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A method is proposed for interpreting the behaviour of NARX neural networks. The
correspondence between time-delay neural networks and Volterra series is extended to the
NARX class of networks. The Volterra kernels, or rather, their Fourier transforms, are
obtained via harmonic probing. In the same way that the Volterra kernels generalize the
impulse response to non-linear systems, the Volterra kernel transforms can be viewed as
higher-order analogues of the Frequency Response Functions commonly used in
Engineering dynamics; they can be interpreted in much the same way.
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1. INTRODUCTION

The recent past has seen an enormous increase in proposals for the use of Artificial Neural
Networks (ANNs) for Engineering applications; particularly in control systems, fault
diagnostic systems and ‘‘smart’’ structures. However, despite the intense activity of
academia and industrial R&D departments, the uptake of ANN technology by
industry–European industry in particular—has been minimal. The reason for this is the
apparent ‘‘black box’’ nature of ANNs which makes them resistant to traditional methods
of certification and therefore excludes them from safety-critical applications.

This paper offers a partial remedy to this problem for a restricted class of neural
networks often used in modelling and control applications—the so-called NARX
(Non-linear Auto-Regressive with eXogenous) networks, a superset of the so-called
Time-Delay Neural Networks (TDNN). (The former terminology is from the literature of
time-series analysis and economic theory.) The most substantial body of work on these
networks has been produced by Billings and co-workers and a representative sample of
references can be found in reference [1].

The Volterra functional series [2] is often used in the system identification of non-linear
input–output processes. They provide a description of the dynamics which is invariant of
the excitation conditions. There are many applications to the analysis of both Engineering
and Physiological systems. In the field of Physiology, the Volterra kernels (which are the
generalized expansion coefficients of the series) allow a qualitative explanation of the
response of real neurons [3, 4]. Despite the utility of the representation, methods of
calculating the kernels quickly and accurately have proved difficult to find [5]. Recent work
by Wray and Green [6] and Marmarelis [4] exploits the fact that the Volterra series
representation corresponds closely with representation by a TDNN; an algorithm has been
obtained which allows the Volterra kernels to be computed using the weights from a
TDNN model of the input–output process.
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In engineering applications, it is often the Fourier transforms of the Volterra kernels,
so-called Higher-order Frequency Response Functions (HFRFs), which prove to be more
informative. Just as the standard FRF or, loosely speaking, the Transfer Function,
describes how inputs at certain frequencies will lead to elevated outputs i.e., resonances,
the HFRFs yield information about how energy is transferred between frequencies in
non-linear systems leading to the phenomenon of combination resonances. In contrast to
the situation for the kernels themselves, a fast and accurate means of obtaining the HFRFs
does exist. This is based on fitting a non-linear time-series model—a NARMAX model—to
the input–output data from the system and extracting the HFRFs using a harmonic probing
algorithm [7]. An application of this procedure to the analysis of non-linear wave forces,
which discusses in detail the interpretation of HFRFs, is documented in reference [8].

The object of the current paper is to show how HFRFs can be obtained directly from
neural network models. A more general class of networks is considered i.e., the NARX
class which includes the TDNN networks as a subclass. The HFRFs completely
characterize the network at each order of non-linearity and therefore offer a means of
validating and possibly verifying* neural network models used in identification and
control. Given a NARX network it will be possible using these methods to analyse
qualitatively the response of the system to signals containing multiple harmonic
components. A by-product of the analysis is that the procedures, in principle, be used to
identify HFRFs for input–output systems by training a NARX network to model the
system.

The layout of the paper is as follows: section 2 introduces the relevant material about
the Volterra series. Section 3 introduces the concept of the HFRF and discusses how they
can be interpreted. The method of harmonic probing is introduced in section 4 and applied
to the case of NARX model implemented as a Multi-Layer Perceptron (MLP). Sections
5 and 6 respectively derive the first two HFRFs for MLP networks with polynomial
activation functions and Radial Basis Function (RBF) networks. Section 7 illustrates the
theory by computing the HFRFs for a Duffing oscillator system via trained neural network
models.

2. THE VOLTERRA SERIES

In the time-domain analysis of linear dynamical systems the impulse response function
h(t) is known to characterize the system completely. For such a system, excited by an input
signal x(t), the response y(t) is given by the convolution integral,

y(t)=g
a

−a

dth(t)x(t− t). (1)

(This is sometimes referred to as Duhamel’s integral.)
This relationship is manifestly linear and will not hold for non-linear systems; however,

the theory was extended by Volterra [2] in the early part of this century to cover the more
general case. The output of a non-linear system is composed of additional higher-order
contributions. Volterra showed that the total response, y(t), is given by,

y(t)= y0 + y1(t)+ y2(t)+ y3(t)+ · · ·+ yn (t), (2)

* The distinction between the two processes is important; the process of validation establishes if the model
conforms to requirements, the process of verification is the procedure by which correct operation is assured [9].
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where y0 is a constant and,

y1(t)=g
a

−a

dth1(t1)x(t− t1), (3)

y2(t)=g
a

−a g
a

−a

dt1 dt2 h2(t1, t2)x(t− t1)x(t− t2), (4)

and the general term is,

yn (t)=g
a

−a

· · · g
a

−a

dt1 dt2 · · · dtnhn (t1, t2 · · · tn )x(t− t1)x(t− t2) · · · x(t− tn ). (5)

This is essentially a generalization of the standard Taylor series to the case of functionals
i.e., mappings between functions. The generalized coefficients of the series hn , are the nth
order Volterra kernels, and these can be thought of as multi-dimensional, or higher-order,
impulse response functions. The yn terms are unique but the Volterra kernels hn are not.
However, it can be shown that there is always a representation using symmetric kernels
which is unique [10]. (Symmetric in this case simply means that the kernels are invariant
under the interchange of any of their arguments.) The series provides a representation of
a given functional or system y(t)=S[x(t)], which is insensitive to the input x(t), provided
that the system is time-invariant and contains only analytic non-linearities (i.e., the
functions representing the non-linearities in the equations of motion have a convergent
Taylor expansion) [11].

One important caveat is based on the observation that the Volterra series is essentially
a generalized Taylor expansion and as such it will have an associated radius of
convergence. For input signals x(t) which have excursions below a certain bound, the series
will converge and the representation is valid. However, for signals of higher amplitude,
the series may diverge, or require so many terms before an accurate representation is
reached, that the model has little value. A particular problem associated with non-linear
systems is that of bifurcation, or multi-valued response; the Volterra series is by definition,
single-valued and will not give a representation of systems over this range of their
behaviour. It is assumed in this paper that the systems are weakly non-linear, i.e., far from
bifurcation.*

Due to the fact that a given frequency component of the system response will usually
contain contributions from several Volterra kernels, they are difficult to measure in
practice and there is no generally accepted method of calculating the kernels
experimentally. The problem is essentially one of inter-kernel interference [13].

To overcome the measurement problem, the theory was extended by Wiener [14] and
the Wiener series has been the focus of a great deal of interest since. The kernels of the
Wiener series avoid the problem of interaction because they are orthogonal (or
decorrelated in a sense) if the input is a white Gaussian noise sequence. In the limit where
the level of excitation tends to zero i.e., where the RMS of x(t) is low, the Wiener kernels
approach the system Volterra kernels. Because of the orthogonality, a method for
estimating the Wiener kernels (and hence approximating the Volterra kernels), was
proposed by Lee and Schetzen [15], based on cross-correlations. The method basically

* The word weakly is being used somewhat loosely here. Under conditions of rigor, this would imply that the
non-linearity satisfied appropriate stringent continuity conditions to eliminate abrupt changes in its form, here
the word is used in the sense of Wiener and Spina [12] and simply means that the Volterra representation exists
and is convergent.
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extends the classical method of estimating FRFs from cross-power and auto-power spectra
by computing higher-order cumulants of the input and output processes.

Unfortunately, the Wiener method also suffers from a number of limitations. First, is
the fact that the theory requires a white Gaussian input signal; this is physically impossible
because such a signal would have infinite bandwidth and therefore contain infinite power.
Any physically realisable signal must have finite bandwidth and can only be white over
a limited range of frequencies. The second problem is that experimentally Wiener kernels
are highly susceptible to noise and require large amounts of data in order to ‘‘average
away’’ the noise. An additional problem faced in structural dynamics is that even a filtered
input signal will not be white over a given frequency band due to interactions between the
exciter and the structure. As a consequence of these factors, even under the most
favourable experimental conditions, the measured Wiener kernels may only be poor
approximations to the system Volterra kernels. The Lee and Schetzen [15] cross-correlation
method has recently been superceded by the Toeplitz matrix inversion technique of
Korenberg and Hunter [5]; this in turn appears to offer little advantage over the neural
network based method of Wray and Green [6].

3. HIGHER-ORDER FREQUENCY RESPONSE FUNCTIONS

It is well-known that linear systems admit dual time and frequency-domain
representations. For a linear input–output map, equation (1) shows how to compute the
response y(t) for any input x(t), given the system impulse response function h(t). The
corresponding frequency-domain expression is simply obtained by taking the Fourier
transform of both sides, noting that the right side is a convolution. The result is,

Y(v)=H(v)X(v), (6)

where,

H(v)=g
a

−a

dv e−ivth(t)

is the system FRF, and Y(v) and X(v) have similar definitions. The utility of this
representation lies in the fact that the input to output transformation is simply
multiplication by a function. Also, it will be shown that much useful information is
summarized in H(v).

Less well-known is the fact that non-linear systems also have a dual frequency domain
representation based on the Volterra series. By direct extension of the linear case, the
higher-order FRFs Hn (v1, . . . , vn ), can be defined as the multi-dimensional Fourier
transforms of the kernels,

Hn (v1, . . . , vn )=g
+a

−a

· · · g
+a

−a

dt1 · · · dtnhn (t1, . . . , tn ) e−i(v1t1 + · · ·+vntn ), (7)

with inverse,

hn (t1, . . . , tn )=
1

(2p)n g
+a

−a

· · · g
+a

−a

dv1 · · · dvnHn (v1, . . . , vn ) e+i(v1t1 + · · ·+vntn ). (8)

Symmetry of the kernels implies symmetry of the kernel transforms so, for example,
H2(v1, v2)=H2(v2, v1).
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Figure 1. Asymmetric SDOF Duffing oscillator with linear, quadratic and cubic stiffnesses k, k2 and k3,
respectively, mass m and damping coefficient c.

It is then a straightforward matter to obtain the frequency-domain dual of expression
(2),

Y(v)=Y1(v)+Y2(v)+Y3(v)+ · · · (9)

where*

Y1(v)=H1(v)X(v), (10)

Y2(v)=
1
2p g

+a

−a

dv1H2(v1, v−v1)X(v1)X(v−v1), (11)

Y3(v)=
1

(2p)2 g
+a

−a g
+a

−a

dv1 dv2 H3(v1, v2, v−v1 −v2)X(v1)X(v2)X(v−v1 −v2).

(12)

In order to discuss the interpretation of these quantities, an example will be given. Consider
the Duffing oscillator system shown in Figure 1, specified by the equation of motion,

mÿ+ cẏ+ ky+ k2y2 + k3y3 = x(t), (13)

where overdots denote differentiation with respect to time. The first three HFRFs are given
by,

H1(v)=
1

−mv2 + icv+ k
, (14)

H2(v1, v2)=−
k2

2
H1(v1)H1(v2)H1(v1 +v2) (15)

* Note that the expressions can be made symmetrical at the expense of introducing a delta-function and an
extra integration i.e.,

Y2(v)= 1
2p g

+a

−a g
+a

−a

dv1 dv2 d(v−v1 −v2)H2(v1, v2)X(v1)X(v2).
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Figure 2. Amplitude and phase of H1(v) from Duffing oscillator.

and

H3(v1, v2, v3)=−1
6H1(v1 +v2 +v3)

× {4k2(H1(v1)H2(v2, v3)+H1(v2)H2(v3, v1)+H1(v3)H2(v1, v2))

+ k3H1(v1)H1(v2)H1(v3)}. (16)

Note that the constant k2 multiplies the whole expression for H2, so that if the square-law
term is absent from the equation of motion, H2 vanishes. This reflects a quite general
property of the Volterra series; if all non-linear terms in the equation of motion for a
system are odd powers of x or y, then the associated Volterra series has no even-order
kernels. As a consequence it will possess no even-order HFRFs. It is also a general
property of systems that all higher-order FRFs can be expressed in terms of H1. The exact
form of the expression depends on the system. The expressions were obtained using the
harmonic probing algorithm which is discussed in detail in the next section.

Having presented some concrete examples, the interpretation of the higher-order FRFs
can be discussed. The magnitude of the expression (14) (it is of course a complex function)
is given in Figure 2 on the frequency interval 0–150 rad/s. The interpretation of this figure,
(traditionally given together with the phase and universally called the Bode plot), is well
known; the peak in the magnitude at v=vr =99 rad/s shows that for this frequency of
excitation the amplitude of the linear part of the response y1(t) is a maximum. The
magnitude plot thus allows the immediate identification of those excitation frequencies at
which the vibration level of the system is likely to be high.

Interpretation of the second-order FRF is also straightforward. The magnitude of H2

for the Duffing system above is given in Figure 3 as a surface plot over the v1, v2 plane.
The frequency ranges for the plot are the same as for H1 in Figure 2. A number of ridges
are observed. These are in direct correspondence with the peak in H1 as follows. According
to equation (15), H2 is a constant multiple of H1(v1)H1(v2)H1(v1 +v2). As a consequence,
H2 possesses local maxima at positions where the H1 factors have maxima. Consequently
there are two ridges in the H2 surface corresponding to the lines v1 =vr and v2 =vr . These



150

50

100

150

100
1

Magnitude
m/N2

50

0

0.00005

0.00010

2

     921

Figure 3. Second-order FRF, H2(v1, v2) surface from Duffing oscillator.

are along lines parallel to the frequency axes. In addition, H2 has local maxima generated
by the H1(v1 +v2) factor along the line v1 +v2 =vr . This ridge has an important
consequence; it indicates that one can expect a maximum in the second-order output y2(t)
if the system is excited by two sinusoids whose sum frequency is the linear resonant
frequency. This clearly shows why estimation of a FRF by linear methods is inadequate
for non-linear systems; such a FRF would usually indicate a maximum in the output for
a harmonic excitation close to the linear resonant frequency. However, it would fail to
predict that one could excite a large non-linear component in the output by exciting at
v=vr /2; this is a consequence of the trivial decomposition ei(vr /2)t = 1

2 ei(vr /2)t + 1
2 ei(vr /2)t which

means that the signal can be regarded as a ‘‘two-tone’’ input with a sum frequency at the
linear resonance vr . The importance of the second-order FRF is now clear. It reveals those
pairs of excitation frequencies which will conspire to produce large levels of vibration as
a result of second-order non-linear effects.

The arguments above show that the higher FRFs provide directly visible information
about the possible excitation of large non-linear vibrations through the cooperation of
certain frequencies.

In order to see the important structure in the H2, it is often sufficient to plot only the
leading diagonal i.e., H2(v, v) as in Figure 4 for system (13). This format also allows
simple comparisons between the functions.

In the following sections it is shown how to obtain HFRFs for NARX networks based
on sigmoidal Multi-Layer Perceptrons (MLPs), Radial-Basis Function Networks (RBFs)
and polynomial MLPs.

4. HARMONIC PROBING OF NARX MODELS: THE MULTI-LAYER PERCEPTRON

If the governing equations of motion are known, the HFRFs of a system can be obtained
analytically by the use of the harmonic probing algorithm, introduced by Bedrosian
and Rice [16]. Although this was originally designed for continuous-time systems, the
algorithm was extended to the type of discrete-time systems considered here, by Billings
and Tsang [7].
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Figure 4. Leading diagonal (v1 =v2) of H2(v1, v2) surface from Duffing oscillator.

The TDNN is simply a mapping from a discrete set of lagged input measurements to
the predicted output,

ŷi = f(xi , xi−1, xi−2, . . . , xi−N ), (17)

where xi = x(t−(i−1)Dt). The non-linear function f is implemented as a sum of
sigmoidal functions of weighted linear combinations of the inputs. In the usual
terminology of time-series modelling, this would be called an NX model, as it is Non-linear
and the predicted output is regressed on a series on external or eXogenous inputs. It is
well-known in system identification theory, that this type of model usually requires many
lagged values of the input in order to cover the memory of the system. Much more
parsimonious models i.e., containing far fewer terms, can be obtained by introducing a
dependence on past values of the output i.e.,

ŷi = f(yi−1, . . . , yi− ny ; xi , . . . , xi−(nx −1)), (18)

where yi is defined similarly to xi .
This type of model is referred to as a NARX model, the AR part of the term standing

for Auto-Regressive, meaning that the current y depends on past values of y. The most
general models include some means of modelling the noise process, usually expressing the
system noise as the result of passing white Gaussian noise through a non-linear filter;
introducing this so-called Moving Average filter leads to the generic NARMAX model [17].
In the general situation, noise must be taken into account as it can lead to incorrect or
biased estimates of the system parameters, in this case the network weights. Although the
theory and practice for noise models in polynomial NARMAX models is established, the
problem for neural network models is more complex and has not yet been satisfactorily
resolved. A first step has been taken via the inclusion of linear noise models [18]. The
approach taken here is to ignore the issue of noise. In the first case, the noise model is
discarded before computing the HFRFs, in the second, the demonstration of the
procedures will use data from numerical simulation which is essentially noise-free.
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In reference [19], it is shown that polynomial NARX models exist for all input–output
systems subject to very reasonable conditions. This fact, taken with the theorems of
Cybenko [20] and Funahashi [21] which state that sigmoidal neural networks can
approximate any function, leads to the conclusion that neural network NARX models exist
for most input–output systems. The NARX networks are rather restricted examples of
recurrent networks in that there is a feedback loop between the network output and a
subset of the network inputs. Because of this, it could be argued that a fully recurrent
network may be more appropriate for system modelling. In fact, it can be shown that
NARX networks are essentially capable of computing any function that a fully recurrent
network can [22–24]. Note that the existence of the representations does not guarantee that
the iterative procedures used to train neural networks will arrive at this representation. The
problem of local minima may arise.

Having established that there is some value in adopting a NARX network structure for
system modelling, the following analysis will show how to obtain the HFRFs. First, it is
necessary to establish notation. The Multi-Layer Perceptron structure for the NARX
model is given in Figure 5. This implements the input–output map via the following
function,

yi = s+ s
nh

j=1

wj tanh 0 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m + bj1, (19)

where yi and xi are the current response and excitation values; vjk and ujm are the weights
of the connections between the jth hidden layer unit and the kth lag in y and mth lag in
x input units, respectively; wj is the connection weight from the jth hidden unit to the
output unit; s is the bias weight for the output unit and bj is the weight between the bias

Figure 5. Example of an NARX type neural network.
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element and the jth hidden unit. The caret previously over y has been discarded as no
confusion can possibly arise as to when an equation furnishes an approximation.

In practice, the situation is a little more complicated than equation (19) implies. During
training of the network, all network inputs are normalized to lie in the interval [−1, 1] and
the output is normalized onto the interval [−0·8, 0·8]. Equation (19) actually holds
between the normalized quantities. The transformation back to the physical quantities,
once the HFRFs have been calculated is extremely straightforward and the details are
omitted here.

The NARX models considered here will arise from models of dynamical systems. In that
case, a further simplification can be made. It is assumed that the effects of all the bias terms
cancel overall, as the systems being modelled will not contain constant terms in their
equations of motion. In dynamical systems this can always be accomplished with an
appropriate choice of equilibrium position for y if the excitation x is also adjusted to
remove its dc term. The reason is to eliminate the y0 part of the response in the previously
shown Volterra expansions. If this term is included, a slightly more complicated harmonic
probing algorithm is required [25]; the generalization is in any case, not difficult.

The basis of the harmonic probing method is to examine the response of the system to
certain very simple inputs. In order to identify H1(v), for example, the system is ‘‘probed’’
with the single harmonic,

xp
i =eiVt. (20)

Substituting this expresion into the Volterra series (2), the corresponding response is,

yp
i =H1(V) eiVt +H2(V, V) e2iVt +H3(V, V, V) e3iVt +· · · (21)

Now, consider the consequences of substituting expressions (20) and (21) into the network
function (19) and expanding it as a polynomial. None of the higher-order terms in (21)
can combine in any way to generate a component at the fundamental frequency of
excitation V. As a result, if the coefficient of eiVt is extracted from the resulting expression,
the only HFRF which can appear is H1(V); thus, the expression can be rearranged to given
an analytical expression for H1. First, note that equation (19) is in an inappropriate form
for this operation as it stands. The reason being that the term of order n in the expansion
of the tanh function will contain harmonics of all orders up to n, so extracting the
coefficient of the fundamental requires the summation of an infinite series. The way around
this problem is to use a trick of Wray and Green [6] and expand the tanh around the bias;
this yields,

yi = s+ s
nh

j=1

wj s
a

t=0 6tanh(t) (bj )
t! 0 s

ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m1
t

7, (22)

so each term in the expansion is now a homogeneous polynomial in the lagged xs and ys.
tanh(t) is the tth derivative of tanh at bj .

The only term in this expansion which can affect the coefficient of the fundamental
harmonic is the linear one; therefore take,

yi = s
nh

j=1

wj
tanh(1) (bj )

1 0 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m1 (23)

as the expression to be probed. Account must be taken of the effect of time-delays on the
harmonic signals, this is straightforward to compute.

xi− k =Dkxi =Dk eiVt =e−kiVDt eiVt, (24)
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yi− k =Dkyi =DkH1(V) eiVt e−kiVDtH1(V) eiVt, (25)

where D is the backward shift operator.
Extracting the coefficient of eiVt from equation (23) after substitution of xp and yp gives,

H1(V)= s
nh

j=1

uj tanh(1) (bj ) s
ny

k=1

DkH1(V)+ s
nh

j=1

wj tanh(1) (bj ) s
nx −1

m=0

ujmDm. (26)

So finally, H1 is obtained as,

H1(V)=

s
nh

j=1

wj tanh(1) (bj ) s
nx −1

m=0

ujm e−iVmdt

1− s
nh

j=1

wj tanh(1) (bj ) s
ny

k=1

vjk e−iVkdt

. (27)

The extraction of H2 is a little more complicated, this requires probing with two
independent harmonics, so,

xp
i =eiV1t +eiV1t. (28)

Computation using equations (2)–(4) shows the corresponding response is,

yp
i =H1(V1) eiV1t +H1(V2) eiV2t +2H2(V1, V2) ei(V1 +V2)t +· · · (29)

The argument proceeds as for H1; if these expressions are substituted into the network
function (22), the only HFRFs to appear in the coefficient of the sum harmonic ei(V1 +V2)t,
are H1 and H2, where H1 is already known from equation (26). So as before, the coefficient
can be rearranged to give an expression for H2 in terms of the network weights and H1.
The only terms in equation (22) which are relevant for the calculation are those at first-
and second-order. The calculation is straightforward but tedious and yields,

H2(V1, V2)=
1

2!D
s
nh

j=1

wj
tanh(2) (bj )

2!
{Aj +Bj +Cj}, (30)

where,

Aj = s
ny

k=1

s
ny

l=1

vjkvjlH1(V1)H1(V2)(e−iV1kdt e−iV2ldt +e−iV2kdt e−iV1ldt),

Bj = s
nx −1

k=0

s
nx −1

l=0

ujkujl (e−iV1kdt e−iV2ldt +e−iV2kdt e−iV1ldt),

Cj =2 s
ny

k=1

s
nx −1

l=0

vjkujl (H1(V1) e−iV1kdt e−iV2ldt +H1(V2) e−iV2kdt e−iV1ldt)

and

D=1− s
nh

j=1

wj tanh(1) (bj ) s
ny

k=1

vjk e−i(V1 +V2)kdt.
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Derivation of H3 is considerably more lengthy and requires probing with three harmonics.
It is shown in the Appendix. The results section of this paper will present examples of these
calculations for H1 and H2.

5. POLYNOMIAL ACTIVATION FUNCTION NETWORKS

The finite polynomial activation function provides a possible alternative to the
sigmoidal, or tanh, function used thus far. Recent work by Marmarelis and Zhao [4] shows
the polynomial neural network to be particularly efficient for the purpose of calculating
Volterra kernels. They obtained significantly more accurate kernels when using these
activation functions, compared to the more commonly employed sigmoidal function.

5.1. 

The expressions for the first- and second-order HFRFs of NARX networks
incorporating polynomial activation functions will now be derived. The processing is
performed using the function,

f(z)= a0 + a1z+ a2z2 + a3z3 + · · ·+ anzn, (31)

where ai are the polynomial coefficients. The network equation is given by,*

yi = s+ s
nh

j=1

wj$a0 + a10 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m + bj1
+ a20 s

ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m + bj1
2

···

+ an0 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m + bj1
n

%. (32)

To calculate H1(V), this equation is expanded and taking only the relevant terms linear
in x or y, gives

yi = a10 s
nh

j=1

wj s
ny

k=1

vjkyi− k + s
nh

j=1

wj s
nx −1

m=0

ujmxi−m1
+ 2a20 s

nh

j=1

wj s
ny

k=1

vjkyi− kbj + s
nh

j=1

wj s
nx −1

m=0

ujmxi−mbj1
···

+ nan0 s
nh

j=1

wj s
ny

k=1

vjkyi− kbn−1
j + s

nh

j=1

wj s
nx −1

m=0

ujmxi−mbn−1
j 1. (33)

* The neural network software used bias elements bj and the formulae reflect this. In fact, these are not needed
because of the explicit inclusion of the term a0 in the activation function.
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Probing as before with equations (24) and (25), equating coefficients of eiVt and rearranging
gives,

H1(V)=

s
nh

j=1

wj (a1 +2a2bj +3a3b2
j ) s

nx −1

m=0

ujm e−imVdt

1− s
n− h

j=1

wj (a1 +2a2bj +3a3b2
j ) s

ny

k=1

vjk e−ikVdt

, (34)

or for a general polynomial, defining

f(bj )= s
np

i=1

aibi
j , (35)

and replacing the tanh term of equation (27) with the derivative of the new activation
function gives

H1(V)=

s
nh

j=1

wjf(1)(bj ) s
nx −1

m=0

ujm e−imVdt

1− s
n− h

j=1

wjf(1)(bj ) s
ny

k=1

vjk e−ikVdt

. (36)

Following a similar method and probing with xi =eiV1t +eiV2t gives H2(V1, V2) up to
third-order as,

H2(V1, V2)=
1

2!D
s
nh

j=1

wj{(a2 +3a3bj )(Aj +Bj +Cj )}, (37)

where

D=1− s
nh

j=1

wj (a1 +2aabj +3a3b2
j ) s

ny

k=1

vjk e−ik(V1 +V2)dt

and Aj , Bj and Cj are defined by equation (30).
When implementing polynomial activation functions, two important decisions must be

made: the first is what value should be given to the coefficients ai ; the second is what order
of polynomial should be utilized? The latter is easily answered: to model the time data
accurately, the order of the polynomial should be at least the same order as the
non-linearity in the training data. In the following study, which will again employ the
Duffing oscillator, the non-linearity order is three and so a third-order polynomial will be
used. The first question is less easily answered. The choice of coefficient can have a crucial
bearing on the network’s ability to model the data. In this paper values of a1 =1, a2 =0
and a3 =−1/3 will be employed. (This is a truncation of tanh.)

6. RADIAL BASIS FUNCTION NETWORKS

Much of the recent work on system identification has abandoned the MLP structure in
favour of the Radial Basis Function networks introduced by Broomehead and Lowe [26].
The essential differences between the two approaches are in the computation of the hidden
node activation and in the form of the non-linear activation function. At each hidden node
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in the MLP network, the activation z is obtained as a weighted sum of incoming signals
from the input layer,

zi = s
j

wijxj .

This is then passed through a non-linear activation function which is sigmoidal in shape,
the important features of the function are its continuity, its monotonicity and its
asymptotic approach to constant values. The resulting hidden node response is global in
the sense that it can take non-zero values at all points in the space spanned by the network
input vectors.

In contrast, the RBF network has local hidden nodes. The activation is obtained by
taking the Euclidean distance squared from the input vector to a point defined
independently for each hidden node—its centre ci (which is of course a vector of the same
dimension as the input layer).

zi = >xi − ci>.

This is then passed through a basis function which decays rapidly with its argument i.e.,
it is significantly non-zero only for inputs close to ci . The overall output of the RBF
network is therefore the summed response from several locally-tuned units. It is this ability
to cover selectively connected regions of the input space which makes the RBF so effective
for pattern recognition and classification problems. The RBF structures also allows an
effective means of implementing the NARX model for control and identification [27, 28].

For the calculation given here, a Gaussian basis function is assumed as this is by far
the most commonly used to date. Also, following Poggio and Girosi [29], the network is
modified by the inclusion of direct linear connections from the input layer to the output.
The resulting NARX model is summarized by,

yi = s+ s
nh

j=1

wj exp6−
1

2s2
j $ s

ny

k=1

(yi− k − vjk )2 + s
nx −1

m=0

(xi−m − ujm )2%7
+ s

ny

j=1

ajyi− j + s
nx −1

j=0

bjxi− j , (38)

zXXVZXXv
from linear connections

where the quantities vjk and ujm are the hidden node centres and si is the standard deviation
or radius of the Gaussian at hidden node i. The first part of this expression is the standard
RBF network.

As with the MLP network the appearance of constant terms in the exponent will lead
to difficulties when this is expanded as a Taylor series. A trivial rearrangement yields the
more useful form,

yi = s+ s
nh

j=1

wjgj exp6− 1
2s2

j $ s
ny

k=1

(y2
i− k −2vjkyi− k )+ s

nx −1

m=0

(x2
i−m −2ujmxi−m )%7

+ s
ny

j=1

ajyi− j + s
nx −1

j=0

bjxi− j , (39)
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where

gj =exp6−
1

2s2
j $ s

ny

k=1

v2
jk + s

nx −1

m=0

u2
jm%7. (40)

Now, expanding the exponential and retaining only the linear terms leads to the required
expression for obtaining H1,

yi = s
nh

j=1

wjgj

sj 6 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m7. (41)

Substituting the probing expressions for H1 i.e., equations (20) and (21) yields,

H1(V)=

s
nh

j=1

gjwj
1
s2

j
s

nx −1

m=0

ujm e−iVmdt + s
nx −1

j=0

bj e−iVjdt

1− s
ny

j=1

aj e−iVjdt − s
nh

j=1

gjwj
1
s2

j
s
ny

k=1

vjk e−iVkdt

. (42)

The second-order FRF H2 is obtained as described in the previous section.

H2(V1, V2)=
1

2!D
s
nh

j=1

wjgj6−
1

2s2
j

s
nx −1

k=0

s
nx −1

l=0

(e−ikV1dt e−ilV2dt +e−ikV2dt e−ilV1dt)

+
1
s4

j
s

nx −1

k=0

s
nx −1

l=0

ujkujl (e−ikV1dt e−ilV2dt +e−ikV2dt e−ilV1dt)

−
1

2s2
j

s
ny

k=1

s
ny

l=1

H1(V1)H1(V2)(e−ikV1dt e−ilV2dt +e−ikV2dt e−ilV1dt)

+
1
s4

j
s
ny

k=1

s
ny

l=1

vjkvjlH1(V1)H1(V2)(e−ikV1dt e−ilV2dt +e−ikV2dt e−ilV1dt)

+
1
s4

j
s
ny

k=1

s
nx −1

l=0

vjkujl (H1(V1) e−ikV1dt e−ilV2dt +H1(V2) e−ikV2dt e−ilV1dt)7, (43)

where

D=1− s
ny

j=1

aj e−i(V1 +V2)jdt − s
nh

j=1

gjwj
1
s2

j
s
ny

k=1

e−i(V1 +V2)kdt. (44)

7. ILLUSTRATION OF THE THEORY

In order to demonstrate the use of the theory developed over previous sections, an
application to system identification will be given. As mentioned in the introduction,
arguably the fastest method of obtaining the HFRFs is to fit a discrete-time model; a
successful application of this procedure to wave force analysis based on polynomial
NARMAX models can be found in reference [8]. However, given the wide availability of
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neural network software, it would be advantageous to obtain HFRFs by probing of neural
network NARX models. The object of this section is to examine this possibility.

7.1.      

The asymmetric Duffing oscillator specified in equation (13) was chosen for the
simulations with m=1 kg, c=20 Ns/m, k=104 N/m, k2 =107 N/m2 and k3 =5×109 N/
m3. The differential equation of motion was stepped forward in time using a fourth-order
Runge–Kutta scheme as given in reference [31]. The excitation x(t) used was a white
Gaussian sequence with zero mean and RMS of 0·5, hand-limited with the range 0–100 Hz.
A time-step of 0·001 s was adopted and the data was decimated by a factor of 5, giving
a final Dt of 0·005 s—corresponding to a sampling frequency of 200 Hz. A thousand points
of sampled input and displacement data were taken for network training.

The data required validation before the results of applying the neural network procedure
could be interpreted with confidence. This was accomplished by a two-step process. First,
a polynomial NARMAX model was obtained for the data. An orthogonal least-squares
estimator was used to fit the coefficients and the model terms were selected using the
forward regression algorithm as described in reference [32]. The model obtained was,

yi =1·8121yi−1 −1·1429yi−2

+ 0·12924yi−3 −1·9897×102y2
i−1

− 9·6942×104y3
i−1 +3·0145×10−6ui

(45)

+ 1·7688×10−5ui−1.

The H1 function was computed for the NARMAX model using harmonic probing and
compared with the exact result obtained from equation (14); the comparison is shown in
Figure 6 and the two functions show impressive agreement. In order to compare the H2

functions, the values along the diagonal i.e., H2(v, v) were obtained for the model and
compared with the true result. Figure 7 shows that this exercise demonstrated good

Figure 6. H1(V) calculated using the NARMAX method (——) compared to theory (–––).
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Figure 7. H2(V1, V2) calculated using the NARMAX method (——) compared to theory (–––).

agreement between the functions. This serves to show that the data generated by
integrating the equation of motion is truly characteristic of the system and that the true
HFRFs (14) and (15) therefore serve as a reference for the neural network models fitted
later.

7.2.  

This is now the appropriate point to discuss how models are validated. There are several
indicators of goodness-of-fit for NARX models in order of stringency these include: (1)
One-Step-Ahead (OSA) prediction error, and (2) Model Predicted Output (MPO) error.

7.2.1. One-step-ahead predictions
Given the NARX representation of a system

yi = f(yi−1, . . . , yi− ny ; xi−1, . . . , xi− nx ), (46)

the one-step-ahead prediction of yi is made using measured values for all past inputs and
outputs.

ŷi = f(yi−1, . . . , yi− ny ; xi−1, . . . , xi− nx ). (47)

The one-step-ahead series can then be compared to the measured outputs. Good agreement
is clearly a necessary condition for model validity.

7.2.2. Model predicted output
In this case, the inputs are the only measured quantities used to generate the model

output, i.e.,

ŷi = f(ŷi−1, . . . , ŷi− ny ; xi−1, . . . , xi− nx ). (48)

In order to avoid a misleading transient at the start of the record for ŷ, the first ny values
of the measured output are used to start the recursion. As above, the estimated outputs
must be compared with the measured outputs, with good agreement a necessary condition
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for accepting the model. This test is generally stronger than the previous one; in fact the
one-step-ahead predictions can be excellent in some cases when the model predicted output
shows complete disagreement with the measured data.

In order to have an objective measure of the closeness of two sequences of data, the
normalized mean-square error (MSE) is introduced, the definition is

MSE(ŷ)=
100
Ns2

y
s
N

i=1

(yi − ŷi )2. (49)

This MSE has the following useful property; if the mean of the output signal ȳ is used
as the model i.e., ŷi = ȳ for all i, the MSE is 100·0, i.e.,

MSE(ŷ)=
100
Ns2

y
s
N

i=1

(yi − ȳ)2 =
100
s2

y
· s2

y =100.

Experience shows that a MSE of less than 5·0 indicates good agreement while one of less
than 1·0 reflects an excellent fit.

7.2.3. Results from tanh activation function networks
Using the time data generated from section 7.1, networks were trained and tested. A

C program was written to train the networks for various momentum and learning
coefficients, number of input and hidden layer units. This program then calculated the first-
and second-order FRFs of the network.

Figure 8 shows the H1(V) that best approximates the theoretical result. This almost
perfect overlay was obtained from a network with 10 input units and two hidden units
(i.e., 10:2:1), Momentum Coefficient (MC) of 0·1 and a Learning Coefficient (LC) of 0·35
and after 100,000 presentations of data from the training set, the network had converged
to an MPO error of 0·35, shown compared to desired output in Figure 9.

Figure 8. ‘‘Best fit’’ H1(V) from the Duffing oscillator obtained by harmonic probing a 10:2:1 NARX network
(——), compared to theory (–––).
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Figure 9. OSA prediction (a) and MPO (b) compared to the desired output from tanh network trained on
the Duffing oscillator data. ——, Measured data; –––, predicted data.

Figure 10. ‘‘Best fit’’ H2(V1, V2) from the Duffing oscillator obtained by harmonic probing a 10:4:1 NARX
network (——), compared to theory (–––).
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Figure 11. Duffing oscillator H2(V1, V2) surface for the 10:4:1 NARX network.

The second-order FRF proved a little more difficult to estimate accurately. The ‘‘best’’
H2(V1, V2) estimation is compared to the theoretical kernel transform in Figure 10 along
its leading diagonal (V1 =V2). This was calculated from a 10:4:1 network with an MC
of 0·15 and an LC of 0·2, trained to an MPO error of 0·27. The full H2(V1, V2) surface
is shown in Figure 11, and by visual inspection it compares well to the theoretical surface
of Figure 3. However, the corresponding H1(V1) from the same network, shown in
Figure 12, shows some discrepancy from theory. The H2(V1, V2) calculated from the 10:2:1
network (that produced the near perfect H1(V) result) is shown in Figure 13 and is greatly
in error.

Figure 12. H1(V) from the 10:4:1 network which produced the best H2(V1, V2) (——) compared to theory
(–––).
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Figure 13. H2(V1, V2) from the 10:2:1 network that produced the best H1(V) (——) compared to theory (–––).

7.2.4. Results from polynomial activation function networks
The first-order FRF is compared to theory in Figure 14, obtained from a 10:2:1 network

trained to 0·18 MPO error. The best H2(V1, V2), is shown in Figure 15. This was achieved
using a 10:4:1 network with 0·5 error.

Figure 14. H1(V) from the Duffing oscillator obtained by harmonic probing a 10:2:1 polynomial network
(——), compared to theory (–––). Polynomial coefficients: a1=1, a2 =0, a3 =−1/3.
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Figure 15. H2(V1, V2) from the Duffing oscillator obtained from a 10:4:1 polynomial network (——),
compared to theory (–––). Polynomial coefficients: a1 =1, a2 =0, a3 =−1/3.

7.2.5. Results from radial basis function networks
The RBF networks were trained and tested using the displacement data of section 7.1.

The usual spread of results was observed, the best H1(V) being given by a 6:2:1 network,
trained to 0·48 MPO error after 100,000 presentations, shown in Figure 16. A 4:4:1
network produced the best H2(V1, V2) after training to 0·72 MPO error. This is shown in
Figure 17.

Figure 16. H1(V) from the Duffing oscillator obtained from a 6:2:1 RBF network (——), compared to theory
(–––).



100

Frequency (rad/s)

P
h

a
se

 (
d

eg
)

M
a

g
n

it
u

d
e 

(m
/N

2 )

0
–200

–100

0

0

0.00002

0.00004

0.00006

0.00008

0.00010

100

200

     937

Figure 17. H2(V1, V2) from the Duffing oscillator obtained from a 4:4:1 RBF network (——), compared to
theory (–––).

8. DISCUSSION

There seems to be little connection between the MPO error and the quality of the results.
The results indicate possible over-parameterization by the network in modelling the time
data rather than accurately modelling the system in question. In system identification,
over-parameterization often causes misleading results [34]. Over-parameterization is
caused by the model having many more degrees of freedom than the system it is modelling.
As the complexity of the network increases, its data modelling abilities generally improve,
up to a point. Beyond that point the error on the training data continues to decrease but
the error over a testing set begins to increase. Neural network users have long known this
and always use a training and testing set for validation; this may be necessary in this
approach to system identification. Often the MPO error is taken as conclusive.

In other terms, the network is finding local minima rather than the global minimum of
the solution space. In fact better results were obtained from training a linear network
(which does not suffer from local minima) with data from a linear system, here the network
with the lowest MPO error gave the best H1(V) fit. The NARMAX model of section 7.1
shows better agreement. This may be attributable to the fact that its parameter estimation
algorithm does not suffer from local minima, and can also obtain a parsimonious model
structure as opposed to the over-parameterized one of the neural network. The problem
has long been considered in the case of NARMAX models, the orthogonal estimation
algorithms used there together with the forward and backward selection algorithms offer
a possible solution to the problem of over-parameterization [32]. Note that the MPO error
for the NARMAX model was much lower than the network MPO error.

The problem of over-parameterization of neural networks has no clear-cut solution.
One promising approach is based on regularization [35], a technique which prevents
the network developing structure associated with noise in the data. In order to investigate
this method, several model networks were trained with Gaussian noise added to the
input patterns, a procedure equivalent to Tikhonov regularization [35]. Unfortunately,
this had no visible effect. However, adding noise is known to give an inefficient



. .   .938

implementation of regularization and further methods—like weight decay—will be
explored in future work.

Another approach to the problem is based on pruning, where the network nodes and
connections which contribute little or nothing to the network dynamics are removed during
training. Established techniques like ‘‘Optimal Brain Surgery’’ are discussed in reference
[35]; reference [36] proposes a promising method based on optimization techniques; this
paper is also of interest because the networks used for illustration are NARX models of
a non-linear system.

Because the application to identification is essentially a side-issue here, the ideas of
regularization and pruning will be pursued in a later study.

9. CONCLUSIONS

The paper presents analytical expressions for the low-order (first to third) Volterra
kernel transforms or HFRFs of the NARX neural network structure. An application is
presented in which HFRFs are calculated from networks which model dynamical systems
and thus provide approximations to the HFRFs of the original systems. In principle this
method provides an attractive means of identifying HFRFs; however, before it can be
applied, some means of quantifying the network model validity is required. The problem
of over-parameterization must be eliminated.
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APPENDIX: DERIVATION OF H3(V1, V2, V3) FOR tanh NETWORK

Starting with the network equation

yi = s+ s
nh

j=1

wj s
a

t=0 6tanh(t) (bj )
t! 0 s

ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m1
t

7, (A1)

and taking the t=3 term gives the equation,

H3(V1, V2, V3)=
1

3!D
Y(2)(V1, V2, V3)+Y(3)(V1, V2, V3), (A2)

where

D=1− s
nh

j=1

rj s
ny

k=1

vjk e−ik(V1 +V2 +V3)dt.

A.1. Y(2)(V1, V2, V3) 

Y(2)(V1, V2, V3)= s
nh

j=1

r(2)
j (Aj +Bj ), (A3)

where

r(2)
j =wj tanh(2) bj

Aj = s
ny

k=1

s
ny

l=1

vjkvjl2H1(V1)H2(V2, V3)(e−ikV1dt e−il(V2 +V3)dt +e−ilV1dt e−ik(V2 +V3)dt)

+ 2H1(V2)H2(V1, V3)(e−ikV2dt e−il(V1 +V3)dt +e−ilV2dt e−ik(V2 +V3)dt)

+ 2H1(V3)H2(V1, V2)(e−ikV3dt e−il(V1 +V2)dt +e−ilV3dt e−ik(V1 +V2)dt),

Bj = s
ny

k=1

s
nx −1

l=0

vjkujl2H2(V2, V3) e−ilV1dt e−ik(V2 +V3)dt

+ 2H2(V1, V3) e−ilV2dt e−ik(V1 +V3)dt +2H2(V1, V2) e−ilV3dt e−ik(V1 +V2)dt).

A.2. Y(3)(V1, V2, V3) 

yi = s+ s
nh

j=1

wj
tanh(3) (bj )

3! 0 s
ny

k=1

vjkyi− k + s
nx −1

m=0

ujmxi−m1
3

, (A4)

which when expanded gives (ignoring the constant s),

yi = s
nh

j=1

wj6tanh(3) (bj )
3! 60 s

ny

k=1

vjkyi− k1
3

+0 s
n1 −1

l=0

ujlxi− l1
3

+ 30 s
nx −1

l=0

ujlxi− l1
2

0 s
ny

k−1

vjkyi− k1+30 s
nx −1

l=0

ujlxi− l10 s
ny

k=1

vjkyi− k1
2

7.
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And this gives,

Y(2)(V1, V2, V3)= s
nh

j=1

b1j{Aj +Bj +Cj +Dj} ei(V1 +V2 +V3)t, (A5)

rj =wj tanh(1) bj ,

b1j =
1
3!

wj tanh(3) bj .

It can be shown that,

Aj = s
ny

k=1

s
ny

l=1

s
ny

m=1

vjkvjlvjm{H1(V1)H1(V2)H1(V3)

(e−ikV1dt e−ilV2dt e−imV3dt +e−ikV1dt e−imV2dt e−ilV3dt

e−ilV1dt e−ikV2dt e−imV3dt +e−imV1dt e−ikV2dt e−ilV3dt

e−ilV1dt e−imV2dt e−ikV3dt +e−imV1dt e−ilV2dt e−ikV3dt)}, (A6)

Bj = s
nx −1

k=0

s
nx −1

l=0

s
nx −1

m=0

ujkujlujm{H1(V1)H1(V2)H1(V3)

(e−ikV1dt e−ilV2dt e−imV3dt +e−ikV1dt e−imV2dt e−ilV3dt

e−ilV1dt e−ikV2dt e−imV3dt +e−imV1dt e−ikV2dt e−ilV3dt

e−ilV1dt e−imV2dt e−ikV3dt +e−imV1dt e−ilV2dt e−ikV3dt)}, (A7)

Cj =3× s
nx −1

k=0

s
nx −1

l=0

s
ny

m=1

ujkujlvjm

{H1(V3) e−ikV1dt e−ilV2dt e−imV3dt +H1(V2) e−ikV1dt e−imV2dt e−ilV3dt

+ H1(V3) e−ilV1dt e−ikV2dt e−imV3dt +H1(V1) e−imV1dt e−ikV2dt e−ilV3dt

+ H1(V2) e−ilV1dt e−imV2dt e−ikV3dt +H1(V1) e−imV1dt e−ilV2dt e−ikV3dt}, (A8)

Dj =3× s
nx −1

k=0

s
ny

l=1

s
ny

m=1

ujkvjlvjm

{H1(V2)H1(V3) e−ikV1dt e−ilV2dt e−imV3dt +H1(V2)H1(V3) e−ikV1dt e−imV2dt e−ilV3dt

+H1(V1)H1(V3) e−ilV1dt e−ikV2dt e−imV3dt +H1(V1)H1(V3) e−imV1dt e−ikV2dt e−ilV3dt

+H1(V1)H1(V2) e−ilV1dt e−imV2dt e−ikV3dt +H1(V1)H1(V2) e−imV1dt e−ilV2dt e−ikV3dt}.

(A9)


