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In this paper, the normal forms and the related coefficients, of high dimensional inner
resonant systems, are explored. Using a recently developed approach, calculations of
normal forms (especially the related coeflicients) are much easier, compared to the existing
methods. A general four dimensional system with two pairs of pure imaginary eigenvalues
is used as an example, and normal forms in resonant model p:g are determined. The
coefficients of normal forms related to different possible resonant models; namely, 1:2, 1:3,
1:4, 2:1, 3:1 and 4:1, are considered. The theory presented here can be applied to other

higher order inner resonant cases as well.
© 1998 Academic Press Limited

1. INTRODUCTION
Consider the system
Z= Az + F*z) + F’(z) + h.o.t, (1)

where zeC"; A is a matrix; F"e H)', and H) is a vector space of homogeneous polynomials
of degree m and is described by n variables; “h.o.t” means higher order terms;
n’l=2,3,...,l’l; sz(qul) F(nz1) st FE:Z))T and

20— S1p82 00 oS
F(p) = z a.\'].\'z'-x\'”(p)zl Z Zy's
Sphsy s, =2

3 K S
Fi, = > Asysyos, )21 207" 2
Sphsy s, =3

F(r;’) = Z aé‘lSz"'ilz(ﬂ)ZiY]Z%z Ce .
Sp sy s =n

Suppose these are /(2/ = n) pairs of pure imaginary eigenvalues for the linearized part of
equation (1). Let 4 = diag (iw,, iw,, ..., iw, iw, —iw,, ..., —iw;), where w; are the
eigenvalues. Here, it is assumed that A4 is diagonalizable. Then, normal forms of order k
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are composed of resonant monomials of order k [2]. A system is said to have inner
resonance, if it satisfies

Y miw =0, e=1,2,..., M; M <1, 2)
where

1
mieZ, Y |mf| #0.

i=1

Further, if

1
Y mi| < 4,

i=1

it is called lower order inner resonance.

Two facts make researches on lower order inner resonance interesting. Firstly, many
cases of lower order inner resonances exist in real engineering systems, especially in high
dimensional nonlinear systems. Secondly, when a system has lower order inner resonance,
both its higher order and lower order normal forms are affected. On the other hand,
higher order inner resonance do not change lower order normal forms, which are more
important for studying characteristics of the system, such as stability. Thus, when
calculating the lower order normal forms, there is no need to consider higher order inner
resonance.

It is well accepted that the existing high dimensional normal form theory is too
cumbersome to use, especially for the calculations of the coefficients of normal forms. The
theory has to employ some modern but very abstract mathematical theories (such as the
representation theory and adjoint operator methods [2]) to obtain the normal forms and
the related coefficients. Above all, calculation of the coeflicients related to the normal forms
poses especially serious difficulties. Some high dimensional systems without lower order
inner resonance have been studied [1, 2, 9]. Certain particular high dimensional systems
with lower order inner resonances have been investigated [3, 4, 7, 8]. In spite of the efforts,
there still exists no single general method, and all approaches seem to be too cumbersome
to use. In this paper, a general method is proposed. The systems with inner resonance, both
lower and higher order inner resonances, are examined through a modified normal form
approach. This approach is conveniently applicable to higher dimensional systems with
different inner resonances. Using MAPLE, the calculations of both basic terms of normal
forms and the associated coefficients are carried out readily, and are easier than any of
current approach. Furthermore, it is shown that the results of the existing normal form
theory are identical to those of the modified approach.

In the following section, a general theory is presented, which forms the basis of our
analysis and can also be applied to higher order inner resonant cases. This theory is based
on earlier work [5, 6] and can be considered as an extension of reference [6]. Following
the general theory, the effects of lower order inner resonance, where

!
Y Imi| < 4,

i=1
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on lower order normal forms are discussed. Then, higher order inner resonance in a
degenerate system, where

!
Y mi| <6,

i=1

is examined.
In our analysis, a general four dimensional system with two pairs of pure imaginary
eigenvalues is studied as an example. In lower order inner resonant cases, where

1
Y Imi| < 4,

i=1

according to equation (2), there are five possible resonant models. They are: (1) @, = 2w»,
(2) w1 =3w,, (3) W =2w, (4) W, = 3w, (5) 0 = w,.

In this paper, the first four resonant models are considered in Section 3, and the fifth
one can be examined by similar procedure. Using MAPLE, the normal forms and the
related coefficients and transformation functions, in different resonant models, are
obtained in seconds.

In higher order inner resonant cases, where

1
Y |mi| < 6
i=1

according to equation (2), there are seven possible resonant models. They are: (1) w, = 2w,,
2) w1 =3w,, (3) w1 =4w,, (4) W, = 2w, (5) W, = 3w, (6) W, = 4w, (7) w0 = w,.

Again, in this paper, the first six resonant models are discussed in Section 4, and the
seventh one can be examined by a similar procedure. Using MAPLE, the normal forms
and the related coefficients and transformation functions, in different resonant models, are
obtained in seconds.

2. GENERAL THEORY

Consider equation (1). Suppose there are different inner resonances in equation (1) and
the resonant conditions are given by equation (2).
Introduce a near identity transformation

z=y+ Py), PeH,, (3)

where P*(y) is an undefined function, which will be determined such that the terms of order
2 in the transformed form will be simplified as resonant polynomial of order 2.
Substituting equation (3) into equation (1) results in

y= Ay + Fi(y) + Fi(y) + h.o.t, 4)

where F} = F> + AP* — DP*Ay; Fi; = F’ + DF*P* — DP’F;.
Now, introduce another near identity transformation,

y=x+P(x), PeH, )

where P*(x) is an undefined function, which will be determined such that the terms of order
3 in the transformed form will be simplified as a resonant polynomial of order 3.
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Substituting equation (5) into equation (4) leads to
X = Ax + Fi(x) + F3(x) + h.o.t, (6)

where F3 = F} + AP — DP°Ax.

Suppose Ff_,(x) = G"(x) (k =2, 3,...) in equation (6), where G*(x) are the resonant
polynomials of order m. Solving PXy) from Fi(y, P?) = G*(y); substituting P*(y) into
Fi(y, P?) defines F; as Fi(y). Then solving P(x) from F3(x, P*) = G°(x); the coefficients
in G*(x) can be determined. This is the basic procedure of the existing normal form theory.

In order to determine the normal forms and the related coefficients more conveniently,
introduce the transformation

x =e'u (7)
into equations (6) to obtain
i = e Y[Fi(e’u) + F5(e"u)] + h.o.t, ®)
where
el
ely=1-----
ety

Suppose the mth row of
F;:7 l(x) is F’é* 1(”7)(X) = Z a.\lfll"iz‘]'x\'”(m) l_[ xfl;
F=k icq

then, e="F§_ ., (e"u) can be expressed as

n
eiAIF//;— l(m)(eAtu) = Z <e2mtafl.\'2-]'~x,,(n1) l_[ e””“f’)
i=1

§S=k

= Z <a./:l:2-l~-s,,(m) eXI)<_//Lm + Z Siii>t 1_[ u?’)s (9)
=k i=1

i= i=1

where a .., ., are the coefficients of transformed functions F; _,,,(x); § =5 + s+ - +
S

According to the assumption Ff_,(x) = G*(x), functions Ff{_,(x) are composed of
resonant monomials, in which

it Y 84 =0, (10)
i=1

where m=1,2,...,n.
According to equations (8), (9) and (10), one has

e MFi_(e"u) = Fi_(u) = M {eF;_(e"u)} (1D
and
= M{e "[Fi(e*u) + Fi(e"u)]} + h.o.t

= Fi(u) + F3(u) + h.o.t,
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where M {f(u, 1)} denotes explicit time averaging of function f(u, t), in which

MU@" I)} — M{G—AtF,I:il(eA:u)} _ @ J‘JJ\H .. J\neA,FII:l(eAzu) d(l’)l e d(b,

where ¢; = w;t. Similarly, one has
e"Fi_ (e ) = Ff_ (u). (12)
Thus, equation (8) can be expressed as
i =G u) + G*(u) + h.o.t. (13)

Introducing transformation u = e~

has

z into equation (13), according to equation (12), one

i=Az + G(z) + G'(z) + hoot. (14)

This is a normal form of equation (1).
It is evident that the results of the existing normal form theory are identical to those
of the new approach. Consider the following relations:

e (DP'A ey — APY) = % [e-"PeMu)],  Ff_F‘ ,+ AP*— DP‘Ax.  (15)

Then, one has

e M"FE_ (e"u) + % [e="PXe’u)] = e ""F§_,(e'u). (16)

Suppose the mth row of PX(x) is P, (x), then, the arbitrary term in polynomial
e P, (e"u) can be expressed as

n n n
— At ke fity 15i — K 1
€ /mlb.q.vz--'.\'”(m) l—[ es’/’tuf - b.\'].\'zn-.\'”(ln)exp(_)Lm + Z Si/hi>t 1_[ ufla
=1 i=1 i=1

S=k S=k

where b, ..., ., are the coefficients of functions P, (x).
The above equation and equation (10) lead to

M {06[ [e”“P"(e*“u)]} = 0.

According to equation (16), one has
M {e"Ff_, (e"u)} = M {e"""Fi_,(e"u)}. (17)

From equations (11) and (17), one has

Gu) = (;ﬂj J cee J e MFr_,(e"u)dg, - - - d¢. (18)
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According to equation (16), one has

Pk(u) — e—Ath(eAtu)L —0

= je”“(Fiz(e’“u) — Fio(e"u)) di|—o = j[e’“(Ffz(e’“u)) — G dtl—o.  (19)

According to equations (2) and (10), in the inner resonant case, resonant monomials

consist of terms satisfying

i
tw+ ) (mi— n)w =0,

i=1

1
Y miw; =0, e=1,2,....,. M, M<|. (20)
i=1
This condition can be written as D = 0.
Let G*(u) = (G}, G§) - -+ G,)"; then, G{,(u) can be expressed as
k-2 ’
Gi(u) = Z Y o it l_l AL (e2y)
e=1D=0 g=1
m=k
where
1
m=y (m+n)
i=1
Ay mn are the coefficients in function Fi_,(u).
Solving equation (16) for P*(u), one has
I b
1
5 Ay gy H LA
d—w; #0 — g=1
m=k
1 " n umqunq
s Sxo S — wy ml "1A"1 ”A()071
m=k
k(1) —
P(u) = Z 1 a2 H il > (22)
§+wl#05 + w, 1711 myny )1/((I+1)qil
m=k
Z ! "11 mA”[ “ny(21) n ull ‘/Ll o
6+(ul#06+a) g=1
\ =k J

where

0= (m; — n)w;, k= 2.

M~

i
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When [/ = 2, suppose there are p:q resonances, equation (20) can be expressed as

W
ia)/+mw1+n0)2=0, 7:117 (23)
() q
where, w; = w, ;.
Equation (21) leads to
( 3
aﬁt?ﬂénﬂu uml umz un] ﬁgz
=k
d—w;=0

k=2 Wy e
Z bmlmmlnz Uy Uy Uy
n=
0—)\2—0

GHu) = o 24
(@) Ny U USRS ’ (24)
k

=
o+w;=0

k —2 My 5, My 71| 5
Z dmlmzn]m Uy U u [25)
=k

d+wy=0

- J

k—2 k—2 k—2 k — 2 P . s s k
Where da,,iuims Onmimnings Comnny» ad d, 0, are the coefficients in function Fi_,(u).

According to equation (23), this result can be expressed in another form. If w; = w;,
equation (23) becomes (m — 1)p + ng = 0. The solutions of this equation are: m =1,
n=0;,m=1+4s,n=(—(p/q)s). The resonant monomials can be expressed as

_ _ _ o _ o
I g (unthy, iy, u{i) + 5! = gu(uih, wit, d{us)
_ _ _ - _ o
G"u) &2 g (il , woily, ulis) + b g (th, s, iy, i{us) (24%)
u)= =
+1 = - 7 s
g3 ngsl(uﬂll, Uil Uit ) + ubuf gsz(uluu Uz, U, ui’uﬁ)

84 oga (Uit Wiy, uliBh) + b~ " i1{ guo (ur iy, s, 1h, 11U

where g, are any functions of i, w,ii, and u{i5; g, are any functions of i, uii, and
afug; the coeflicients of term u"au5'iy? in functions gi are a2 s Orimonnss Coimomin, a0d
dyoinn,- Equation (22) leads to

r 1 N
k—2 my o My 1 S
5 R amlmznlmu Uy Uy Uy”
i =k - W
d—w #0
k—2 m] 1y THy 751
5 bmlmznlnz Uy "Uy Uy
m=k — W2
d—wy#0
k —
P (u) - 1 I\ -2 Ny =Ny 51y (25)
Conymiynyn M] Uy uy U
manng b
=k 0+ w
O+ wp#0
1 k — 2 my My 71y 731
< . Uy Uy “Uy Uy~
, Ymymonn 2
A=k 0wy T
d4+wy#0
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A major difference between the results of this paper and those concerning non-resonant
cases is that normal forms in inner resonant situations have more terms. This difference
is attributed to the fact that there are more resonant monomials in inner resonant cases.
Using existing normal form theory, however, it is hard to obtain these additional terms
and the related coefficients.

The above analysis outlines the underlying theory of using the modified normal form
approach to analyse high dimensional systems with inner resonance. More details about
the modified approach can be found in reference [6].

In the following sections, certain four dimensional systems with two pairs of pure
imaginary eigenvalues and inner resonance are studied as examples.

3. LOWER ORDER NORMAL FORMS (LOWER ORDER INNER RESONANT CASES)

3.1. THE CASE OF @, = 2m,
Only lower order inner resonance is considered here, which means

!
Y |mg| < 4.

i=1

Suppose / = 2; according to the conclusion given in references [2] and [6], if there is no
inner resonance, the formal normal form of equation (1) is given by

Z = iwiz) + anziZ + anzizi, Zy = iWsZy + AnZ3Zr + AnzrziZ). (26)

It contains the first kind of resonant monomials (without inner resonance). To be
distinguished from the above resonant monomials, a second kind is defined. Resonant
monomials fall to the category “second kind of resonant monomials”, if their eigenvalues
satisfy

— Ak + mw, + nw, =0, ) = 2w,

where 4, = +w,, +w,.
Suppose A = w;. Above equation can be expressed as

2m—1)+n=0.

Thus, the solution of this equation is m = 0, n = 2, in which m + n < 4.
So, the resonant monomial is z3. Similarly,

if Jx = —w,, there is a second kind of resonant monomial Z3;
if 2+ = w,, there is a second kind of resonant monomial z,Z;;
if Ax = —m», there is a second kind of resonant monomial Z,z,.
Therefore, in complex coordinates, the formal normal form of equation (1) is given by
2 =iz + anziZ + anzizi + anzi,
Zy = iazy + anZ3iZy + anziZZ) + anziis. 27

Note that the corresponding conjugate equations are not given.
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It is evident that the formal normal form (27) can be obtained directly from equation
(24%). Substituting z;=r;e%, j=1,2 into equation (27) and transforming to polar
coordinates, one has

i+ in(0) — o) = anr + annr? + apri e,
Fa + ir:(0y — @5) = anri + anrsri + anrr, e @0,
where 0, = w;t + ;. So,
# = Re (an)ri + Re (an)rir3 — Im (a3)r3 sin o, + Re (a13)r3 cos ay,

P2 = Re (a)r3 + Re (an)rarf + Im (ax)rir, sin o + Re (ax)rir, cos o,

2 2
0, = o, + Im (a)ri + Re (an)r? + Re (ai3) % sin o, + Im (a13) % COS o,
1 1

0, = w, + Im (a2)r3 + Re (ax)r? — Re (ax)r sin a; + Im (ax)r) cos o,
i — 20, — 6, (28)

where oy = 20, — 0,.
According to equation (24), the coefficients related to normal forms can be calculated
by

2 1 2= 1 -
o202 102121 + A01212222
- 1 2= 1 -
s b z1 22 5 bo12322 4+ binziZi 22
G = =2 G’ = 1 =2 1 = = >
Co002Z2 Cl020Z1Z1 + Co111Z212222

= | =2 1 s =
doi10Z1 22 dmozZzZz + lellZlZlZZ
1 1 1 , 1 , ; ; ; 3.
where @y im0 Dmpmgnynys Congmonyn, aNA 000, are the coefficients in function F35 o
. . : 2 2 2 2 2 2
Doy Conmonyny A0NA Aoy, are the coefficients in function F?. P> = (P(, Py, P&, Pi)" can
be determined readily through equation (25) as follows:

Py = wizz G0yt — 3an00Y1Y2 — §@o0y3 + @ow01Ys — 1aonoYaYs — dioon V1)
— S0 V2ps — 301 Y3Vs = dundi)s

Py = ﬁ (6b20001 + 3b100Y1 Y2 — 3bor0y3 + $hrow0y1ys + bonoyays + 1booys
+ b0 y1ys — borory2ya + 3boon y3s),

1

2 1 2 1 2 1 1 2

P(s) = i (§C2000y1 — Crioo)1YV2 — 35€0200Y2 + 3C1010Y1V3 — 3Co110)2Y3 + Co020)3
2

1 1, 2
— 3Co0101)2YV4 — Coo11)Y3Va — 360002)/4),

1 5 )
P(24) = o Gdzoooyf + dioy1y: — %dozooyi + 3diowy1ys + %doozoyg + 3dioo1 Y14
2

— %domlyzyzz ~+ doonysys — dooozyi)-

where Vi=2Z1, V2= 22, )3 = Z_1, Vs = Z_z.

After simple iteration, Fi= F*>+ AP>— DP*Ay; F;= F’+ DF*P*— DP*F?, the co-
efficients @y, s Oosimonings Covngnn, @0 dy, 00 in F7oare determined. Then, the coefficients
in G? and G® are determined. Using MAPLE, the formal normal forms and the related
coefficients and the transformation functions P* are obtained in seconds. To save space,

the related coefficients are not given here.
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It is evident that the normal forms of the systems with inner resonance are quite different
from those of the systems with no inner resonance. In the latter cases, the normal forms
are in the form of 7 = r(r), while in the former cases, normal forms are in the form of
# = r(r, o). Therefore, their dynamical behaviours also vary.

When w, = 2w,, there are terms of order 2 in the normal form. Compared to normal
forms of systems with no inner resonance, this is another significant difference. As a result,
for example, the stability of Hopf bifurcation is determined by the terms of order 2.

3.2. THE CASE OF w; = 3w,

If there exists no inner resonance, the formal normal form of equation (1) is given by
equation (26). In the resonant model w; = 3w,, following a similar analysis as above, the
formal normal form is given by

2y = iwizy + anziZ + anzizi + ahz3,
Zy = 2y + anZ3Z + 022212 + a2 2. (29)
Note that the corresponding conjugate equations are not given. Substituting z; = r; e,
j=1,2 into equation (29) and transforming to polar coordinates results in
Fo4 ir (00 — o)) = auri + anrird 4 abhri 20,
Fr+ ir(h — @) = anr + anrori 4 @iy e O,
where 0, = w;t + ;. Then, one has

# = Re (an)ri + Re (an)rir3 — Im (ai3)r3 sin a; + Re (a13)r3 cos a,,

F» = Re (au)r3 + Re (an)rarf + Im (ax)rr? sin o + Re (ax)r73 cos o,
3 3

0, = w, + Im (an)ri + Im (a1,)r? + Re (an3) % sin o + Im (a13) % COS oy,
1 1

0

(0] =+ Im (az])l"§ + Im (a22)r|2 — Re (a23)r|r2 Sin Ol + Im (a23)}’2r|COS O,
4 = 30, — 0, (30)

where o, = 360, — 0,.
According to equation (24), the coefficients related to normal form can be calculated by

1 2= 1 = 13
axn10ZiZ1 + Ao 212222 + Qo023

1 2= 1 = 1 )
by 2322 + binoziZiza + bigpzi 23

G=0, G=
N 1 = = g
’ Cr020Z121 + CoiiZ12222 + Cooo3 22 ’
1 =2 1 s 5 1 s 52
dpnzaZs + dionz1212: + dypZi 23
1 1 1 1 : . : 3
Where @, mmys Onimgynys Conymoniny, A0A -y, are  the coefficients in function Fj.

P?= (P}, P} Pi P})" can be determined through equation (25) as before.

3.3. OTHER CASES

For resonant models 2w, = w, and 3w, = w,, the procedures of the analysis are similar
to those in Sections 3.1 and 3.2. To save space, only the final results are given here and
the details are omitted. For the resonant model 2w, = w,, the formal normal form can be
obtained in complex coordinates as

. : 1 2z 1 - -
Zy = loi1Zy + Ay10ZiZ1 + Q1101212222 + Ao110Z122.

s K 1 25 1 = 2
Zy = lWrzZy =+ boz()lZzZz =+ b“loZzZ]Zl =+ bggooZ] . (31)
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In polar coordinates, one has
#1 = Re (adoi)ri + Re (alio)r173 + Im (agi10)ri7, sin oz + Re (@on0)ri72 cos s,
P2 = Re (biyo )13 + Re (b1110)r2rt — Im (bagoo)r sin oz + Re (baooo )i €OS s,

91 = w; + Im (azl()l(])rlz + Re (Clllml)”% — Re (aono)’”z sin oz + Im (Clmm)l’z COS a3,
2 2

0, = @, + Im (bl )12 + Re (bl110)r% + Re (baono) ? sin o + Im (Bao) f—l COS o3,
2 2

6 = 20, — 05, (32)

where o; = 20, — 0,.
For the resonant model 3w, = w,, the formal normal form can be obtained in complex

coordinates as
21 = 0121 + 102121 + Al 21225 + dginZiz,
I = iz + b(;ZOIZgz_Z + bllllozzzlz_l + bslooozf~ (33)
In polar coordinates, one has
i1 = Re (az10)r7 + Re (aio))r173 + Im (ag20)r277 sin o + Re (ag120)7277 €OS 0t
P2 = Re (biyo1 )13 + Re (b1110)rari — Im (bigy)ri sin oy + Re (blggy )1 cOS iy,
0, = @1 4+ Im (@d0)r} + Re (ali0)r3 — Re (adin)r17> sin oy + Im (ada0)ri 72 cOS o,
. o r
0, = @, + Im (boyy )13 + Re (bi110)rT + Re (bigy) 7; sin oy + Im (bio) }T; COS 04,
dy = 30, — 0.

where oy = 30, — 0,.
The transformation functions P? can be calculated through equation (25) as before.

4. HIGHER ORDER INNER RESONANCE IN DEGENERATE SYSTEMS

When the coefficients of lower order normal forms are equal to zero, higher order
normal forms have to be examined. In this case, if

1
Y Imi| > 4,
i=1
higher order inner resonance must be taken into account as well. Suppose

!
Y |mf| < 6.

i=1
Different resonant cases are considered in the following sections.

4.1. THE CASE OF w; = 2w,
If there exists no inner resonance, in degenerate cases, the formal normal form of
equation (1) is given by

; : 2= 322 = =22 2 = =
Zy =1wizy + anziZy + AnzZizZy + anziZaZ + Az 2325 + 12222122,

; . 2= 320 - 220 2 = =
Zy = 1022y + AnZ32> + nZ3Z5 + 3222121 + (2aZiZiZr + 2525212125, (35)
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In the resonant model w, = 2w,, following a similar analysis as in section 3.1, the formal
normal form of equation (1) is given by

. . 2= 322 - 2.2 2 = =
Zy =1mizy + anzizy + QnzizZi + aizZi222x + Auzi2,25 + AisZ2y222122
- 2 2 - 4 ) - 3
+ buziZizi + bpzi + bisZizs + buzizs + bisthzs,
. 2= 322 - 222 2 =
Zy = 1022y + AnZ52> + nZ3Z5 + AnZrZ1Z1 + ZiZiZr + Ar5Z52Z1 2>
_ 52 s 25 253 5 -3
+ buziZo + bnzizaZ; + bysZiziZy + buziZs + basZizs. (36)

Again, the corresponding conjugate equations are not given here. Substituting z; = r; ¢,
j=1,2, into equation (36) and transforming into polar coordinates, one has

P+ ir1(91 —w) = anri + anri + ari + aunis + asrie
+ buriri €™ + byri €™ + bisrirs €% + burirs e ™ + bisrs e,
P + in(gz - 0)2) = azﬂ’i3 + azzi’g + 0237’2"% + At + Clzs"i”% + byrir,e™
+ boorirs €7 + burira 7™ 4 byuriry €7 + bysiyrs €™,
where 0, = w;t + ; and o, = 2y, — ;. So,
#1 = Re (a1)r! + Re (an)r] + Re (a3)r1r3 + Re (a14)rir5 + Re (as)rir?
— Im (b1))r3ri sin oy — Im (bp)r3 sin oy — Im (b13)rir3 sin 20, + Im (big)r3r] sin o
— Im (by5)r3 sin o, + Re (by)r3rf cos oy + Re (bio)r3 cos o + Re (bis)rirs cos 20
+ Re (bi)riri cos a; + Re (bis)rs cos i,
7, = Re (ax)r3 + Re (an)r + Re (ax)rnr + Re (ax)rrt + Re (axs)rin
+ Im (by)ror sin oy + Im (by)rr; sin oy + Im (bys)rir, sin o + Im (bag)rari sin 2o
— Im (bys)rir3 sin o, + Re (by))rar; cos o + Re (by)rir3 cos oy + Re (bys)rir; cos o
+ Re (ba)r3ri cos 20 + Re (bys)ri13 cos o,

g] = W + Im (all)rlz + Im (alz)r? + Im (a13)r§ + Im (a14)r§ + Im (a15)}’12r%

2

+ Im (bi)rir3 cos oy + Im (b12) % cos oy + Im (b13)r3 cos 2o + Im (b1y)r 73 cos o
1

4 2
+ Im (bis) ;i cos oy + Re (b1))rir3 sin o + Re (b1y) % sin o, + Re (b13)r3 sin 2o
1 1

4
— Re (b)) sin oy + Re (bys) ? sin o,
1

0, = @, + Im (a2)r? + Im (ax)rd + Im (a2)r? + Im (axs)rf + Im (ao5)rir3

+ Im (by)ry cos o + Im (by)ri73 cos o + Im (by)ri cos o + Im (byy)rirs cos 2o

-+ Im (bas)ri73 cos oy — Re (by)ry sin oy — Re (by)r 73 sin oy — Re (by)ri sin a

— Re (ba)riri sin 20 + Re (bys)r173 sin a, (37)
= 20, — 0,.
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According to equation (24), the coefficients related to normal form can be calculated by

2 1 2= 1 -
002023 102121 + An01212222
- 1 2= | -
s bioo1z12 s bon1 2322 + binziZizz
G = =2 > G = 1 = 1 = = >
C000222 Cl20Z1Z1 + Co111212222

= | = 1 oz =
d()[]()Z[Zz d01022222 + leHZZ]Zz

2 -2 2 3= 2 2=
AnZ1212; + Agzo12322 + Ax012123

2 3= 2 =2 2 2z =

G b0z 2 + blinz21 2225 4 baonziZ1 2

= 2 - 2 2 =3 2 22 >
Clon2Z12125 + Cjip3Z2Z23 + CoaZ3Z4

=3 22 = 2 )
dfooﬂlzz + d§211222122 + d?lZOZIZZZl

agmz?z_f + a?zozzlzgz_zz + a34102‘2‘z'1 + a;lllzlzZZZ_lz_Z
G = bg}ozzgzg + b;]ZOZ]zZ2Z_lz + bgomzfz_g + b%ZI]Z§ZlZ_ZZ_]
B Co0ZiZ1 + Conii 252 + ClonziZs + bl Ziziza
dgzosﬁz_g + dgozlzfz_zz_% + d8320232_12 + b%112Z-§Z-IZZZl
3

2 2 2 T T 3 4., 3
Where @, nys Orimpings Conmnyn, @0d dy, ., are the coefficients in function F3; a

l’l?l"’l’_;l’ll”z’
brmminys Conmn, @0d - dy, 00 are the coefficients in function F3; P2, P and P* can be
determined readily through equation (25) as before.

4.2. THE CASE OF w, = 3w,

If there exists no inner resonance, the normal form of equation (1) is given by equation
(35). In the resonant model w, = 3w,, following a similar analysis, the formal normal form
in complex coordinates is

. . 2= 322 - 2.2 2, = =
Zy =1 zy + anziZy + QnZiZy + ainziZaZx + Auzi 225 + QisZ2i 22122
=3 3 223 4=
+ buziZizy + bz + biziz + buziss,
. . 2= 322 = 222 2 = =
Zy = 1022y + AnZ32> + AnZ3Z5 + 3222121 + aZiZiZr + Ar5Z5Z12122

+ buziZ5 + bnziZiZi + byZizs + buzizaZ;. (38)

Substituting z; = r; €%, j = 1, 2 into equation (38) and transforming to polar coordinates,
one has

: s 3 5 ) 4 3.2 2.3 i
r 11’1(01 — CU]) anr + apnpr + aprr; + A4l 1y + asrir; + b]]lli’z e

+ bur3 €™ + birirs e + by e,
;. : 9 _ _ 3 5 2 4 3.2
Py + ir(0) — @2) = anrs + anis + aniari + aur: ! + axsisr
+ burir3 e ™ 4 byrir; €™ + byuriis € + byurirs e ™,
where 0, = w;t + ; and o = 3y, — Y]
. 3 5 2 4 3.2
F1 = Re (an)ri + Re (an)r; + Re (aiz)rir; + Re (aw)rirs + Re (ais)rir
— Im (b1))r3ri sin oy — Im (b12)r3 sin o + Im (b13)rir3 sin o, — Im (b14)r3 sin o,

+ Re (bi)r3ri cos an + Re (b1y)r3 cos o + Re (bi3)rir3 cos an + Re (biy)r3 cos o,
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Py = Re (au)r3 + Re (an)r3 + Re (axn)rri + Re (awu)rr! + Re (axs)rr
+ Re (by)rir cos o + Re (ban)rirs cos o + Re (ba)rirs cos oan + Re (ba)ri73 cos a,
+ Im (by)rir sin o + Im (by)rir3 sin o, — Im (b3 )r 75 sin o + Im (bay)r1 74 sin oy,

9] = w, + Im (an)rf + Im (alz)r? -+ Im (013)’% + Im (a14)r§ + Im (a]5)r%}’§

3 5
+ Im (by)rir3 cos o + Im (b1n) ? cos oy + Im (b13)rir; cos oy + Im (bis) % COS o
1 1

3 5
+ Re (bi)rirs sin a, + Re (b1) % sin o, — Re (bi3)r73 sin o, + Re (b14) % sin o,
1 1

0, = w, + Im (a2)r3 + Im (ax)ri + Im (ax)r? + Im (ax)rt + Im (aa5)r3r3
+ Im (ba)rir; cos o + Im (ba)rir: cos on + Im (by3)ri73 cos o + Im (bay)ri73 cos o
— Re (ba)rir: sin o, — Re (bn)rirs sin o + Re (bo3)ri#3 sin o, — Re (ba)ri73 sin o,

i =30 — 0. (39)

According to equation (24), the coefficients related to the normal form can be calculated
by
1 25 1 = 1 3
102121 + Ano 212222 + Ao 22
) 4 . bo 2322 + bliwziZ1z2 + bz 23
G=G"=0, G = N) 1 = s g1 =3
Cio0ZiZ1 + ConZi12222 + ConzZa

1 = 1 = = 1 =2
dpnzaZs + dionz1212: + dypoZi 23

2 322 2 220 2 3z 2 223 2 4z 2 2 = =

30202121 + ApZ1222; + Ai310212321 + Ax032123 + Qo1 2222 + 311121222122

2 322 2 2 =2 2 2=z 22 2 4z 2 =3 2 2 = =

G bisn23 23 + D310y Zi 2221+ by Zi 2125 + b3 2y + bl 212225 + b 2321212
= b

2 23 2 =222 2 = =3 2 3= 2 -4 2 =2z
C2030Z1Z1 + CpnZ122Z5 + CioisZi1Z125 + CozZ2Z1 + ChioaZaZs + Clio1Z1222122

223 22 =2 2 220 —4 D 3z = )
dozzoszzzz + d§021212221 + dl,220212221 + 51120042122 + aﬂ0311222122 + 5[12112222122

Where @, s O Covymonyn, A0 o, a0, are the coefficients in function F3; P? and P*
can be determined through equation (25) as before.

In this case, since F; = F;+ DFiP*— DP‘F} and Fi=G2=0, F;=F3, one can
determine G° directly from function F3.

4.3. THE CASE OF w, = 4w,

If there exists no inner resonance, the normal form of equation (1) is given by equation
(35). In the resonant model w; = 4w,, following a similar procedure, the formal normal
form in complex coordinates is given by

. . 2= 322 = =22 2 = = 4

Iy =l zy + anziZy + anziZi + Az + auzi iz + aiszizegi 2 + bz,

. . 2z 322 - 222 2 = = =3

Zy = iWyZy + anz52y + anz3Z; + anzaziZ) + auziZiza + asz3212122 + baziZs. (40)

Substituting z; = r; €%, j = 1, 2, into equation (40) and transforming to polar coordinates,
one has

: T 3 2 4 2 4 i
r 4+ ll’1(91 — 0)1) =dann + 0121'15 + a;zrr; + s ry + 6115}’131'2 + b11r2 e’“S,

. 3 j 3 5 2 4 3.2 3 A—i
Fa + ir2(0r — 02) = anrs + ant3 + anrri + aurr! + asrart + burirs e,
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where 0, = w;t + ; and os = 4, — Yy
Fi = Re (an)ri + Re (an)ri + Re (ai3)rr + Re (ais)rrs + Re (ais)rir
— Im (by)rs sin as + Re (bi)r3 cos os,
> = Re (ax)r3 + Re (an)r; + Re (ass)rari + Re (au)rar! + Re (ass)rir
+ Re (ba)rir; cos os + Im (b )73 sin o,

0.1 = w; + Im (an)}"% + Im ((l]z)l’? + Im (Cl13)V% + Im ((114)1’3 + Im (a15)}"%l’§

4 4
+ Im (bll);—zcos os + Re (b”)%sin os,
1 1

92 = > + Im (az])}’g =+ Im ((122)”3 =+ Im (Cl23)}’12 + Im (6124)}’? + Im (a25)r12r§
+ Im (by)ri7r3 cos as — Re (by)ri73 sin as,
0.55:40.2—91. (41)

According to equation (24), the coefficients related to normal form can be calculated by

WoZiZy + alhozi222 AjaonZs

G — bézoﬂgz_z + bllllozlz_lz2 Gt — bllooszlz_%
B C}0202_1221 + C(])IIIZ_IZZZ_Z ’ B 5(1)0042_31
d&lozzzz_g + dllonZlZ_lZ_z d(')_ngz_l

2 3= 2 222 2 2. ==
A3020Z1Z1 + pnZ122Z; + 5121222122
2 322 2 2 = 2 2 = =
G b2 + blinzi 222t + bhnz3z21212
= b

2 223 L ) 2 =2
C30Z121 + Co12Z212525 + Clin 21222122

23 2= =2 =2 =
61’022032222 + d§021212221 + d1211222212122

Where ay, nys Ooimnings Copmnyn, a0d- o, are the coefficients in functions F3 and F3; P’
and P® can be determined through equation (25) as before.

4.4. OTHER RESONANT MODELS

For the other three resonant models, 2w; = w,, 3w, = w, and 4w, = w,, the procedure
is similar to those in sections 4.1, 4.2 and 4.3. To save space, only the final results are given
in this section. For the resonant model 2w, = w,, the formal normal form in complex
coordinates is given by

: . | 2= 332 | = 3 22 32 ==
Zy = 1121 + 102121 + A30Z1 21 + AnoiZ12222 + ApZi1222; + a51121222122
2 = 3 - 2 = 2 = 2= 3 =32

+ 50012227 + Aon0z2122 + Ai120212122 + Q212522 + Aoz 23,

. 1 2= 332 1 = 322 32 = =
122y + boy 2322 + bisnz325 + binoz2ziZy + bainziZiza + bhnziziZi2s

2

2 2 2= 2 = .3 3 4= 2 =2
+ baoozi + bl ziZaza + bigiZiz) + bimziZ2 4+ Do ZiZ3. (42)
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The normal form in polar coordinates is

i1 = Re (a0)ri + Re (@)1 + Re (an0)rirs + Re (ahp)rirs + Re (a3,0,)rir3
+ Im (ddoo))rari sin oz + Im (aono)ri72 sin oz + Im (afy5)rir, sin o
+ Im (ay,)rir sin oz + Im (ady0)rirs sin 205 + Re (a3 )r2ri cos o3
+ Re (aoino)rir, cos oz + Re (afin)rir: cos oz + Re (ady )rir3 cos o
+ Re (aiyy)rirs cos 2us,

iy = Re (by )13 + Re (bon)rs + Re (biio)rari + Re (b310)rart + Re (biy) )rars
— Im (baooo )i sin oz — Im (B3,0,)ri73 sin oz — Im (b3y;0)r} sin o
— Im (biyo))rirs sin 203 + Im (bdy)rirs sin oz + Re (bagoo)ri oS s
+ Re (b310))rir3 cos az + Re (b310))ri cos as + Re (big )rar! cos 20,3
+ Re (biy)rirs cos s,

0, = w + Im (@3010)r7 + Im (a5000)7 + Im (aiio)r3 + Im (ain)rs + Im (@3,,)r773
+ Im (dadyy )rari cos oz + Im (aoi10)r cos o3 + Im (afjp)rir cos o;
+ Im (ady,)r3 cos o3 + Im (adys)rirs cos 205 + Re (a3 )r2ri sin o;
— Re (ai10)rs sin o3 — Re (af15)rar sin oz — Re (ady)r3 sin o3
— Re (adyy)rirs sin 20,

0, = w, + Im (boro )13 + Im (bgseo)rs + Im (b110)r7 + Im (B3100)rt + Im (b )rir3

2 4
r r

+ Im (baoo) r—l cos o3 4+ Im (b3,0))r2r7 cos oz + Im (b3, r—l COS 0t
2 2

2

+ Im (bl )1t cos 203 + Im (bly0 )11t cOs oz + Re (byno) ’r—l sin o
2

4
. r . .
+ Re (b3101)r217 sin o3 + Re (b3y) r—‘ sin oz + Re (bio; )7} sin 205
2
— Re (biy)rari sin o,

6y =20 — 0y, (43)

where 0, = w;t + ; and o5 = 2 — s.
For the resonant model 3w, = w,, the formal normal form in complex coordinates is
given by

. . 1 2= 3 322 1 = 3 ) 32z =
Zy = 10121 + 102121 + Q3002121 + AnoiZ12222 + AapZ212225 + a5 2i2122
3= 4 ) 3 =222 3 =3
+ i012221 + donZiZ2 + A Z12222 + AnZiZ1 22,
. . 12z 3 32 1 = 322 32 = =
2y = iwzy + bygi 2222 + bisnz3 25 + binzaziZy + byziZiza + b 30 4

13 1 3= 3 =32 3 4z
+ bioozi + boinziZaza + boneZizy + bigioziZi. (44)
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The normal form in polar coordinates is given by
1 = Re (axi0)ri + Re (aim)r] + Re (ano)rirs + Re (ahp)rirs + Re (a30)rir3
+ Im (adyy )rart sin oy + Im (agy20)rir sin oy + Im (agy, )rirs sin oy
+ Im (ai)50)rir: sin oy + Re (a3o)rart cos oy + Re (adyx)rir cos oy
+ Re (ady)rir cos ay + Re (aj 30)rir cos o,
72 = Re (b )3 + Re (b302)r5 4+ Re (biig)rart + Re (b310)rart + Re (i )riri
+ Re (blgo)ri cos oy + Re (531011373 cos oy + Re (biys0)rir3 cos oy
+ Re (biy10)ri cos oy — Im (bigg)ri sin oy — Im (b3,)rir3 sin oy
+ Im (biy)rir3 sin oy — Im (b3g)r; sin o,
0, = w + Im (@io)ri + Im (aig)rt + Im (ai10)r5 + Im (ahe)rs + Im (a3,,))rir3
+ Im (@i )r2ri cos oy + Im (ag10)r172 COS oty + Im (a3 )ri73 COS oy
+ Im (ai\50)rir, cos oy + Re (aigg;)rari sin oy — Re (ady50)r17 8in oy
— Re (@373 sin ay — Re (aiy30)rir sin o,

0, = w, + Im (boror)rs 4+ Im (bisn)rd + Im (biyio)rt + Im (b3120)r + Im (biy))rir3

3

I
+ Im (bigy) S cos o + Im (b3)91)rir2 cos oy + Im (Bipsg)rir cos oy
2

5 3
+ Im (Blyyo) ? cos & + Re (Blyo) % sin oy + Re (blio))rirs sin o
2 2
. "o
— Re (biy)rari sin oy + Re (b)) . sin o,
2
O'C4 == 361 - 0.2, (45)
where 0, = w;t + ; and oy = 3, — .
Similarly, for the resonant model 4w, = w,, the formal normal form in complex
coordinates is given by

. . 1 2= 3322 | - 3 ) 32 = = 2 =3
Z1 = 10121 + 102121 + Q32121 + AnoiZ12222 + Anpzi222; + annziz22i22 + Apisez22y,

Zy = (222 + bin 2322 + bosnz3Zs + binezaziZi + banziZiza + bz 212 + bizi. (46)
The normal form in polar coordinates is
.:Re(l)3+Re(3)5+Re(l),2+Re(3) 4+Re(3)32
r a010)71 3020)71 o111 A )l W)
+ Im (dagi30)rir: sin o + Re (ag30)rir cos o,
i» = Re (bo1)rs + Re (bg2)r5 + Re (biy10)rart + Re (b3g)rar! + Re (biyy)rri
+ Re (bl )1t cos otg — Im (blog )t sin o,
] 1 2 3 4 1 2 3 4 3 2.2
0, = o, + Im (a30)ri + Im (a500)17 + Im (@100)73 + Im (aise)ry + Im (a3,)rir3

2 2 2 2 :
+ Im (ag3)rir: cos o — Re (ag30)rira sin o,
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0, = w, 4+ Im (boro )13 + Im (bgsoo)rs + Im (biyo)ri + Im (b350)r! + ITm (bisy ) )rirs
i .
+ Im (b)) - Cos + Re (bip) - sin o,
2 2

do = 40, — 0, (C)

where 0, = w;t + ; and o = 4, — .

The transformation functions P?, P* and P* can be calculated through equation (25) as

before.

o]
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