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FREQUENCY ANALYSIS OF INFINITE
CONTINUOUS BEAM UNDER AXIAL LOADS

Y L

Institute of Wheel/Rail System, Shanghai Tiedao University, Shanghai 200331, P.R. China

(Received 13 May 1997, and in final form 3 December 1997)

The problem of lateral vibration of an axially loaded infinite uniform Bernoulli–Euler
beam is investigated by setting up a model of the infinite beam with a harmonically varying,
transverse concentrated force at the centre of the beam. A static axial load either tensile
or compressive is applied to the beams. The elastic and stiff discrete supports are treated
in the analysis. The influences of the axial load on the vibration modes and resonance
frequencies of the beams are studied. Some numerical results such as the varying
characteristics of resonance frequencies and the corresponding maximum amplitudes of the
central deflection are presented with attention focused on the effect of axial load on
vibration of the beam.
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1. INTRODUCTION

Lateral vibration of beams under an axial load has been of practical interest in recent years.
The influences of axial load on vibration characteristics of one-span or two-span beams
have been well investigated, including the effects of various transverse forces and viscous
damping [1–5]. Wang et al. [6] researched on elastic buckling of the beam by a hybrid
method, in which more accurate results can be obtained. The results of the research also
have wide application in civil, mechanical and aerospace engineering. For example, it may
be possible non-destructively to estimate buckling loads by measuring frequencies at
several load levels and extrapolating the results [7, 8]. In contrast, investigation of the effect
of axial load on an infinite beam has received little attention. Some engineering problems,
such as the buckling and stabling of railway continuous weld rail, have been of great
concern. A recent paper by Kukla [9, 10] analysed the free vibration of an axially loaded
beam with intermediate elastic supports and concentrated masses. The Green function
method has been used in the study. In the case of a beam with n elastic supports, the
frequency equation is expressed by means of an nth order determinant. The solution would
be, however, complicated with n is large enough.

In the present investigation, the mathematical model of the infinite uniform
Bernoulli–Euler beam is established. The discrete elastic and stiff supports are considered,
and the steady state response is determined analytically. The transverse concentrated force
at the centre of the beam varies harmonically in time. The damping of the transverse
deflection, the strain and the discrete supports in the beam are included. The amplitude
of the lateral motion at the centre of the beam is computed, and the variations as the
functions of the forcing frequency and axial load are also examined. The static axial load
may be tensile or compressive. The influences of the parameters such as the damping of
the beam and the stiffness of the supports are compared. Then, displacement maximum
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value (over the range of all forcing frequencies) and corresponding forcing frequencies are
analysed with attention focused on effects of the axial load in this paper.

2. MATHEMATICAL MODEL

Consider an infinite elastic beam with elastic discrete supports at regular intervals L,
and axial co-ordinate X(0EXEL). Let the beam be excited at the fixed point of the
centre of one span by vertical force which varies harmonically with time at circular
frequency v. It is shown in Figure 1. The modulus of elasticity is E, moment of inertia
I, mass per unit length U, viscous damping coefficient of transverse deflection C,
viscoelastic damping coefficient of the strain Cs , axial load P (positive if compressive), the
transverse motion W(X, t) which is positive if downward, t time. The equation of motion
is [11]

CsI
15W

1X4 1t
+EI

14W
1X4 +P

12W
1X2 +C
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1t

+U
12W
1t2 =0. (1)

By introducing the non-dimensional co-ordinates x=X/L, w=W/L, b=CsI/EI,
p=PL2/EI, c=CL4/EI, r=UL4/EI, equation (1) becomes
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with 0E xE 1. If the steady state response is written as w(x, t)=Re {u(x) eivt}, the
equation becomes

u00(x)+ au0(x)+ bu(x)=0 (3)

where a=P/(ivb+1), b=(ivc−v2r)/(ivb+1).
As a first step a single typical unload span extending from x=0 (just to the left of a

support), to x=1 (just to the a right of a support) (as shown in Figure 1) is considered.
The general solution of the equation (3) is

u0(x)=A0 ek1x +B0 ek2x +C0 ek3x +D0 ek4x (4a)

and the general solution in the right neighboring span is

u1(x)=A1 ek1x +B1 ek2x +C1 ek3x +D1 ek4x (4b)

where A0 0D0 and A1 0D1 are unknown constants, and k1 0 k4 are the root of the
equation (5)

r4 + ar2 + b=0. (5)

Figure 1. An infinite beam with elastic discrete supports.
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The boundary conditions to be satisfied by u0(x) and u1(x) at the supporting point B are

u1(0)= u0(1)

u'1 (0)= u0(1)
g
G

G

G

G

F

f

u01 (0)= u00 (1)

u11 (0)= u10 (1)− kr /(EI)u0(1)

(6)

where kr is the complex stiffness constant of the elastic supports, k0 the real stiffness
constant of the supports, and hr the loss factor of the supports.

kr = k0(1+ ihr ). (7)

Substituting equations (4a) and (4b) into equation (6) yields the following relation
among the unknown constants A0 0D0 and A1 0D1

(A1, B1, C1, D1)T =T(A0, B0, C0, D0)T (8)

where T is the transfer matrix relating the constants A1 0D1 with the corresponding
constants A0 0D0. Clearly

(An , Bn , Cn , Dn )T =Tn(A0, B0, C0, D0)T (9)

An 0Dn is the unknown constants of the right nth span. The eigenvalue and vectors of
T are of vital importance. Using the numerical method, the eigenvalues ri (i=1, 2, 3, 4)
and eigenvectors Vi (i=1, 2, 3, 4) of T can be obtained. It has been proved that there are
two self-reciprocal pairs of eigenvalues [12], i.e.

r1 · r3 =1, r2 · r4 =1. (10)

Because the eigenvalues are self-reciprocal pairs, two of them, say r1 and r2, have module
less than unity whereas the other two, r3 =1/r1 and r4 =1/r2, have module greater than
unity. Now suppose that the displacement amplitude in some span is expressed as

n0 = (A0V1 +B0V2 +C0V3 +D0V4)(ek1x, ek2x, ek3x, ek4x)' (11)

and the displacement amplitude in nth span is

nn =(A0rn
1V1 +B0rn

2V2 +C0rn
3V3 +D0rn

4V4)(ek1x, ek2x, ek3x, ek4x)'. (12)

As we move progressively further from the excited span, n increases and the displacement
amplitude nn tends toward zero. Equation (12) shows that this will only happen if C0 and
D0 are both zero.

nn =(A0rn
1V1 +B0rn

2V2)(ek1x, ek2x, ek3x, ek4x)' (0E xE 1). (13a)

In the same way, the displacement amplitude in the left mth span n'm is

n'm =(A'0rm
1 V1 +B'0rm

2 V2)(ek1x', ek2x', ek3x', ek4x')' (0E xE 1). (13b)

The next step is to consider the loaded span excited at the centred point O by a
force F which varies harmonically with time (positive if downward), as shown as
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Figure 2. Beam acted on by a point force.

Figure 2. The displacement amplitude on both sides of the point O must satisfy the
conditions

u1(xc )= u0(xc )

u'1 (xc )= u0(xc )
g
G

G

G

G

F

f

u01 (xc )= u00 (xc )
(14)

u11 (xc )= u10 (xc )−F/(EI).

Suppose that the load acts in the zeroth span. The displacement amplitude is

n0 = (A0V1 +B0V2)(ek1x, ek2x, ek3x, ek4x)' (dE xE 1) (15a)

in the region to the right of the exciting point, and

n'0 = (A'0V1 +B'0V2)(ek1x', ek2x', ek3x', ek4x')' (0E xE d) (15b)

in the region to the left of the exciting point, where x'=1− x. By applying the boundary
condition at the exciting point (14) to n0 and n'0 , A0, B0, A'0 and B'0 can be solved.

Substitution of the coefficients A0, B0, A'0 and B'0 into equation (13a), (13b), (15a) and
(15b) yields the displacement amplitude response corresponding to stationary point O
exciting force.

3. NUMERICAL ANALYSIS OF DYNAMIC RESPONSE

Consider an infinite uniform continuous beam with elastic supports stiffness k0.
Transverse force F that varies harmonically with time acts as the center of one span, i.e.
d=1/2. The following parameters are kept constant throughout this investigation.

U=10 kg/m C=0.2 Cs =0.2

E=2.1×1011 kg/m2 I=3.22×10−6 m4 hr =0.2 (16)

L=5 m.

The vertical displacement amplitude at the exciting point of transverse force is calculated
with all range of the forcing frequency. The maximum amplitude value of the vibration
modes and the corresponding force frequency at the different axial loads (tensile or
compressive load) are discussed. All the solutions are calculated as complex displacements
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Figure 3. Amplitude versus frequency for the different axial loads.

but, to simplify the discussion, the module is presented here. Note that real displacement
is most commonly analyzed in problems of technical vibrations. That is

A= =n0=. (17)

In the example of investigation, the elastic and stiff supports are considered. The forcing
frequency is from 0 to 25 Hz in which the main vibration frequency would be included.

3.1.  

Figure 3 shows the results of amplitude vs. the corresponding frequency for the different
axial loads. The stiffness of support k0 is 5×106 N/m in the example. It can be clearly seen
from the figure that there are two vibration modes in all range of the forcing frequency.
They are denoted as P1 and P2. The first peak P1 that corresponds to the first vibration
mode does not vary obviously in frequency as the axial load P increases. Another one,
associated with the ‘‘higher’’ frequency, decreases in frequency as P increases (Figure 3).

Figure 4. Resonant amplitude of P2 versus axial load for different damping.
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Figure 5. Resonant frequency of P2 versus axial load for different damping.

(a) Effect of axial load on P2

Let AR denote the ‘‘resonant amplitude’’ of P2, and let FR denote the corresponding
‘‘resonant frequency’’. The amplitude of resonant peak P2 and the corresponding frequency
are plotted as functions of the axial load in Figures 4 and 5, respectively, for C=0.1, 0.2
and 0.4. As the beam is induced by the tensile or the small compressive axial load P,
resonant peak P2 does not vary obviously in size as the P, as shown in Figure 4. As the
compressive load P in the beam continues to increase, the amplitude of resonant peak P2

begins to increase more quickly with increasing P, which can be expressed roughly by the
factor.

AR 0 b12/(P− b2) (b1 and b2 are constants) (18)

This shows that there is a strong influence of the axial load for the displacement amplitude
of resonant peak P2 when the axial load is large. The greater axial load has the greater
displacement amplitude until the buckling occurs in the beam.

The resonant frequency decreases with increasing P. But the tendency of change is being
weakened with a reducing axial load (see Figure 5). The resonant frequency of P2 does
not decrease to zero, when the buckling of the beam is produced. It is equal to the resonant
frequency of P1 when the buckling takes place (the frequency is about 5 Hz in the example).
There is a linear relationship between the square of F 2

R and P (when FR q 0) with a slope.
In Figure 4, one should notice that an increase in the damping c has a strong effect on

the amplitude, but not on the resonant frequency.

Figure 6. Amplitude of resonant mode P1 versus frequency for different axial load.
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Figure 7. Resonant frequency of P1 versus axial load.

(b) Effect of axial load on P1

The numerical results for the amplitude of resonant mode P1 and the corresponding axial
load are shown in the Figure 6. One finds some more characteristics in the figure. The axial
load can be divided into three regions as follows.

In the large tensile axial load region (beyond −145 kN in the example), the resonant
frequency does not increase or decrease with the axial loads. It is equal to about 4.48 Hz
(see Figure 7). The resonant amplitude becomes lower with a decreasing axial load, but
the variation is small as shown as Figure 8.

In the intermediate axial load region (axial load 00−145 kN in this example), unlike
the first region, there are two vibration peaks in the frequency range of 00 5 Hz. One of
them, denoted as M1, has a resonant frequncy which does not change with the increasing
P. It is 4.48 Hz. Its corresponding resonant amplitude is reduced with a decreasing axial
load. The variation is larger when P tends to zero and it reaches a maximum value as P
is 0 kN (Figure 8). However, the resonant frequency of another one (denoted as M2) is
reduced with a decreasing P. It is equal to 4·48 Hz when P is 0 kN, and it reaches zero
when P is about −145 kN. But its resonant amplitude shows some different phenomena.
It decreases with an increasing P at first and reaches a minimum value as the axial load
is about −100 kN. Then, it begins to increase with a decreasing P. The amplitude varies
more rapidly when the axial load decreases to zero and it reaches the greatest value as P

Figure 8. Resonant amplitude of P1 versus axial load.
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Figure 9. Amplitude versus frequency for different stiffness of the support.

is zero. Also, from Figure 8 it is seen that an increase in P has some similar effect on M1
and M2 on this region.

In the compressive axial load region, the resonant frequency starts to decrease with an
increasing P, until the frequency reaches zero. The amplitude decreases with an increasing
P at first (see Figures 7 and 8), but after P is greater than 100 kN, this varied tendency
is changed. The amplitudes begin to increase with an increasing P. This phenomenon is
symmetrical in the intermediate region of M2.

3.2.  

It would be considered that supports of the beam are stiff when stiffness of the support
k0 is very large (k0 =5×1016 N/m in the investigation).

In Figure 9, the amplitudes of the lateral motion are plotted as a function of the
corresponding frequencies for some stiffness of the support k0. It is shown that, vibration
mode P1 increases with an increase k0, and it would occur at higher frequencies (beyond
the range of the forcing frequency of the example) when k0 is large enough. But in P1, the
resonant frequency does not vary greatly with different k0.

The maximum value of lateral displacement and the corresponding forcing frequency
in stiff supports are plotted as functions of the axial load P in Figures 10 and 11.

They all have the same tendency of change as that in elastic supports (cf. Figures 4 and
5). That is, the resonant peak of P2 increases with augmenting P and the corresponding
resonant frequency decreases with an increasing P. The changes would be rapid with an

Figure 10. Maximum displacement versus axial load in stiff supports.
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Figure 11. Square of resonant frequency versus axial load with stiff supports.

increasing P when P is large. The buckling load of the beam in stiff support is greater than
that in elastic support.

Figure 11 shows a linear relationship between the square of the resonant frequency F 2
R

and axial load. This is the same as that of the one-span.

4. CONCLUSION

A method for solving problems of lateral vibration of axially loaded infinite uniform
Bernoulli–Euler beams has been presented. Elastic and stiff supports were considered, and
the beams were subjected to a harmonically transverse concentrated force at the centre of
one span. The amplitudes of lateral motion and the corresponding forcing frequency vs.
the axial load were investigated. The viscous and viscoelastic damping of the beam, and
complex stiffness of support, were included in the analysis. The main conclusions are as
follows.

In the elastic support, there are two vibration modes for the range of the forcing
frequencies (00 25 Hz in the example). It is denoted as P1 and P2. In the vibration mode
P1, the amplitude and the corresponding forcing frequency can be divided into three
regions according to different axial loads. In the large tensile axial load region, the resonant
frequency does not change with different axial loads, and the corresponding amplitude is
reduced with a decreasing axial load. In the intermediate axial load region, two resonant
peaks are formed on the range of forcing frequency of P1. One resonant frequency does
not change with the increasing axial load and its corresponding amplitude attenuates with
a decreasing P; another resonant frequency decreases with reduction of the axial load, and
its amplitude increases with a decreasing P initially, then, decreases with a decreasing axial
load. In the compressive axial load region, the resonant frequency decreases with an
increasing P, and the corresponding amplitudes at first attenuate, with an increasing P,
then increases with an augmenting P. The resonant amplitude increases with enlarging P,
and the corresponding frequency declines with an increasing P for the vibration mode P2.

In the stiff support, the natural frequency of the vibration mode P1 is high enough to
be out of all range of the forcing frequency, and the characteristic of vibration mode P2

resembles that in the elastic support.
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APPENDIX: NOTATION

A the module of beam amplitude
C viscous damping coefficient of transverse deflection
c dimensionless parameter, CL4/EI
Cs viscoelastic damping coefficient of strain
E modulus of elasticity
F transverse force
I beam moment of inertia
k0 real stiffness constant of the supports
kr complex stiffness constant of the elastic supports
L beam length of one-span
P axial load
p dimensionless axial load, PL2/EI
ri eigenvalues of T
X beam axial co-ordinate
x dimensionless parameter, X/L
t time
W(X, t) transverse deflection of beam
w dimensionless parameter, W/L
T transfer matrix of beam
Vi eigenvectors of T
b dimensionless parameter, CsI/EI
hr loss factor of the supports
U beam mass per unit length
r dimensionless parameter, UL4/EI
v vibration frequency of beam


