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1. 

The free vibration of an n-degree-of-freedom linear second order system is represented by

Mẍ(t)+Cẋ(t)+Kx(t)= un , x(0)= x0, ẋ(0)= ẋ0, (1)

for all te 0. In equation (1),

x(t)= [x1(t) x2(t) · · · xn (t)]T$Rn, (2)

denotes the vector of displacements (vT denotes the transpose of a vector v); the mass
matrix M and the stiffness matrix K belong to Rn× n and are symmetric and positive definite;
the damping matrix C belongs to Rn× n and is symmetric and positive semi-definite; x0$Rn

and ẋ0$Rn are the vectors of initial displacements and velocities, respectively; un denotes
the zero vector in Rn.

In this note, we plan to derive a priori upper bounds on the sizes (norms) of
displacements of the system (1) without solving the system (numerically). In recent years,
researchers have derived bounds on the sizes of displacements and velocities of free or
forced vibratory systems; see, e.g., references [1, 2], [3, p. 136], [4–7], [8, pp. 177–178], [9].
Such bounds can be used in the design and analysis of systems.

Bounds on the sizes of displacements of the system (1) are useful only if (1) they are
easily computable; (2) they are tight. If the bounds are not easily computable, then one
might as well solve the system (1) (numerically) in order to obtain the exact (very accurate)
values for the displacement peaks. If, on the other hand, the bounds are easily computable,
but are conservatively large, then they furnish no useful information to be used in the
system design and analysis. It appears that the two requirements of ease-of-computation
and tightness of the upper bounds oppose each other: the less (more, respectively)
computational effort, the more (less) conservative bounds on the sizes of displacements.
Despite this fact, one should attempt to derive easy-to-compute and tight bounds.

Most available bounds in the literature are not easily computable, except those in
references [1–3] and [7]. In reference [7], upper bounds on the sizes of displacements of
the system (1) are computed as follows. Let

>xi>aMmax
te 0

=xi (t)=, (3)

denote the La-norm of the displacement xi (·) for an i=1, 2, . . . , n. Let

E0M1
2x

T
0 Kx0 + 1

2ẋ
T
0 Mẋ0, (4)

denote the initial energy of the system (1). According to reference [7], the norm >xi>a for
an i=1, 2, . . . , n satisfies

>xi>a E [2(K−1)iiE0]1/2, (5)
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where (K−1)ii q 0 denotes the ith diagonal element of the matrix K−1. There are two
comments to follow:

1) The upper bounds in inequality (5) depend on the matrices M and K, where the
dependence on M is through E0. Computing K−1 in order to obtain (K−1)ii for an
i=1, 2, . . . , n requires some computational effort, because K is in general a full matrix.
An interesting feature of the bounds in inequality (5) is that they do not depend on the
damping matrix C.

2) A careful examination of the bounds in inequality (5) reveals that they can be
conservatively large for some i=1, 2, . . . , n.

We present an example to examine the bounds in inequality (5). In this example, we
compute the upper bounds on the La-norms of displacements of a system using inequality
(5) and compare them to the exact values of the norms obtained from the numerical
solution of the system. Consider the system in Figure 1 and let mi =1, ci =0·1, and ki =1
for all i=1, 2, 3. The free vibration of this sytem is represented by
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(6a)

for all te 0, with the initial conditions

x0 = [1 0 0]T, ẋ0 = u3. (6b)

Identifying the matrices M and K in equation (6a), we obtain

E0 =1, K−1 = &111 1
2
2

1
2
3'. (7a, b)

Therefore, by inequality (5), we obtain

>x1>a E 1·4142, >x2>a E 2, >x3>a E 2·4495. (8)

By the numerical integration, we obtained responses of the system (6) that are depicted
in Figures 2, 3 and 4. From these figures, we obtain

>x1>a =1, >x2>a =0·43, >x3>a =0·52. (9)

Figure 1. A system with three degrees of freedom, where mi =1, ci =0·1, and ki =1 for all i=1, 2, 3.



150

0.8

0

t

x 1
(·

)
0

–0.4

50 100

0.4

150

0.4

0

t

x 2
(·

) 0

–0.4

50 100

0.2

–0.2

    945

Figure 2. The time history of x1(·) of the system (6).

Comparing the exact values of >xi>a for all i=1, 2, 3 in equation (9) and their
corresponding upper bounds in inequalities (8), we conclude that the bounds are
conservatively large for i=2, 3.

Realizing the importance of having bounds on the sizes of responses of systems, we
pursue the goal of deriving easy-to-compute and tight bounds on the sizes of displacements
of the system (1).

2.     

In this section, we consider the system (1) and assume that:

(A1). The mass matrix M=diag [m1, m2, . . . , mn ], where, without the loss of generality,
the diagonal elements are ordered as m1 Em2 E · · ·Emn . (This assumption will be relaxed
at the end of this section.)

Figure 3. The time history of x2(·) of the system (6).
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Figure 4. The time history of x3(·) of the system (6).

(A2). The matrix C is a classical damping matrix, that is, it satisfies
(M−1C)(M−1K)= (M−1K)(M−1C). q

For a proportional (Rayleigh) damping matrix C (see, e.g., references [8, p. 176], [10,
pp. 201–202]), which satisfies C= aM+ bK for some a and b$R, assumption A2 holds.
It is known that when assumption A2 holds, the normalized representation of the system
(1) is a set of n decoupled second order linear systems in the normalized co-ordinates (see,
e.g., references [3, pp. 144–145], [11]). The normalized representation is obtained via a
linear change of co-ordinates applied to the system (1). The change of co-ordinates is

x(t)=Uq(t), (10)

for all te 0, where U$Rn× n is the (nonsingular) modal matrix corresponding to the system
(1) (see, e.g., references [8, pp. 173–175], [10, pp. 178–181]). The columns of the modal
matrix are the eigenvectors of the symmetric generalized eigenvalue problem

Ku(i) =v2
i Mu(i), (11)

where v2
i q 0 and u(i)$Rn are an eigenvalue (undamped natural frequency squared) and the

corresponding eigenvector, respectively. The modal matrix is commonly orthonormalized
according to

UTMU= In , (12)

where UT denotes the transpose of the matrix U and In denotes the n× n identity matrix.
Since equation (12) holds, the matrix K satisfies

UTKU=diag [v2
1 , v2

2 , . . . , v2
n ]= .V2, (13)

where, without the loss of generality, the natural frequencies are ordered as
v1 Ev2 E , . . . , Evn .

The normalized representation of the system (1) obtained via the change of co-ordinates
in equation (10) is (see, e.g., references [3, pp. 144–145], [11])

Inq̈(t)+C	 q̇(t)+V2q(t)= un , (14a)

for all te 0, with the initial conditions

q0Mq(0)=U−1x0 =UTMx0, q̇0Mq̇(0)=U−1ẋ0 =UTMẋ0. (14b)
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In equation (14),

q(t)= [q1(t) q2(t) · · · qn (t)]T$Rn, (15)

denotes the vector of normalized displacements; the matrix C	 MUTCU$Rn× n is known as
the normalized damping matrix. By assumption A2, the matrix C	 is diagonal and can be
written as

C	 =diag [2j1v1, 2j2v2 , . . . , 2jnvn ], (16)

where ji e 0 denotes the ith normalized damping ratio for an i=1, 2, . . . , n. Note that
the non-negativeness of ji for all i=1, 2, . . . , n follows from the positive semi-definiteness
of the damping matrix C. The diagonal matrix C	 in equation (16) decouples the system
(14) to a set of n scalar second order linear systems. The ith element of this set for an
i=1, 2, . . . , n is

q̈i (t)+2jivi q̇i (t)+v2
i qi (t)=0, qi0Mqi (0), q̇i0Mq̇i (0), (17)

for all te 0, where qi (t)$R.
The system (17) can be readily solved for qi (·); see, e.g., references [8, pp. 18–20, pp.

28–33], [10, pp. 106–110] for the exact solutions of the system (17) for all possible values
of ji e 0. We, however, are interested in an upper bound on >qi>a for an i=1, 2, . . . , n,
and not the exact time history of qi (·). An upper bound is given in the following.

Lemma 2.1. The La-norm of the solution of the system (17), qi (·), for an i=1, 2, . . . , n,
satisfies

>qi>a E [(qi0)
2 + (q̇i0)

2/v2
i ]1/2. (18)

Proof. The energy of the system (17) is given by

Ei (t)=v2
i q2

i (t)/2+ q̇2
i (t)/2, (19)

for all te 0, where at t=0,

Ei0MEi (0)=v2
i (qi0)

2/2+ (q̇i0)
2/2. (20)

We study the evolution of Ei (·) along the solution of the system (17) for two cases.
Case 1. ji =0: The derivative of Ei (·) along the solution of the system (17) is E� i (t)=0

for all te 0. Therefore, the energy of the system is conserved. That is, Ei (t)=Ei0 for all
te 0, which can be written as

q2
i (t)+ q̇2

i (t)/v2
i =(qi0)

2 + (q̇i0)
2/v2

i . (21)

Therefore, the trajectory corresponding to the solution of the system (17) in the phase plane
(qi , q̇i ) is the ellipse in equation (21), which is depicted in Figure 5. From equation (21)
or Figure 5, it is clear that equation (18) holds with the equality sign.

Case 2. ji q 0: The derivative of Ei (·) along the solution of the system (17) is
E� i (t)=−ji q̇2

i (t)E 0 for all te 0. Therefore, the energy of the system is non-increasing.
That is, Ei (t)EEi0 for all te 0, which can be written as

q2
i (t)+ q̇2

i (t)/v2
i E (qi0)

2 + (q̇i0)
2/v2

i . (22)

Therefore, the trajectory corresponding to the solution of the system (17) in the phase plane
(qi , q̇i ) is inside the ellipse in equation (21). Hence, inequality (18) holds. q

Remark. It is straightforward to apply the LaSalle invariance principle (see, e.g.,
references [12, pp. 115–116], [13, pp. 178–179]) to show that when ji q 0, the trajectories
corresponding to the solutions of the system (17) are not only inside the ellipse in equation
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Figure 5. The ellipse q2
i (t)+ q̇2

i (t)/v2
i =(qi0)2 + (q̇i0)2/v2

i in the phase plane (qi , q̇i ).

(21), but they converge to the origin of the phase plane as t:a. However, in the proof
of Lemma 2.1, all that matters is the fact that the trajectories do not leave the ellipse in
equation (21). q

Having the upper bounds in inequality (18), we next derive an upper bound on >xi>a

of the system (1) for all i=1, 2, . . . , n. First, we establish some preliminary results. In
the following, by l(A) we denote an eigenvalue of a matrix A.

Lemma 2.2. The modal matrix U satisfies

lmax (U−T U−1)=mn , lmax (UT U)=m−1
1 , (23a, b)

where m1 and mn denote the smallest and the largest elements of the diagonal mass matrix
M, respectively.

Proof. From the orthonormalization condition (12), we obtain U−T U−1 =M. Thus,
equation (23a) follows from the fact that lmax (M)=mn . Furthermore, from equation (12),
we obtain UTU=U−1M−1U. Therefore, the eigenvalue problem corresponding to the
matrix UTU reads as

UTUv=U−1M−1Uv= l(UTU)v, (24)

where l(UT U) and v$Rn are an eigenvalue and an eigenvector of the matrix UTU,
respectively. We can rewrite the last indentity in equation (24) as M−1w= l(UT U)w, where
wMUv$Rn. Thus, lmax (UT U)= lmax (M−1)= lmin (M), and equation (23b) follows.

q
Next, we obtain relations between the initial conditions in the normalized and physical

co-ordinates.
Lemma 2.3. The vectors of initial conditions in the normalized co-ordinates, q0 and q̇0,

and those in the physical co-ordinates, x0 and ẋ0, satisfy

qT
0 q0 EmnxT

0 x0, q̇T
0 V

−2q̇0 E (mn /v2
1 )ẋT

0 ẋ0, (25a, b)

where v1 is the lowest undamped natural frequency of the system (1).
Proof. Using equation (14b), we can write

qT
0 q0 = xT

0 U−TU−1x0 E lmax (U−T U−1)xT
0 x0 , (26)
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where the inequality follows from the definition of Rayleigh’s quotient (see, e.g., references
[10, pp. 237–243], [14, pp. 176–181]). Using equation (23a) in inequality (26), we obtain
inequality (25a).

Using equation (14b), we next write

q̇T
0 V

−2q̇0 = ẋT
0 U−TV−2U−1ẋ0 E lmax (V−2)ẋT

0 U−TU−1ẋ0 E lmax (V−2)lmax (U−T U−1)ẋT
0 ẋ0,

(27)

where the last two inequalities follow from the definition of Rayleigh’s quotient. Using the
identity lmax (V−2)=1/v2

1 and equation (23a) in inequality (27), we obtain inequality (25b).
q

Now, we can present a single upper bound on >xi>a for all i=1, 2, . . . , n.
Theorem 2.4. Consider the system (1) and let assumptions A1 and A2 hold. The La-norm

of the displacement xi (·) satisfies

>xi>a E [(mn /m1)(xT
0 x0 + ẋT

0 ẋ0/v2
1 )]1/2, (28)

for all i=1, 2, . . . , n, where mn and m1 are the largest and smallest elements of the mass
matrix M, respectively, v1 is the lowest undamped natural frequency of the system, and
x0 and ẋ0 are the vectors of initial displacements and velocities, respectively.

Proof: We can write

>xi>a =max
te 0

=xi (t)=Emax
te 0

[xT(t)x(t)]1/2 =max
te 0

[qT(t)UTUq(t)]1/2, (29)

for all i=1, 2, . . . , n, where the last identity follows from equation (10). Using the
definition of Rayleigh’s quotient, we can write

>xi>a E [lmax (UT U) max
te 0

qT(t)q(t)]1/2 =$m−1
1 max

te 0
s
n

i=1

q2
i (t)%

1/2

, (30)

where the last identity is obtained by using equation (23b). We can further write

>xi>a E$m−1
1 s

n

i=1

max
te 0

q2
i (t)%

1/2

E$m−1
1 s

n

i=1

[(qi0)
2 + (q̇i0)

2/v2
i ]%

1/2

, (31)

where the last inequality is obtained by using inequality (18). We rewrite inequality (31)
in the compact form

>xi>a E [m−1
1 (qT

0 q0 + q̇T
0 V

−2q̇0)]1/2. (32)

Using inequalities (25) in inequality (32), we obtain inequality (28). q
Remarks (1) The bound in inequality (28) is a single upper bound on the norms of all

displacements of the system (1). Therefore, it is computed only once. Recall that there are
n upper bounds in inequality (5), and so are there n times of computation. Computing the
bound in inequality (28) is an easy task. In computing this bound some computational
effort is required to compute the square of the lowest undamped natural frequency, v2

1 .
It is straightforward to compute v2

1 , since there are certain numerical methods by which
v2

1 is readily computed. Some of such numerical methods are power method, Given’s
method, QR method, inverse iteration method, and Rayleigh’s quotient iteration method,
which primarily compute the smallest eigenvalue of an eigenvalue problem (see, e.g.,
references [10, Chapter 6], [15]). It should be pointed out that the lowest natural frequency,
v1, is an important piece of information for vibratory systems. Therefore, computing
v1—to be used either in inequality (28) or in the system design and analysis—is a well
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worthed effort. Note that there is no need to compute v2
1 , when the initial velocities are

zero.
(2) If the mass matrix M is not diagonal, that is, assumption A1 does not hold, then

the upper bound in inequality (28) is replaced by

>xi>a E [[lmax (M)/lmin (M)](xT
0 x0 + ẋT

0 ẋ0/v2
1 )]1/2, (33)

for all i=1, 2, . . . , n, where lmax (M) and lmin (M) are the largest and smallest eigenvalues
of the mass matrix M, respectively. The upper bound in inequality (33) can be easily
verified by using lmax (U−T U−1)= lmax (M) and lmax (UT U)= lmax (M−1)= lmin (M) in the
steps that led to inequality (28). In computing the bound in inequality (33), some
computational effort is required to compute lmax (M) and lmin (M). q

It can be easily verified that assumptions A1 and A2 hold for the system (6). Thus, we
can use inequality (28) to compute upper bounds on the norms of displacements of the
system (6). We obtain

>x1>a E 1, >x2>a E 1, >x3>a E 1. (34)

Clearly, the bounds in inequalities (34) are tighter than those in inequalities (8). We,
however, point out that the bounds in inequality (28) are not always tighter than those
in inequality (5). There can be systems and initial conditions for which the bounds obtained
by inequality (28) are more conservative than the corresponding bounds obtained by
inequality (5). Note that the bounds in inequality (28) can be tighter when the ratio
lmax (M)/lmin (M) (mn /m1 for a diagonal M) is not much larger than one.

3. 

In this note, the free vibratin of n-degree-of-freedom linear second order systems has
been considered. A single and easy-to-compute upper bound on the norms of all
displacements of such systems, which is given in inequality (28), has been derived. The
upper bound depends on the ratio of the largest to the smallest eigenvalues of the mass
matrix of the system, the lowest undamped natural frequency of the system, and the vectors
of initial displacements and velocities. The upper bound is independent of the lowest
natural frequency when the initial velocities are zero.

In the derivation of the upper bound, the damping matrix was assumed to be a classical
damping matrix. This assumption led to the decoupling of the system in the normalized
co-ordinates. Work to relax the assumption of the classically damped system is in progress,
and will be reported at a later time.
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