
G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

b=
b2

=
lY sin (a/2)

(5)

b3 lZ sin (a/2)

in terms of which, the rotation matrix can be written in the form:

C= &b
2
0 + b2

1 − b2
2 − b2

3

2(b1b2 − b0b3)
(b1b3 + b0b2)

2(b1b2 + b0b3)
b2

0 − b2
1 + b2

2 − b2
3

2(b2b3 − b0b1)

2(b1b3 − b0b2)
2(b2b3 + b0b1)

b2
0 − b2

1 − b2
2 + b2

3'. (6)

2.2.   

We study the motion of an infinitesimal segment of the cable of initial unstretched
lengths ds, centred at a point s in a position R(s, t), as shown in Figure 1. Under the
applied internal and external forces and moments, the segment stretches to a length ds1.
The strain o(s, t) is defined as

o(s, t)=
ds1 −ds

ds
. (7)

The velocity of the cable at s is

V(s, t)= ut
 + vn̂+wb
 =Ui
 +Vj
 +Wk
 =
1R
1t

. (8)

Because of stretching, the mass per unit length of the cable segment m is reduced to m1.
Using the principle of conservation of mass, the relation between m and m1 is

m1 =m
ds
ds1

. (9)

Figure 1. Cable segment used for the derivation of the cable equations.
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For synthetic cables, the Poisson ratio is n1 0·5 and the volume of the cable segment is
conserved. Then

A1 =A
ds
ds1

=
A

1+ o
, (10)

where A and A1 are the cross-sectional areas before/after stretching.
The forces acting on the cable segment under consideration are: the internal force T

(T=Tt
 +Snn̂+Sbb
 ), and the external forces. If the cable is immersed in water, the
external forces include the hydrostatic force, the hydrodynamic force and the gravity force.
Applying Newton’s second law, we obtain

m1
DV
Dt

=
DT
Ds1

+Fe , (11)

where Fe denotes the total external forces per unit length. Expanding the total derivative
terms and making use of the mass conservation (9), we have

m01V
1t

+v×V1=
1T
1s

+V×T+(1+ o)Fe . (12)

The moments acting on the cable segment under consideration are the internal moment
M=Mtt
 +Mnn̂+Mbb
 and the external moment Q. Here,

Mt =GIpV1, Mn =EIV2, Mb =EIV3, (13–15)

where EI is the bending stiffness and GIp the torsional stiffness of the cable. Since cables
are not designed to sustain any external moments, Q is neglected. The moment equations
are given by the balance of the internal moment and the moment caused by the internal
force T:

1
(1+ o)2

1M
1s

+
1

(1+ o)2 V×M+(1+ o)t
 ×T=0. (16)

For the configuration of the cable to be continuous, we must enforce the compatibility
relation. The vector R(s, t) and its partial derivatives are continuous in t and s. This leads
to

D
Dt 0DR

Ds1=
D
Ds 0DR

Dt 1 (17)

which can be rewritten as

D
Dt

[(1+ o)t
 ]=
DV
Ds

(18)

after using the relation t
 = 1R/1s1 = 1R/1s/(1+ o). Expanding the total derivatives, we
obtain

1o

1t
t
 +(1+ o)v× t
 =

1V
1s

+V×V. (19)

At any point along the cable, the tension T and the strain o are related by the tension–strain
relation:

T= f(o), (20)

where the form of f depends on the properties of the cable.
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In summary, we write the equations of motion in a vector form:

1Y
1s

+M(Y)
1Y
1t

+P(Y)=0, (21)

where

Y=[o Sn Sb u v w b0 b1 b2 b3 V1 V2 V3]T (22)

and the forms of M and P are shown in Appendix A.

2.3.  

The case of an immersed cable needs special attention. The hydrostatic force along a
short portion of the cable span acts in the normal direction. To recover the buoyancy force,
we hence add and subtract the missing pressure forces at the (imaginary) cuts at the ends
of the infinitesimal section. As a result, we obtain the buoyancy force acting vertically, but
the tension must be modified and becomes the effective tension Te =T+ peA1 [23], where
pe is the hydrostatic pressure. The resulting buoyancy and gravity forces act in the vertical
direction, and we hence combine them to form the net weight-in-water force Fw :

(1+ o)Fw =−w0k
 , (23)

where w0 =mg−Arwg, rw is the density of water and g the gravitational acceleration. The
external force Fe can be separated into a static part Fw and a hydrodynamic part Fd . In
this paper we will always refer to the effective tension; hence the subscript e will be
neglected.

Let the velocity of the water be Vc = uct
 + vcn̂+wcb
 =Uci
 +Vcj
 +Wck
 ; then the
hydrodynamic force Fd is estimated using Morison’s equation to be given by

(1+ o)Fd =−1
2rwdpCdt (u− uc )=u− uc =(1+ o)1/2t


− $12 rwdCdp (v2
r +w2

r )1/2vr (1+ o)1/2 + rw
pd2

4
v̇c +ma (v̇c − v̇)%n̂

− $12 rwdCdp (v2
r +w2

r )1/2wr (1+ o)1/2 + rw
pd2

4
ẇc +ma (ẇc − ẇ)%b
 , (24)

where v̇, ẇ, v̇c , and ẇc are the accelerations, vr = v− vc and wr =w−wc the relative
velocities, ma the added mass of the cable per unit length, d the diameter of the cable, Cdt

and Cdp the drag coefficients in the tangential and normal directions, respectively. In our
numerical study, Cdt =0·1 and Cdp =1·0 are chosen.

3. NUMERICAL METHOD

A finite-difference scheme, the so-called box method, is employed to solve the governing
equations (21) for the cable motion. With this method, the implicit scheme is used for time
integration. According to Wendroff [24], the box method has an accuracy of second order
both in space and time and is unconditionally stable and convergent.

In implementation, the cable is divided into np −1 discrete segments by means of np

computational points (k=1, 2, . . . , np ). Each segment has an unstretched length Ds(k)
defined as the length of the segment between the grid points k and k+1. The segment
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length is not necessarily constant along the cable. This allows us to have finer grids at the
ends of the cable where the unknowns possess larger variations.

At each moment ti , given the values of unknown variables (Yk,i−1) at the previous time
step ti−1 = ti −Dt, we need to determine the values of the unknown variables (Yk,i ). To
do that, we write the discrete form of the governing equations (21) at the centre of each
computational ‘‘box’’.

At the centre of the ‘‘box’’, we approximate the value of the unknown Yk−1/2,i−1/2 by

Yk−1/2,i−1/2:1
4(Yk−1,i−1 +Yk−1,i +Yk,i−1 +Yk,i ) (25)

and the time and space derivatives of the unknown by

01Y
1t 1k−1/2,i−1/2

:
1
2 0Yk−1,i −Yk−1,i−1

Dt
+

Yk,i −Yk,i−1

Dt 1, (26)

01Y
1s 1k−1/2,i−1/2

:
1
2 0Yk,i−1 −Yk−1,i−1

Ds(k−1)
+

Yk,i −Yk−1,i

Ds(k−1) 1. (27)

The resulting discrete approximation of the governing equations (21) at the point
(k−1/2, i−1/2) takes the form:

2Dt(Yk,i −Yk−1,i +Yk,i−1 −Yk−1,i−1)

+Ds[(Mk−1,i +Mk−1,i−1)(Yk−1,i −Yk−1,i−1)+ (Mk,i +Mk,i−1)(Yk,i −Yk,i−1)]

+DtDs(Pk−1,i−1 +Pk−1,i +Pk,i−1 +Pk,i )=0, (28)

which represents a system of ne =13 equations and involves the dependent variables at
two neighbouring points k and k−1. Upon writing equation (28) for all discrete points
(k−1/2, i−1/2), k=2, 3, . . . , np and together with the boundary conditions at the end
points k=1 and k= np , we obtain a system of nenp equations for nenp unknowns, which
can be solved efficiently by the relaxation method.

Note that the values of space and time discretizations, Ds and Dt are determined through
convergence tests based on the required accuracy in the solution, but this is not an
automated process. For the problems studied in section 4, Ds and Dt are chosen to be
sufficiently small so that the deviation in the simulation results resulting from doubling
the number of points used is Q1%.

4. NUMERICAL SOLUTIONS APPLIED TO SYSTEMS WITH SYNTHETIC LINES

We investigate numerically the dynamic behaviour of (a) a breaking synthetic line; and
(b) a moored buoy subject to wave action. In both cases synthetic lines are subject to large
deformations and loads, including cases of zero tension response. The applications serve
to demonstrate the capability introduced by the formulation outlined in the previous
sections; while the dynamic response of the individual systems is of great theoretical and
practical interest.

4.1. -     

Synthetic cables stretch up to thirty times more than steel cables before reaching their
breaking strength. Thus they can store much larger potential energy for the same external
load, than wire ropes. This energy is rapidly transformed into kinetic energy when the cable
breaks. Observations of breaking towlines confirm that the cables snaps back at high
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velocity and can be extremely destructive. Serious damage to equipment and, more
importantly, injuries to personnel have been reported by the U.S. Navy.

So far, only experimental methods have been used to study the dynamics of a tensioned
synthetic line after failure, because of the difficulties involved in simulating large motions
at very high speeds and rapidly varying tension. Feyrer [16] conducted a series of
experiments to study the behaviour of synthetic ropes made of various materials and
construction types after they broke. Bitting [17] conducted a similar series of experiments
involving smaller ropes. Due to the high speed of the phenomenon of line breaking,
experimental results are used primarily for qualitative understanding of the mechanisms
involved; their high cost does not allow a systematic investigation of the effect of the
principal parameters.

4.1.1. Problem definition
Consider a 60 m long synthetic cable whose end-points are held fixed at the same vertical

level. The catenary shape of the cable will lie in the vertical plane containing its two
end-points. In our study, we choose a cable with cross-sectional area 1·964×10−3 m2 and
density r=1140 kg/m3.

The tension–strain relation of the cable is the functional expression
T= p1 tanh (p2o+ p3)+ p4 + p5o which is obtained by fitting the data provided by Bitting
[12]. The coefficients of the tension–strain relation are: p1 =2·703×105 N, p2 =10·2,
p3 =−2·128, p4 =2·627×105 N, and p5 =135·5 N.

The cable is held at its initial position by horizontal and vertical forces applied at the
end-points, and we assume that at time t=0 the cable breaks at one of the end-points.
In order to simulate the cable breaking, the horizontal and vertical external forces acting
at one end are quickly but smoothly reduced to zero. The horizontal force, Fh , and the
vertical force, Fv , both reach zero at t= tbr , called the fracture time, which turns out to
be a critical parameter of the problem. This is physically equivalent to the fracture time
in experiments where a cut is made near a cable end, under high load: after fracture
initiates, the cable breaks progressively as more and more fibers adjacent to the cut fail,
because they carry a substantially larger load, until the cable is severed. The force variation
with time is modeled as:

Fh =Fh,s cos2 0p2 t
tbr1, Fv =Fv,s cos2 0p2 t

tbr1,
where Fh,s and Fv,s are the static horizontal and vertical forces at the end of the cable,
respectively.

4.1.2. Fast breaking cables
To assess the effect of the initial static tension on the dynamic behaviour of the breaking

line, we perform four simulations with different initial static tensions. For the case of low
tension (hereinafter denoted case 1), the initial static tension is chosen to be 45 000 N which
produces a static strain of 9·9%. For intermediate tension, we consider two cases with the
static tensions of 180 000 N producing a strain of 17·8% (case 2) and 315 000 N producing
a strain of 22·8% (case 3). For the high-tension case (case 4), we impose the static tension
of 450 000 N which causes a strain of 29·2%. For all simulations, the breaking time is
chosen to be tbr =5 ms. Note that the imposed tension in case 4 is the quasi-static breaking
tension for the cable under consideration. Thus, in case 1 the cable is broken at a static
tension which is 10% of its breaking strength, while in cases 2 and 3 the cable is broken
at tensions that correspond to 40 and 70% respectively of the cable’s breaking strength.
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Figure 2. Motion of a breaking line (breaking time: 5 ms): (a) case 1 (Fh,s =45 000 N); (b) case 2 (180 000 N);
(c) case 3 (315 000 N); (d) case 4 (450 000 N).

Figure 2 shows the x–z motion of the breaking cable, with the successive configurations
of the line plotted at 10 ms apart. The total time, tT , covered by the successive plots is
different for each case: tT =0·20 s, 0·14 s, 0·13 s, and 0·12 s for cases 1, 2, 3, and 4,
respectively. A longitudinal wave travels along the cable at the elastic wave speed. The
wave speed can be accurately estimated using the value of the static tension; the wave takes
t(=0·55–0·91 s to travel along the whole length of the cable. Thus, the breaking time and
time intervals covered by the simulations are appropriate.

From Figure 2, we see that lines breaking at higher tension experience a larger
snap-back. Also the vertical motion of the breaking line decreases as the static tension
increases. Finally, we note that the cable is ‘‘buckling’’ at the left end, which is the
fixed end. In the high-tension case, the momentum of the recoiling part of the line is
so large that it causes parts of the cable to overshoot and move to the left of the fixed
point.

Figure 3 shows the variation of the tension along the cable, as function of time. The
horizontal axis is the unstretched Lagrangian coordinate (s) while the vertical axis is the
tension in N. Notice that the plots for cases 1 and 2 have different tension scales than plots
for cases 3 and 4. The total time shown and the time elapsed between successive lines are
the same as in the x− z motion plots (cf. Figure 2).

The almost horizontal line at the top of each plot in Figure 3 marks the initial static
tension for this case. The lines following this initial line show the tension dropping to zero
at the right end, and the front of the unsteady tension propagating towards the fixed end.
For the discussion on the behaviours of the propagation speed of the front, we define T'
by

T'(o)=dT/do, (29)
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hence for a linearly elastic material T'=EA where E denotes the Young’s modulus of the
material and A the cross-sectional area. For a synthetic cable the stress–strain relation is
non-linear, hence necessitating the use of T' in the problem formulation rather than the
linear elastic stiffness EA.

The speed of propagation of the front, identical to the speed of propagation of elastic
waves [25], is given by ce =[T'(o)/m]1/2. Clearly the front speed depends on the initial static
tension and thus it is different for each case. For high-tension cases, the speed reaches
about 500 m/s, which is supersonic relative to the surrounding air. Such a supersonic wave
can cause an acoustic wave drag on the cable, which, however, is expected to be small due
to the very small lateral motion of the cable [26].

Notice that due to the presence of an inflection point in the tension–strain relation, the
tension fronts in cases 2 and 3 propagate along the cable at faster speeds than that in case
4. Hence, for cases 2 and 3, we can see a shock beginning to form. At these high tensions
the stress–strain relation is concave down and we retrieve the shock forming during
unloading described in Courant and Friedrichs [27]. Here the shock does not form
completely because the wave reaches the fixed end. Shock waves have been studied by
Tjavaras and Triantafyllou [28] for synthetic cables subject to a sudden end load or
imposed motion.

Finally, in Figure 4 the variation with time of the velocity of each point of the cable
is plotted. As for the tension plots, the horizontal axis is the unstretched Lagrangian
coordinate in m. The vertical axis is the velocity of the cable elements in m/s. The total
time plotted and the time elapsed between each line are the same as in Figures 2 and 3.

In each plot of Figure 4, a horizontal line shows the initial velocity which is zero. The
velocity increases at the right end where the breaking occurs, and the front of non-zero
velocity propagates towards the fixed end. This front propagates at the same speed as the
‘‘non-zero static tension’’ front described above. Another front, the one at the highest

Figure 3. Time variation of the tension distribution of a breaking line (breaking time: 5 ms): key as in Figure 2.
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Figure 4. Time variation of the velocity distribution of a breaking line (breaking time: 5 ms): key as in Figure 2.

velocity for each run, also propagates along the cable. This front propagates at the same
speed for all cases, because this is the speed of propagation of elastic waves at zero tension
([T'(0)/m]1/2). The segment of the cable to the right of this front is under zero tension and
is being pulled towards the fixed end by the rest of the line.

Figure 4 also indicates that the velocity of the end-point, which is the maximum spanwise
velocity in every case, is higher when the initial static tension is higher. This finding is an
expression of the fact that more energy is stored in the lines that are more highly tensioned.
Notice that for the high-static-tension case, the velocity of the broken end reaches values
comparable to the speed of sound in air.

4.1.3. Slowly breaking cables
It has been postulated that cables that break slowly are safer. By ‘‘slowly-breaking’’ we

mean that the value of the tension at the breaking point takes longer to reach zero. Cables
have been designed so that their strands do not fail all at the same time but sequentially,
to prevent a sudden rupture. Thus, the intact strands continue to carry loads which are
smaller than the static tension on the line but larger than zero, and the rest of the force
is taken up by inertia forces. In order to assess the effect of the time it takes for the tension
to drop from its static value to zero, we perform another four simulations (cases 1'–4')
with the breaking time extended to tbr =50 ms while the static tensions are kept the same
as for cases 1–4.

Figure 5 shows the post-fracture motion of the breaking line in the x–z plane at 10 ms
intervals. Comparing these results with those in Figure 2, we observe that the overall
motion of the centreline is not significantly affected by the slower breaking time. Like the
fast-breaking case, the configuration with higher static tension obtains a larger snap-back
but a less pronounced vertical motion. Again, buckling of the cable occurs for all static
tensions in the region close to the cable’s fixed end.
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Figure 5. Motion of a breaking line (breaking time: 50 ms): (a) case 1' (Fh,s =45 000 N); (b) case 2' (180 000 N);
(c) case 3' (315 000 N); (d) case 4' (450 000 N).

Figure 6. Time variation of the tension distribution of a breaking line (breaking time: 50 ms): key as in
Figure 5.
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Figure 7. Time variation of the velocity distribution of a breaking line (breaking time: 50 ms): key as in
Figure 5.

The similarity in the x–z motion between the fast-breaking and slowly-breaking cases
hides, however, significantly differences that can be seen in the tension plots and the
cable–velocity plots. Figure 6 shows the time variation of the tension distribution along
the cable, where the scales as well as the time elapsed between successive lines are identical
to those in Figure 3. Clearly, when the breaking time is larger, the tension is seen to be
more uniformly distributed along the cable. Indeed it takes longer time for the tension at
the breaking end to reach zero and the non-zero-tension wave has time to propagate to
the fixed end, thus making the variation in the tension less sharp. This has a noticeable
effect on the velocity distribution.

Figure 7 shows the time variation of the cable velocity spanwise distribution. By
comparing to the fast breaking case (cf. Figure 4), we find that the maximum velocity in
the cable is not affected by the fracture time; the initial static tension is the dominant
parameter affecting the maximum velocity. On the other hand, the time until the maximum
velocity is reached varies: in the slowly breaking cases it takes longer for the maximum
velocity to be reached at the breaking end. Also, the portion of the length of cable that
moves at this maximum velocity is smaller in the slowly breaking runs, indicating that the
kinetic energy is more uniformly distributed in the line. Hence, even though the total
kinetic energy that must be dissipated after breaking depends only on the static tension
and does not depend on the breaking time, the way the energy is dissipated does. Lines
that are breaking more slowly dissipate the energy along a larger part of their length. Fast
breaking cables have a portion of their length moving at maximum velocity and another
part practically motionless, whereas slowly breaking cables have a larger part moving at
moderate velocities and only a small region near the broken end moves at maximum speed.
This is a possible explanation for the generally accepted view that slowly breaking lines
are somewhat less destructive than fast breaking ones.
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4.2.          

We study the problem of dynamic response of a buoy tethered with a relatively short
tether in finite water depth, under the influence of incident water waves, as shown in
Figure 8. Large buoy motions may be excited when a synthetic rope is used due to the
large extensibility of the material. We consider the qualitative dynamic properties of the
system through long numerical simulation of the response.

We consider the buoy to be a sphere with diameter D. The upper end of the cable is
considered to be attached at the centre of the spherical buoy, while the lower end is fixed
at the bottom. The average depth of the water is H. We consider long waves compared
to the diameter of the buoy; hence the hydrodynamic loads on the buoy and the cable can
be approximated by Morison’s equation. The equation of motion for the buoy is

(M+Ma )
dU
dt

=(rwV+Ma )
dUw

dt
+B−W−T− 1

2rwCdAp (U−Uw )=U−Uw =, (30)

where M is the mass of the buoy, Ma its added mass, and V its volume. Here the vector
U denotes the velocity of the buoy, Uw the flow velocity due to the incoming waves, T the
tension at the upper end of the cable, and B the buoyancy and W the weight of the buoy.
In addition, Cd is the viscous drag coefficient and Ap the projected area of the buoy. Since
the buoy is spherical, the added mass, Ma , and the projected area, Ap , are the same in all

Figure 8. A buoy tethered in surface waves.
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T 1

Physical characteristics of tether–sphere system for the
simulations

Tether

Unstretched length l0 =20 m
Cross-sectional area =7·85×10−5 m2

Density r=1140 kg/m3

Sphere

Diameter D=1·5 m
Mass M=1611 kg
Added mass Ma =907 kg
Drag coefficient Cd =0·2

directions. The three components of the vector equation (30), in the tangential, normal
and binormal directions, provide the boundary conditions at the upper end of the cable.

We consider uni-directional incident waves; hence the motions of the cable and the buoy
are planar. An unstable out-of-plane response can be excited under conditions of cable
snapping described later. A polar coordinate system (r, u) is chosen to represent the
position of the buoy, where r is the distance from the lower end of the cable to the centre
of the buoy and u the angle from the vertical direction. The physical characteristics of the
cable and sphere used in our simulations are given in Table 1. For this problem, we choose
a linear strain–tension relation T= p1o and p1 =5×104 N.

We use the static solution as the initial condition for the dynamic simulation. When at
rest, the cable is elongated to a length l0 +Dl, with Dl2 0·04l0, because of the buoyancy;
and the buoy lies at the position (l0 +Dl, 0). The static tension at the upper end of the
cable is Ts =B−W.

An incident wave with period Ti =5 s, typical of water waves, is imposed on the free
surface. The cable–buoy system is excited by the hydrodynamic loads and begins to
oscillate about its equilibrium position. We find that the character of the response may
be drastically different depending on the amplitude of the incident waves. For small
incident-wave amplitudes, the cable remains tensioned at all times and the motion of the
buoy is periodic and regular. However, when the amplitude of the incident wave is larger
than a threshold value, the tension exhibits alternately an interval of near-zero value,
followed by a period of rapid tension built-up; then, the motion of the buoy is found to
be chaotic. To illustrate these properties, numerical results obtained for two different
incident wave steepnesses, viz. kA=0·016 and kA=0·13, are presented in the following
two sections.

4.2.1. Small incident wave amplitude
First, we consider the case with the incident wave amplitude A=0·1 m and the

associated wave slope kA=0·016. The hydrodynamic forcing due to the incident waves
is periodic so the buoy oscillates about its equilibrium position (r0, u0) (r0 = l0 +Dl and
u0 =0). Correspondingly, the length of the cable varies periodically around its mean value
l0 +Dl. Because the wave forcing is small, the amplitude of the motion Dr is less than the
static value Dl. As a result, the cable retains a positive value of tension at all times and
the cable–buoy system responds similar to a driven second-order (mass–dashpot–spring)
system.
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In the numerical simulations, the motion of the buoy starts impulsively from rest; hence,
in addition to the forced response the numerical results contain a transient response,
consisting of the natural modes of the system, which decays with time. The natural
frequencies and modes can be easily estimated from the equation of motion of the buoy.
Upon neglecting the coupling effect, the natural frequencies in the r- and u-directions are
obtained to be given by vnr =[p1/l0(M+Ma )]1/2 and vnu =[Ts /l0(M+Ma )]1/2, respectively.
In the present case, it is found that vnr 1 1·0 rad/s and vnu 1 0·2 rad/s. The forcing
frequency is the wave frequency, vi =2p/Ti =1·26 rad/s.

Figure 9 shows the time history of the cable tension at the connection with the buoy.
As expected, the transient response decays slowly due to the presence of viscous (quadratic)
damping. For the present case, with small incident wave amplitude, the cable retains a
positive tension at all times. Also, there are no internal resonances, and coupling between
the two motions is nearly negligible.

As shown in Figure 10, the motion of the buoy in the radial direction consists of forced
and transient terms, exhibiting similar trends as the cable tension. Analogous results are
also obtained for the motion of the buoy in the angular direction, as shown in Figure 11,
except that the transient response vanishes more slowly owing to its much lower natural
frequency.

Figure 12 shows the spectra of the two components of buoy motion. The spectral
amplitude of the radial motion at frequency v is obtained as

Dr̃(v)=
1

nTi g
t0 + nTi

t0

Dr(t) eivt dt, (31)

with a similar expression for the angular component Du	 . For results in Figure 12, the
integer n is chosen to be 20 and t0 =40Ti . For both radial and angular motions, the natural
and wave-forcing modes are seen to dominate the response. And the numerical values of
the natural frequencies agree quite well with the estimated values.

4.2.2. Large incident wave amplitude
Next we increase the incident wave steepness to kA=0·13, causing a correspondingly

larger buoy response. Due to the large buoy motions, the cable is at times under effective
compression, when the radial buoy motion is towards the anchor direction. The bending
stiffness is small, hence the cable buckles, assuming a high order buckling mode. As the
buoy motion reverses direction moving away from the anchor, tension builds rapidly in
the cable reaching high, impulse-like peaks, which eventually arrest the motion of the buoy,
and reverse its direction. The phenomenon of nearly-impulsive tension built up and loss
is called cable snapping. Figure 13 shows the tension as function of time in a snapping
cable: large tension peaks are followed by intervals of near-zero tension.

Because of the similarity of the snapping cable–buoy system behaviour to that of a
system with a piece-wise linear restoring force [29, 30] or the bouncing-ball problem [31],
which have been shown to exhibit chaotic behaviour under certain excitation conditions,
we investigated the dynamic properties of the cable–buoy system. An essential
characteristic of chaotic response is extreme sensibility to small variations in initial
conditions. For a chaotic motion, two trajectories with slightly different initial conditions
diverge exponentially from each other. This feature is often quantified through the
Lyapunov exponents. Beginning with two trajectories, a reference trajectory and a nearby
trajectory, and if the motion is chaotic, the two trajectories diverge from each other
exponentially; hence we have

dA2st/Ti, (32)
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Figure 9. The tension of the cable at the top end (Ti =5 s and kA=0·016).

Figure 10. The motion of the buoy in the radial direction (Ti =5 s and kA=0·016).
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Figure 11. The motion of the buoy in the angular direction (Ti =5 s and kA=0·016).

Figure 12. The spectra of the buoy motion. The results plotted are: ——, in the radial direction; –––, in the
angular direction. Theoretical prediction of the natural frequencies of the buoy system in waves is indicated by
q (Ti =5 s and kA=0·016).
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Figure 13. The tension of the cable at the top end (Ti =5 s and kA=0·13).

Figure 14. The time variation of the maximum Lyapunov exponent sm for the buoy motion in the radial
direction. The results plotted are: ——, for the case of the incident wave steepness kA=0·13; –––, for the case
of kA=0·016 (Ti =5 s).
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Figure 15. The motion of the buoy in the radial direction (Ti =5 s and kA=0·13).

Figure 16. The motion of the buoy in the angular direction (Ti =5 s and kA=0·13).

where d represents the distance between the two trajectories, and the dimensionless
parameter s is the Lyapunov exponent. A positive value of the Lyapunov exponent is an
indication of chaos. To obtain the maximum Lyapunov exponent sm in the present case,
we apply the method of Wolf et al. [32] which involves the reconstruction of pseudo-phase
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Figure 17. The spectrum of the buoy motion in the radial direction (Ti =5 s and kA=0·13).

space from time–history data. Figure 14 shows the values of the Lyapunov exponent as
function of time. For the small incident wave case (kA=0·016), the Lyapunov exponent
is seen to approach zero as time increases, implying regular motion. For the larger incident

Figure 18. The spectrum of the buoy motion in the angular direction (Ti =5 s and kA=0·13).
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Figure 19. Poincaré sections of the buoy motion obtained (a) from the exact model; and (b) from the
approximate model with parameters in equation (33) given by F=1·4, B−W=0·68, m=0·025, and v=1·14.

wave case (kA=0·13), however, a positive Lyapunov exponent is obtained, indicating
chaotic motion.

The time histories of the motions of the buoy in the radial and angular directions are
displayed in Figures 15 and 16, respectively. Unlike the small wave case (kA=0·016),
where the responses of the buoy are periodic and regular (cf. Figures 10 and 11), both the
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radial and angular buoy motions are non-periodic and appear to be irregular. This
becomes more apparent in the plots of spectra of the motions, shown in Figures 17 and
18 respectively for the radial and angular motions. Unlike the small wave case where the
natural and forcing modes are dominant (cf. Figure 12), the spectra of the motions are
continuous for a wide range of frequencies and no apparent dominant modes are shown.

The global behaviour of the dynamic buoy–cable system can be understood in terms of
characteristics of the Poincaré surface of section in the phase space. Figure 19(a) shows the
Poincaré map which is the plot of the displacement versus the velocity of the buoy in the
radial direction. Clearly, the points in Figure 19(a) fall in a region and hence the buoy
motion is chaotic. Since the complete Poincaré section represents a four-dimensional
surface for the present two-degrees-of-freedom dynamic system, its projection onto a plane
in two variables in Figure 19(a) does not show a clear fractal structure of the Poincaré map.

To obtain the Poincaré map showing fractal structure characteristic of a strange
attractor, we consider the buoy motion in the radial direction by neglecting the coupling
effect with the motion in the angular direction. The equation of motion of the buoy is much
simplified and can be expressed in the form

g̈+ mġ+ ag=F sin vt+B−W, (33)

where all quantities are normalized in terms of the mass of the buoy, the diameter of the
buoy, and the natural frequency of the radial motion. Here g denotes the radial motion,
a=1 for ge 0 and a=0 for gQ 0 represents the restoring effect associated with cable
snapping, F is the amplitude of wave excitation, and B the buoyancy and W the weight
of the buoy. Also a linear damping term mġ is included to account for surface wave
radiation due to the buoy oscillation. The plot of the Poincaré section from equation (33)
is shown in Figure 19(b) where the fractal structure of a strange attractor is evidently seen.

Figure 20. The stability of the planar motion of the cable–buoy system to the out-of-plane disturbance. The
results plotted are the time variations of the buoy motion in the direction normal to the centre plane of the
buoy–cable system with the incident wave steepness kA=0·016 (——) and kA=0·13 (–––) (Ti =5 s).
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Note that the motions of the buoy and cable are planar under the action of surface-wave
loads which are symmetric about the plane of the static cable–buoy system. However, the
planar motion of the cable may not be stable to an out-of-plane disturbance, particularly
at low tension [33]. For hanging chains under harmonic excitations, Howell and
Triantafyllou [34] found that both two- and three-dimensional responses can be excited
by planar forcings.

To examine the stability of the planar motion of the cable–buoy system under surface
waves, we numerically study the growth of an out-of-plane disturbance which is artificially
added to the dynamic system. In simulations, the initial disturbance applied is a small
velocity of the buoy (10−5 m/s) which is perpendicular to the wave loads on the cable and
buoy. Figure 20 shows the time evolution of the out-of-plane motion of the buoy for two
incident wave steepnesses: kA=0·016 and 0·13. For the small incident wave case
(kA=0·016), it is observed that the out-of-plane motion does not grow with time and thus
the motions of the cable and buoy are two-dimensional and stable. For the large incident
wave case (kA=0·13), however, the out-of-plane motion is seen to grow exponentially and
reach the value comparable to the in-plane motion (in magnitude). As a result, the total
response of the system becomes three-dimensional, which is similar to the problem of
hanging chains [34].

5. CONCLUSIONS

We developed a set of equations describing the motion of a highly-extensible cable, using
Euler parameters to represent the relative rotation of the reference frames to avoid the
singularity accompanying the Euler–angle representation. The bending stiffness of the
cable is included to ensure a well-posed problem when the tension becomes small [15].
Finally an arbitrary tension–strain relation is allowed.

The equations are solved using finite differences and an implicit numerical integration
scheme, which allows long-term simulation with error within pre-defined limits. To
demonstrate the new method, we studied two problems: (a) the post-breaking behaviour
of a synthetic cable, and (b) the dynamic response of a moored near-surface buoy in surface
waves.

For the problem of a breaking cable we investigated the time evolution of the cable
configuration, the tension distribution, and the velocity along the cable span after it breaks.
The fracture time, i.e. the time between the onset and the completion of fracture, is a
principal parameter; hence a fast-breaking case and a slow-breaking were studied in detail.
We find that in the slow-breaking case, the tension-distribution along the cable is more
uniform; on the other hand the maximum velocity in the cable is only affected by the
tension inside the cable before breaking and is independent of the fracture time. The
slowly-breaking cable dissipates the kinetic energy along a larger part of their length, thus
explaining the generally-accepted view that such lines are less destructive.

The problem of the motion of an underwater buoy tethered by cable to the bottom
requires long-term simulation of cable dynamics, which is possible under the present
formulation, using Euler parameters and implicit time integration schemes. The
cable–buoy system is excited to oscillate by the hydrodynamic loads induced by
free-surface incident waves. When the incident wave amplitude is small, the cable tension
remains positive and the motion of the buoy is regular, composed of natural (transient)
modes and forced response. However, if the amplitude of the incident wave is larger than
a threshold value, the tension becomes zero for part of the cycle, followed by large peaks
resulting in a snapping response. The motions of the buoy become chaotic, resulting in
the formation of strong surface signatures, which we provide in a companion paper [35].
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APPENDIX A: FORMS OF M AND P

The matrix M is a 13×13 matrix which is then split in the 13×6 matrix M1, the
column vectors M2, M3, M4 and M5 and the 13×3 null matrix 0. The matrix M takes
the form

M=[M1 M2 M3 M4 M5 0] (34)

with

K L0 0 0 −
m

f'(o)
0 0

G G
G G0 0 0 0 −(m+ma ) 0
G G0 0 0 0 0 −(m+ma )G G

−1 0 0 0 0 0G G
0 0 0 0 0 0G G

G G0 0 0 0 0 0
G GM1 = 0 0 0 0 0 0

, (35)
G G

0 0 0 0 0 0G G
0 0 0 0 0 0G G

G G0 0 0 0 0 0
G G0 0 0 0 0 0
G G

0 0 0 0 0 0G G
0 0 0 0 0 0k l
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−2m(vb3 −wb2)/f '(o)K L
G G
G G−2$0rw

pd 2

4
+ma1(b3Uc − b0Vc − b1Wc )+m(wb1 − ub3)%G G

G G
G G

2$0rw
pd 2

4
+ma1(b2Uc − b1Vc + b0Wc )+m(vb1 − ub2)%G G

G G
0G G

G G2(1+ o)b3

G G−2(1+ o)b2G G
M2 =

0

, (36)

G G
0G G

G G0
G G0
G G

0G G
0G G

G G0
k l

2m(wb3 + vb2)/f '(o)K L
G G
G G2$0rw

pd 2

4
+ma1(b2Uc − b1Vc + b0Wc )−m(ub2 −wb0)%G G

G G
G G

2$0rw
pd 2

4
+ma1(b3Uc − b0Vc − b1Wc )−m(vb0 + ub3)%G G

G G
0G G

G G−2(1+ o)b2

G G−2(1+ o)b3G G
M3 =

0

, (37)

G G
0G G

G G0
G G0
G G

0G G
0G G

G G0
k l
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K L−2m(wb0 + vb1)/f '(o)
G G
G G2$0rw

pd 2

4
+ma1(b1Uc + b2Vc + b3Wc )+m(ub1 +wb3)%G G

G G
G G

2$0rw
pd 2

4
+ma1(b0Uc + b3Vc − b2Wc )+m(ub0 − vb3)%G G

G G
G G0
G G2(1+ o)b1G G

2(1+ o)b0G G
M4 =

0

, (38)

G G
G G0
G G0
G G

0G G
0G G

G G0
G G0
k l

K L−2m(wb1 − vb0)/f '(o)
G G
G G−2$0rw

pd 2

4
+ma1(b0Uc + b3Vc − b2Wc )+m(ub0 +wb2)%G G

G G
G G

2$0rw
pd 2

4
+ma1(b1Uc + b2Vc + b3Wc )+m(vb2 + ub1)%G G

G G
G G0
G G−2(1+ o)b0G G

2(1+ o)b1G G
M5 =

0

. (39)

G G
G G0
G G0
G G

0G G
0G G

G G0
G G0
k l
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