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A simply supported uniform Euler–Bernoulli beam carrying a crane (carriage and
payload) is modelled. The crane carriage is modelled as a particle as is the payload which
is assumed to be suspended from the carriage on a massless rigid rod and is restricted to
motion in the plane defined by the beam axis and the gravity vector. The two coupled
integro-differential equations of motion are derived using Hamilton’s principle and
operational calculus is used to determine the vibration of the beam which is, in turn, used
to obtain the dynamics of the suspended payload. The natural frequencies of vibration of
the beam–crane system for a stationary crane are investigated and the explicit frequency
equation is derived for that set of cases. Numerical examples are presented which cover
a range of carriage speeds, carriage masses, pendulum lengths and payload masses. It is
observed that the location and the value of the maximum beam deflection for a given set
of carriage and payload masses is dependent upon the carriage speed. At very fast carriage
speeds, the maximum beam deflection occurs close to the end of the beam where the
carriage stops as a result of inertial effects and at very slow speeds occurs near the middle
of the beam because the system reduces to a quasi-static situation.
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1. INTRODUCTION

The primary use of overhead cranes is in the transfer of ‘‘heavy’’ payloads from one
location to another, thus they are found in areas such as airports, shipyards, and
automobile plants. While the swing of the payload link poses an interesting control
problem, a proper representation of the system dynamics is, in our view, an essential
component in designing an effective controller.

The system reduces to an elastic beam with a moving load when the attachment to the
payload—henceforth called a pendulum—is removed. This is a common feature in the
design of railroads, highways, and bridges. While these are traditional civil engineering
applications, the model is now used in ballistic machining problems, high-speed precision
drilling, and problems involving two-phase flows [1–3].

One of the earliest studies on beams with moving load was done by Stokes [4] and the
monograph by Frýba [5] is an excellent reference, with many analytical solution methods
for simple cases. Lee [6] investigated the dynamic response of a beam with intermediate
point constraints subjected to a moving load via the method of assumed modes. The point
constraints were modelled as linear springs with stiffnesses of enough magnitude to
guarantee a numerically zero deflection at these points. It was observed that the point
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constraints resulted in a significant reduction in the deflection of the beam for slow moving
loads. The method of assumed modes was also used by Esmailzadeh and Ghorashi [7] to
study the dynamic response of a single-span beam with a moving load that was caused
by a uniform partially distributed moving mass. A similar analysis was implemented by
Michaltsos et al. [8] with a concentrated moving load.

The application of the finite element method to the moving load problem can be found
in references [3] and [9–11]. The study by Stanis̆ić [12] is a departure from the
aforementioned studies because the position of the moving load is included in the mode
shapes derivation thus ensuring satisfaction of both the boundary and transient conditions.
This technique is based on the use of operational calculus and was shown to exhibit fast
convergence.

Khalily et al. [13] have used the technique by Stanis̆ić [12] in modelling a cantilever beam
with a moving mass. They showed that the inclusion of the position of the mass in the
eigenfunctions provides superior results when compared with the conventional and more
prevalent method in which the eigenfunctions are independent of the position of the mass.

This paper is an attempt to increase our understanding of the dynamics of an overhead
crane system. We assume that the beam is simply supported and that it can be adequately
modelled using Euler–Bernoulli beam theory. Further, we assume that the crane carriage
transverses the beam at a known uniform speed and that the pendulum may be adequately
modelled as a rigid massless bar. The motion of the pendulum is assumed to be planar
with small angular displacements and displacement rates from the vertical.

A set of coupled, non-linear equations of motion is derived via Hamilton’s principle.
The complexity of these equations is increased by the presence of Dirac delta function
terms. We obtain the transverse vibration of the beam using the method outlined in
reference [12]. A polynomial is fitted to this result and then used to determine the dynamics
of the pendulum. The effects of varying the various parameters are investigated.

2. DESCRIPTION OF THE SYSTEM

A schematic of the problem is depicted in Figure 1. An overhead crane carriage of mass
mc moves along the beam with a prescribed velocity ẋc . This implies that the position of
the carriage is known at all times. A rigid rod of length L has one end attached to the
carriage while the other end carries a payload of mass mL . The rod is displaced from the
vertical by angle u.

The beam is simply supported and is assumed to be adequately modelled using
Euler–Bernoulli beam theory. The properties of the beam are Young’s modulus E, volume
density r, cross-sectional area A, length Lb , and second moment of area I.

3. EQUATIONS OF MOTION

A dextral inertial frame Fa with basis vectors a1, a2, and a3 and co-ordinates xyz is
attached at the left-hand end of the beam such that the a1 basis vector passes through the
right-hand end of the beam and the a2 basis vector points in the direction of the static
deflection as illustrated in Figure 1.

The position vector of an elemental mass of the beam rb , the position vector of the
carriage rc , and the position vector of the load rL , can be expressed as

rb = xa1 + y(x, t)a2, rc = xc (t)a1 + y(xc , t)a2 (1, 2)
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and

rL =(xc (t)+Lp sin u)a1 + (y(xc , t)+Lp cos u)a2. (3)

The corresponding velocities are

ṙb =
1y(x, t)

1t
a2, ṙc =

dxc (t)
dt

a1 +
dy(xc , t)

dt
a2 (4, 5)

and

ṙL =0dxc (t)
dt

+Lp cos (u)
du(t)
dt 1a1 +0dy(xc , t)

dt
−Lp sin u

du(t)
dt 1a2. (6)

The kinetic energy of the system T is

T=Tb +Tc +TL , (7)

where

Tb = 1
2rA g

Lb

0 01y(x, t)
1t 1

2

dx, Tc = 1
2mc00dxc (t)

dt 1
2

+0dy(xc , t)
dt 1

2

1, (8, 9)

TL = 1
2mL00dxc (t)

dt 1
2

+2Lp cos u
dxc (t)

dt
du(t)
dt

−2Lp sin u
dy(xc , t)

dt
du(t)
dt

+0dy(xc , t)
dt 1

2

+L2
p0du(t)

dt 1
2

1. (10)

The potential energy of the system U is

U= 1
2EI g

Lb

0 01y(x, t)
1x 1

2

dx−(mc +mL )gy(xc , t)−mLgLp cos u. (11)

Figure 1. Schematic of the system.
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Using T and U in Hamilton’s principle and taking variations over u(t) and y(x, t) while
observing their independence, we find the equations of motion, after some algebraic
manipulations, to be

mLL2
p
d2u(t)
dt2 +mLLp cos u

d2xc (t)
dt2 −mLLp sin u

d2y(xc , t)
dt2 +mLgLp sin u=0, (12)

g
Lb

0 6rA
12y(x, t)

1t2 +EI
14y(x, t)

1x4 + (mc +mL )0d2y(x, t)
dt2 − g1d(x− xc )

−mLLp0sin u
d2u(t)
dt2 + cos (u)0du(t)

dt 1
2

1d(x− xc )7 dx=0, (13)

with the boundary conditions

y(0, t)=
12y(0, t)

1x2 = y(Lb , t)=
12y(Lb , t)

1x2 =0 (14)

and initial conditions

y(x, 0)=
1y(x, 0)

1t
=

du(0)
dt

= xc (0)=0 and u(0)= u0. (15)

In the simple case where one has a simply supported beam with a mass fixed somewhere
in the span one can find that the governing frequency equation is

bm
rA

(sin (bLb )(cosh (b(L1 −L2))− cosh (bLb ))

+sinh (bLb )(cos (b(L1 −L2))− cos (bLb )))

−4 sin (bLb ) sinh (bLb )=0, (16)

where L1 is the position of the mass as measured from the left end of the beam where x=0.
The other parameters in equation (16) are defined as

b4 =
v2rA
EI

, Lb =L1 +L2 and m=mc +mL .

This relation ignores the motion of the payload and treats the carriage and payload as
a single point mass. It may be observed that in the event that m=0, L1 =0 or L2 =0,
equation (16) reduces to the frequency equation for a uniform simply supported beam,

sin (bLb )=0.

3.1. -   

To obtain the non-dimensionalized forms of the equations of motion, equations (12) and
(13), we follow Stanis̆ić [12] and define

v(j, t)=
y(x, t)

Lb
, j=

x
Lb

, jc (t)=
xc (t)
Lb

, o1 =
mc

rALb
,

o2 =
mL

rALb
, t= at, a2 =

rAL4
b

EI
, o= o1 + o2, (17)

p1 =
mcgL2

b

EI
, p2 =

mLgL2
b

EI
, p= p1 + p2, L=

Lp

Lb
.
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Using the above definitions, the non-dimensional form of equation (12) can be written as

o2L
d2u(t)
dt2 + o2 cos u

d2jc (t)
dt2 − o2 sin u

d2v(jc , t)
dt2 + p2 sin u=0 (18)

and that of equation (13) as

g
1

0 61
2v(j, t)
1t2 +

14v(j, t)
1j4 + o

d2v(jc , t)
dt2 d(j− jc )

−0jo20sin u
d2u(t)
dt2 − cos (u)0du(t)

dt 1
2

1+ p1d(j− jc )7 dj=0. (19)

The corresponding non-dimensionalized boundary conditions are

v(0, t)=
12v(0, t)

1j2 = v(1, t)=
12v(1, t)

1j2 =0 (20)

and the non-dimensionalized initial conditions are

v(j, 0)=
1v(j, 0)

1t
=

du(0)
dt

=0 and u(0)= u0. (21)

The non-dimensional form of the frequency equation given in equation (16) is

lo(sin (l)(cosh (l(2jc −1))−cosh (l))

+sinh (l)(cos (l(2jc −1))−cos (l)))

−4 sin (l) sinh (l)=0, (22)

with sin (l)=0 corresponding to the frequency equation for a uniform simply supported
beam.

4. SOLUTION METHOD

If we assume a crane carriage speed j� c =constant and also assume that u(t) and du(t)/dt

are small and that their products are negligible, then the non-dimensionalized equations
of motion can be written as

d2u(t)
dt2 −01

L
d2v(jc , t)

dt2 − a2 g
Lp1u(t)=0 (23)

and

g
1

0 01
2v(j, t)
1t2 +

14v(j, t)
1j4 + o

d2v(j, t)
dt2 d(j− jc )− pd(j− jc )1 dj=0. (24)

The use of the small angle and small angular rate assumption allows the uncoupling of
the beam motion from the payload motion but not conversely. Except for the
simplifications enjoyed as a result of this assumption the governing equations remain
non-linear coupled integro-differential equations. Equation (23) could result in a
Hill–Mathieu equation under some conditions and this would imply the possibility of an
‘‘unstable’’ motion. Note that equation (24) is identical to equation (5) in reference [12]
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without the spring term. Thus, one can follow reference [12] and derive an approximate
solution for the vibration of the beam. The actual derivation process is very lengthy and
tedious and will not be repeated here, instead, the reader is urged to consult Stanis̆ić [12]
for more details.

Assume a separable solution to equation (24) in the form

v(j, t)=V(j) ejVt, (25)

where V is a non-dimensional frequency. Using this expression, the following frequency
equation results [12]:

sin (l) sinh (l)+
o

2
l(sin (l(jc −1)) sin (ljc ) sinh (l)

−sinh (l(jc −1)) sinh (ljc ) sin (l))=0, (26)

where l2 =V. The orthonormalized eigenfunction is expressed as

Vn (j, jc )=
1

zBn (jc ) 6CnL (j, jc −1),
CnR (j−1, jc ),

0E jQ jc ,
jc Q jE 1,

(27)

where

CnL (j, jc −1)=sin (lnj) sin (ln (jc −1)) sinh (ln )

− sinh (lnj) sinh (ln (jc −1)) sin (ln ), (28)

CnR (j−1, jc )= sin (ln (j−1) sin (lnjc ) sinh (ln )

− sinh (ln (j−1)) sinh (lnjc ) sin (ln ) (29)

and

Bn (jc )=2 sin (ln ) sinh (ln (3Cn (jc )− jc =C'nL (jc )+C'nR (jc )=))

+2ln (sin2 (lnjc ) sinh2 (ln )− sinh2 (lnjc ) sin2 (ln ))+ oC2
n(jc ). (30)

The solution to equation (24) can be expressed as a summation of the product of the
orthonormal eigenfunctions Vm (j, jc ) and undetermined coefficients qm (t, jc ) such that

v(j, t)= s
a

m=1

Vm (j, jc )qm (t, jc ). (31)

It was assumed earlier that the carriage travels with a constant velocity. Now, it is also
assumed that the expressions 1Vm (j, jc )/1jc and 1qm (jc , t)/1jc and their second derivatives
are small enough that their products can be ignored when compared with
(12qm (jc , t)/1t2)Vm (j, jc ) [12]. Thus,

12

1t2 (Vm (j, jc )qm (jc , t))1 12qm (jc , t)
1t2 Vm (j, jc ). (32)

Substituting equation (31) into equation (24) and using equation (32), the following
equation results after some algebraic manipulations:

12qm (jc , t)
1t2 + l4

m(jc )qm (jc , t)= pVm (jc , jc ), (33)
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T 1

Material properties

Parameter Value

r 8·0×103 kgm−3

E 2·117×1011 Pa
Lb 10·0 m
A 16·0×10−4 m2

I 2·13×10−7 m4

g 9·81 ms−2

rALb 128 kg
a 1·685

with initial conditions

qm (0, jc )= q̇m (0, jc )=0. (34)

The following is the solution to the above equation which is obtained from operational
calculus [14]:

qm (t, jc )= p g
t

0

(t−f)Vm (jc (f), jc (f)) df

− g
t

0

(t−f)l4
m(jc (f))qm (f, jc (f)) df. (35)

Equation (35) is substituted into equation (31) to determine the beam deflection under the
carriage v(jc , t). A Chybeshev polynomial series is then fitted to the resulting beam
deflections and its second derivative is used in equation (23) to numerically obtain the
dynamics of the payload.

5. NUMERICAL EXAMPLES

The beam is assumed to be square in cross-section and to be made of steel with the
material properties outlined in Table 1. The crane carriage travels from one end of the
beam to the other in all simulations. Before investigating the dynamics of the pendulum
our analysis is validated by simulating the dynamics of the beam. In particular we seek
to reproduce Figure 4 in reference [12].

The ratio of the mass of the carriage to the mass of beam o1 is varied over the values
0·0, 0·05, and 0·10, the ratio of the mass of the payload to the mass of the beam is fixed
at o2 =0·15, and the ratio of the length of the pendulum to the length of the beam is fixed
at L=0·15. The simulation is carried out for three constant carriage speeds j� c =0·5, 1·0
and 2·0 s−1.

Before considering the cases where the carriage and payload are moving, it is instructive
to first consider the natural frequencies of the beam when the carriage and payload are
stationary. The purpose of this preliminary investigation into the frequency behaviour of
the system for stationary masses is to demonstrate the complexity of the behaviour even
in this simple scenario. Careful examination of equation (22) reveals that when the mass
is positioned at j= k/n, k=0, 1, 2, . . . , n of the span, (i.e., at the modal nodes) the
natural frequency of mode n is identical to the natural frequency of the same mode in the
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Figure 2. Natural frequencies of a beam with a fixed mass in the span for o=0·15 ( · · · ), 0·20 (–––), 0·25;
(——); r, 1st mode; e, 2nd mode; q, 3rd mode.

case where there is no mass on the beam. This is illustrated in Figure 2 for the first three
natural frequencies. The material and geometric properties used to produce this figure are
given in Table 1.

As expected, the addition of the mass in the span of the beam decreases the natural
frequency of the system, except as noted above, and the larger the mass the greater the
decrease. The location of the minima in Figure 2 is dependent not only on the size of the

T 2

Stationary mass, v1 Hz

jc o=0·15 o=0·20 o=0·25

0·000 0·9323203 0·9323203 0·9323203
0·500 0·8173761 0·7874778 0·7606099
1·000 0·9323203 0·9323203 0·9323203

T 3

Stationary mass, v2 Hz

jc o=0·15 o=0·20 o=0·25

0·000 3·7292810 3·7292810 3·7292810
0·225 3·3111085 3·2133922 3·1296904
0·230 3·3103962 3·2133021 3·1303428
0·235 3·3103629 3·2139979 3·1318551
0·500 3·7292810 3·7292810 3·7292810
0·765 3·3103629 3·2139979 3·1318551
0·770 3·3103962 3·2133021 3·1303428
0·775 3·3111085 3·2133922 3·1296904
1·000 3·7292810 3·7292810 3·7292810
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T 4

Stationary mass, v3 Hz

jc o=0·15 o=0·20 o=0·25

0·000 8·3908824 8·3908824 8·3908824
0·135 7·5320338 7·3458314 7·1927402
0·140 7·5263722 7·3431626 7·1935066
0·145 7·5240848 7·3442846 7·1982738
0·333 8·3908824 8·3908824 8·3908824
0·500 7·5381336 7·3657407 7·2245910
0·666 8·3908824 8·3908824 8·3908824
0·855 7·5240848 7·3442846 7·1982738
0·860 7·5263722 7·3431626 7·1935066
0·865 7·5320338 7·3458314 7·1927402
1·000 8·3908824 8·3908824 8·3908824

mass but also on the position of the mass as may be seen in the data presented in Tables
2–4 where the local minimum values are in bold. Of interest here is that, in the third mode
data, the global minimum does not occur when the mass is at midspan.

Figure 3 depicts the beam deflection under the carriage as the carriage travels at
j� c =0·5 s−1. It is observed that the magnitude of the maximum deflection increases with
the mass of the carriage. This is to be expected given the higher gravitational loads
associated with the greater masses. It may further be observed in Figure 3 that for the lower
values of o1 (i.e., 0·0 and 0·05) the maximum deflection occurs at or very near to the
midspan of the beam but for the larger carriage mass (o1 =0·1) the peak deflection under
the carriage definitely occurs past the middle of the beam.

This effect is accentuated in Figures 4 and 5 where results for the same system, but with
the carriage speed increased from j� c =0·5 to 1·0 and 2·0 s−1, respectively, are illustrated
Here it may be observed that the location of the maximum deflection (under the carriage)
has moved forward, away from the middle of the beam to the right; the higher the carriage
speed, the further the maximum is moved to the right. This is caused by a coupling of the

Figure 3. Beam deflection under the carriage for j� c =0·5 s−1 and o2 =0·15; · · · · , o1 =0; –––, 0·05; ——, 0·10.
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Figure 4. Beam deflection under the carriage for j� c =1·0 s−1 and o2 =0·15; · · · · , o1 =0; –––, 0·05; ——, 0·10.

beam motion and the motion of the carriage. Because the beam motion is dynamic it is
vibrating as the crane carriage advances and when the speed of the carriage is sufficiently
large it can reach a point on the beam that is more than half way across before a
constructive superposition of the gravitational loading and the beam motion combine to
yield a maximum deflection under the carriage. Figures 3 and 4 demonstrate that this effect
is more sensitive to changes in carriage speed than it is to changes in the carriage mass.
It may also be noted in Figure 4 that, just as in the previous case, the magnitude of the
maximum deflection increases with the mass of the carriage.

Further, upon close examination of Figures 4 and 5 it may be noted that the magnitude
of the various maxima is lower than their corresponding values for a carriage speed of
0·5 s−1. This is due to the increased speed of the carriage and can be appreciated by
considering the two limiting cases of j� c:0 and j� c:a. In the former limit we approach
a sequence of quasi-static loadings where at each instant the maximum deflection of the
beam is under the carriage and dynamic effects are negligible. In the later limit the beam
would not deflect at all due to inertial effects and the negligible transit time.

With reference to Figure 4 the (o1 =0·05, o2 =0·15) combination is the nearest to, and
is in close agreement with, the scenario presented in Stanis̆ić [12].

5.1.  

The vibration of the pendulum carrying the payload is examined under three different
scenarios to determine the effect of the length of the pendulum, the effect of the mass of
the carriage and the mass of the payload, and finally, the effect of the carriage speed.

5.1.1. Case 1: effect of the pendulum length
To examine the effect of the length of the pendulum a carriage speed j� c of 1·0 s−1, a

carriage mass to beam mass ratio o1 of 0·05 and a payload mass to beam mass ratio
o2 =0·15 are used. The results are depicted in Figure 6 where a definite change in frequency
is evident. While the payload is suspended from a moving carriage it is, by virtue of the
constant carriage velocity, in an inertial frame (ignoring the transverse acceleration of the
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Figure 5. Beam deflection under the carriage for j� c =2·0 s−1 and o2 =0·15; · · · · , o1 =0; –––, 0·05; ——, 0·10.

beam) and should behave just as a stationary pendulum would. Figure 6 shows that, as
expected, the swing frequency is inversely proportional to the square root of the length
of the pendulum and, for this example, the beam vibration has no discernible effect on
the payload motion as compared to changes in the pendulum length.

5.1.2. Case 2: effect of carriage mass
In this example the ratio of the length of the pendulum to the length of the beam L,

the ratio of the payload mass to the beam mass o2, and the carriage speed j� c are each fixed
at 0·10, 0·15, and 1·0 s−1, respectively, while the ratio of the mass of the carriage to the

Figure 6. Effect of the pendulum length: · · · · , L=0·05; –––, 0·10; ——, 0·15.
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Figure 7. Effect of carriage mass: · · · · , o1 =0·05; –––, 0·10; ——, 0·15.

mass of the beam o1 is varied as 0·05, 0·10 and 0·15. The swing angle versus
non-dimensional time is plotted in Figure 7 for each o1.

The beam motion and carriage mass contribute an effective stiffness coupling term to
the dynamics of the pendulum as can be seen by considering the leading factor of the
penultimate term in equation (23), i.e., the factor

d2v(jc , t)
dt2 (36)

which also appears in the beam equation (24) with o as a leading factor. The plots do not
reveal any apparent change in the swinging frequency of the pendulum but, the magnitude
of the swing of the pendulum increases slightly with decreasing carriage mass.

From the equations of motion, equations (23) and (24), it is expected that for fixed values
of o a variation in the mass of the payload would give the same effect as a variation in
the mass of the carriage. Thus, that situation will not be considered explicitly.

5.1.3. Case 3: effect of carriage speed
Here, the ratio of the carriage mass to the beam mass, the ratio of the payload mass

to the beam mass, and the ratio of the pendulum length to the beam length are fixed at
o1 =0·05, o2 =0·15 and L=0·10, respectively, while the carriage speed is varied as
j� c =0·2, 0·5 and 1·0 s−1. The results are illustrated in Figures 8–10.

The non-dimensional terminating time t( for each speed is determined according to

t(=
t(
a

=
Lb

aẋc
=

1
ẋcLbXEI

rA
.

These plots are not presented in the same figure because the time window that is
available for the pendulum to swing is different for each carriage speed—it increases with
decreasing carriage speed. Thus, a full cycle is observed at the lowest speed because the
period is smaller than the total travel time of the carriage.
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Figure 8. Effect of carriage speed for o1 =0·05, o2 =0·15, L=0·10 and j� c =0·2 s−1.

The results at the slowest speed (Figure 8) is of particular interest in that the amplitude
of vibration starts to slowly grow after about t=2·0. Figure 9 shows that the pendulum
completes one-half period by the time the carriage reaches the end of the beam when the
carriage speed is 0·5 s−1 while a quarter period is observed at a carriage speed of 1·0 s−1

(Figure 10).
To further improve our understanding of the effects of the carriage speed on the

pendulum motion, Figure 11 has been included which depicts the beam transverse
deflection under the carriage. These plots are similar to those of Figures 3–5 but for fixed
carriage and payload masses and varied carriage speeds. Taking the results depicted in

Figure 9. Effect of carriage speed for o1 =0·05, o2 =0·15, L=0·10 and j� c =0·5 s−1.
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Figure 10. Effect of carriage speed for o1 =0·05, o2 =0·15, L=0·10 and j� c =1·0 s−1.

Figures 3–5 into consideration, one can conclude that there is a threshold carriage speed
that will generate beam deflections under the carriage that are symmetric about the middle
of the beam.

What the above suggests is that the location and the value of the maximum beam
deflection for a given set of carriage and payload masses is dependent upon the carriage
speed. At very fast carriage speeds, the maximum beam deflection is expected to occur close
to the end of the beam where the carriage stops because in those cases the deflections are

Figure 11. Beam deflection under the carriage for o1 =0·05, o2 =0·15 and L=0·10; · · · · , j� c =0·2 s−1; –––,
0·5 s−1; ——, 1·0 s−1.
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Figure 12. Beam deflection for a given carriage location for o1 =0·05, o2 =0·15, L=0·10 and j� c =0·2 s−1

(time=5·0 s, beam length=10·0 m).

dominated by inertial effects. At very slow speeds, the maximum beam deflection is
expected to occur at the middle of the beam because the system reduces to a quasi-static
situation. With regard to the slow speeds, it is observed that the maximum beam deflection
occurs before the middle of the beam within a particular range of carriage speeds. This
may be explained by noting that the beam vibration frequency is varying because of the
variation in mass distribution. An analytical deduction of this range of carriage speeds for
a given configuration is difficult, if not impossible.

Plots of the beam deflection history for a carriage speed of 2 m/s over a 10-m long beam
are presented in Figure 12. This figure is presented to provide a qualitative understanding
of the interaction between the carriage speed and beam vibration frequency. The negative
of the deflections has been plotted for aesthetic reasons because the reference frame of the
beam was positioned in such a manner that downward deflections of the beam were
positive.

Each curve in the figure is a beam deflection profile traced when the carriage has
travelled along the beam for a particular time. The dots represent the carriage location
at time intervals of 0·5 s as it traverses the beam. The diagonal line at the bottom of the
figure is the projection of the carriage trajectory in the time–position plane. In a like
manner the plot for a carriage speed of 0·2 s−1 in Figure 11 is the projection of the carriage
trajectory onto the beam deflection–time plane for this same example.

The beam deflection profile traced when the carriage has travelled 4 m along the beam
provides the maximum beam deflection for all the profiles. Note, however, that this
maximum deflection does not occur under the carriage but rather at a point forward of
the carriage. If one considered the beam as simply supported without any concentrated
load, the period for the ith mode is

Ti =
2
i2p 0rAL4

EI 1
1/2

=
2a

i2p
.

From Figure 2 it can be seen that, for the first mode, this will yield a reasonably close
estimate for the dominant period.
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The period of the first mode of the beam is 1·0726 s and the carriage will travel 4·29 m
after 2T1 periods which correlates very well with the maximum deflection under the carriage
at the slowest carriage speed (j� =0·2 s−1) in Figure 11. The other local peaks in
that figure occur at 1T1, 3T1 and 4T1 periods indicating that this carriage speed is sufficiently
slow to allow the beam vibrations to be observed in the response. At the next higher carriage
speed, i.e., j� =0·5 s−1 the peak beam deflection under the carriage occurs at a location (time)
that corresponds very closely to 1T1 period. The peak displacement under the carriage for
the highest carriage speed reported in Figure 11 does not correlate with an integer multiple
of T1 or, apparently, any other system characteristic period.

6. SUMMARY

The dynamics of an overhead crane system with the carriage moving at a specified
constant speed has been examined. The beam portion of the crane was modelled as an
Euler–Bernoulli beam, the carriage as a particle and the pendulum as a rigid massless rod
with a particle tip mass. The coupled integro-differential equations of motion were derived
using Hamilton’s principle.

Our assumption of a small angle of rotation (or swing) of the pendulum has led to a
system of equations in which the dynamics of the pendulum are dependent on the dynamics
of the beam but not the converse. Allowing a large angular displacement of the pendulum
would introduce a bidirectional coupling between the beam and the pendulum and
introduce the possibility of pendulum instability due to the flexible support offered by the
beam; this would be a worthwhile area for future inquiry. The acceleration of the beam
under the carriage acts as an effective stiffness contribution in the governing equation of
motion of the pendulum but this effect is not unidirectional since the term can take either
positive or negative values and hence the pendulum acts as if it has a time varying stiffness
coefficient.

The mode shapes of the beam were determined as functions of the instantaneous location
of the carriage on the beam. The vibration of the beam was determined via operational
calculus and fitted to a Chybeshev polynomial series. The resulting expression was then
used to simulate the dynamics of the pendulum.

The results obtained from the numerical calculations that employed the non-dimensional
formulation of the problem indicate that the deflection of the beam is dependent on both
the carriage speed and the mass of the combined carriage and payload mass. In particular,
the magnitude of the deflection increases with increasing crane mass at all carriage speeds.
For a given crane mass, there is a threshold carriage speed at which the beam deflection
under the carriage is symmetric about the middle of the beam. The position of the
maximum deflection tends to drift to the right or the left of the beam centre depending
on whether the operating speed is above or below this threshold. Further, the magnitude
of the maximum deflection tends to decrease with increasing drift from symmetry.

The threshold speed and the location of the maximum beam deflection for a given
carriage speed are observed to be functions of the beam vibration frequency due to what
may be considered as constructive interference between the gravitational deflection of the
beam and the vibrational behaviour of the beam. The value of the maximum beam
deflection for a given set of carriage and payload masses is dependent upon the carriage
speed. For high carriage speeds, the maximum beam deflection occurs close to the end of
the beam where the carriage stops because the deflections are dominated by inertial effects
of the carriage. At very slow speeds the beam behaves in a quasi-static manner and the
maximum beam deflection occurs close to the middle of the beam.
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The dynamics of the pendulum are dependent on the carriage mass, the payload mass,
the length of the pendulum, and the carriage speed. The carriage mass or payload mass
effect is reflected in the magnitude of the vibration while changes in the pendulum length
affect both the frequency and magnitude of the swing.

Finally, an unstable pendulum swing is possible at some carriage speeds and
configurations because the governing equation will reduce to a Hill–Mathieu equation.
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APPENDIX: NOMENCLATURE

A beam cross-sectional area
E Young’s modulus
I second moment of the area
L ratio of the length of the pendulum to the length of the beam
Lb length of the beam
Lp length of the pendulum
mc mass of the carriage
mL mass of the payload
p summation of non-dimensional carriage and payload weights
p1 non-dimensional weight of the carriage
p2 non-dimensional weight of the payload
qm undetermined coefficients
rb position vector of an elemental mass
rc position vector of the carriage
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rL position vector of the payload
t time
T system kinetic energy
Vm orthonormal eigenfunctions
U system potential energy
v(j, t) non-dimensional transverse displacement
x co-ordinate of the beam
xc position of the carriage on the beam
y(x, t) transverse displacement
a natural frequency constant of the beam
dW system virtual work
o summation of the non-dimensional carriage and payload masses
o1 non-dimensional mass of the carriage
o2 non-dimensional mass of the payload
u pendulum angle from the vertical
l square of the non-dimensional frequency
j non-dimensional co-ordinate of the beam
jc non-dimensional position of the carriage
r volume mass density
t non-dimensional time
V non-dimensional frequency
( � ) time derivative
( )' spatial derivative


