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1. 

Natural frequencies and mode shapes are the dynamic characteristics of structural systems,
which are functions of the geometric configuration and the material properties of the
structures. The dynamic characteristics may be changed radically by structural changes in
some structures when mode localization occurs. The mode localization is a phenomenon
in which the magnitude of the specific part of the free vibrational mode is large relative
to the rest of the mode. It is well known that weakly coupled periodic structures are
sensitive to certain types of periodicity breaking disorder, resulting in mode localization
with serious implication for the control problem. For some structures structural damages
or manufacturing errors may produce undesirable mode localization. It is, therefore, very
important not only to calculate the natural frequencies and the mode shapes but to identify
the degrees of localization and the localization sensitivities of the modes.

In solid state physics, the localization phenomenon of electron field in disordered solid
was first observed by Anderson [1]. Anderson and Mott [2] shared the 1977 Nobel Prize
in physics for their work in this area. The mode localization phenomenon is found to exist
in the field of structural dynamics. Many works were concerned with cyclically symmetric
structures with weak coupling in order to explain the unpredicted fatigue failure of the
mistuned blades of turbomachinery [3–5]. Bendiksen [6] investigated the mode localization
in a simple model of a space structure. Hodges [7] was first to recognize that wave
localization may occur in disordered periodic structures leading to mode localization.
Wave localization is the phenomenon that the vibrational energy imparted to the structure
by an external source cannot propagate to arbitrary long distances but is instead
substantially confined to a region close to the source. Since his work, there have been
several studies on the localization in periodic engineering structures [8–11]. Pierre, Tang
and Dowell [9] studied the mode localization of weakly coupled disordered multispan
beams using the modified perturbation method and the experimental method. Bouzit and
Pierre [10] demonstrated weak and strong localization behaviors and calculated the
localization factor for a multispan beam on randomly spaced simple supports, the torsional
rigidity of which could be varied. The localization factor is defined by the average
exponential rate at which a structural wave decays with respect to the wave propagation
distance in a disordered periodic structure and it can be calculated by the transfer matrix
method. The mode localization of non-linear systems was studied by Vakakis et al. [12, 13],
and Zevin [14].
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Previous works on mode localization concerned mainly disordered periodic structures.
However, the mode localization phenomenon in non-periodic structures has been passed
over. The objective of this study is to show the possibility of drastic occurrences of mode
localization in non-periodic structures. Free vibration analysis of simply supported
two-span beams of arbitrary span lengths is theoretically investigated. The beam can be
periodic or non-periodic. Degrees of mode localization and their sensitivities to system
parameters are appraised by considering the characteristic graph and the structural line
defined in this study.

2.      - 

Consider the two-span beam shown in Figure 1. The beam is simply supported at both
ends, and is constrained to have zero deflection at x1 = l1 and/or x2 = l2. Moreover, a
torsional spring of KR exerts a restoring moment at x1 = l1 and/or x2 = l2. The system can
be divided into two substructures and for the convenience of simple analysis the
coordinates of the substructures are determined as in Figure 1. The eigenvalue problems
for free bending vibrations of each substructure can be written as

EI1 d4y1/dx4
1 −v2m1y1 =0, EI2 d4y2/dx4

2 −v2m2y2 =0, (1, 2)

where EI1 and EI2 are flexural rigidity, m1 and m2 are masses per unit length of each
substructure respectively, v is natural frequency of the system, and y1 and y2 are the
transverse displacements of each substructure. The general solutions of equations (1) and
(2) can be written as

y1(x1)=A1 sin l1x1 +B1 cos l1x1 +C1 sinh l1x1 +D1 cosh l1x1 (3)

and

y2(x2)=A2 sin l2x2 +B2 cos l2x2 +C2 sinh l2x2 +D2 cosh l2x2, (4)

where

l4
1 =v2m1/EI1, l4

2 =v2m2/EI2. (5, 6)

To determine the coefficients of the general solutions, one can use eight boundary
conditions. By applying boundary conditions that the deflections and the moments at
x1 =0 and x2 =0 are zeros, equations (3) and (4) yield B1 =D1 =B2 =D2 =0. Application
of boundary conditions that the deflections at x1 = l1 and x2 = l2 are zeros yield

C1 =−A1 sin l1l1/ sinh l1l1, C2 =−A2 sin l2l2/ sinh l2l2. (7, 8)

Equations (7) and (8), and the two continuity conditions such as

dy1(l1)
dx1

=
dy2(l2)
dx2

, EI1
d2y1(l1)

dx2
1

+EI2
d2y2(l2)

dx2
2

=−KR
dy2(l2)
dx2

, (9, 10)

Figure 1. Simply supported two-span beam with rotational stiffness at mid support.
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give two algebraic equations for A1 and A2, and that can be written in a matrix form as

$ l1u1

−2EI1l
2
1 sin l1l1

−l2u2

−2EI2l
2
2 sin l2l2 +KRl2u2% 6A1

A27=6007 , (11)

where

u1(l1l1)= cos l1l1 −
cosh l1l1
sinh l1l1

sin l1l1, u2(l2l2)= cos l2l2 −
cosh l2l2
sinh l2l2

sin l2l2. (12, 13)

Non-trival solutions of equation (11) can be obtained if and only if the determinant of
the coefficient matrix vanishes. This gives an equation for the determination of natural
frequencies, v, which is called the frequency equation or characteristic equation:

KRu1u2 −2EI2l2u1 sin l2l2 −2EI1l1u2 sin l1l2 =0. (14)

In equation (14), the only unknown is the natural frequency v. However, it is convenient
to use two variables, b1 and b2, for describing the characteristics of the system. Using b1

and b2 one can rewrite the characteristic equation as

KRu1u2 −2(EI2/l2)b2u1 sin l2l2 −2(EI1/l1)b1u2 sin l1l1 =0, (15)

where

b1 = l1l1 =v1/2l1(m1/EI1)1/4, b2 = l2l2 =v1/2l2(m2/EI2)1/4. (16, 17)

From equations (16) and (17),

b2 = ab1, (18)

where

a= l2/l1((m2/EI2)(EI1/m1))1/4. (19)

Equation (18) is an equation for a line and a is the slope of the line. In this study, the
line and the slope were named structural line and structural slope respectively since they
represent the geometry and material properties of the structure. These are very useful to
describe the characteristic of the system, and will be used in the next section.

3.     - 

In this section a mode localization factor and a characteristic graph are defined here.
The mode localization factor can be used as a measure of the degree of mode localization
of each mode. Using the characteristic graph, one can roughly forecast the effects of the
changes in the system parameters on the mode localization.

As aforementioned, the mode localization is the vibration energy confinement, so the
degree of mode localization can be represented by logarithmic value of the ratio of the
mean squared vibrational magnitude of the second substructure to that of the first
substructure as

g0 log h2/h1, (20)

where g is the mode localization factor, and h1 and h2 are the mean squared free vibrational
magnitude of the first and second substructures respectively, which can be expressed as

h1 0
1
l1 g

l1

0

y2
1 (x1) dx1, h2 0

1
l2 g

l2

0

y2
2 (x2) dx2. (21, 22)
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For simple analysis, considering b�1, one can conclude that C1 1 0 and C2 1 0 from
equations (7) and (8), and approximate g as

ḡ=log A2
2 /A2

1 . (23)

If the vibration is confined at one of the substructures, the absolute value of g becomes
large. On the contrary, if the vibrational magnitudes are the same with each other,
=A1== =A2=, ḡ becomes zero. The sign of ḡ means the substructure at which the vibration
is confined, positive at the second substructure and negative at the first one. Considering
equation (11) and the assumption that two substructures have the same material
properties, one can rewrite equation (23) as

ḡ=log (cos b1 − (cosh b1/sinh b1) sin b1)2 − log (cos b2 − (cosh b2/sinh b2) sin b2)2.

(24)

The mode localization factor ḡ is close to zero when (b1 − b2)= np and positive or negative
infinite when (b1 − b2)= (n+0·5)p, where n is zero or integer. If only one of the following
conditions is satisfied, the absolute value of ḡ is large and the mode is localized.

b1 1 (m+ 1
4)p, b2 1 (m+ 1

4)p where m=1, 2, 3, . . . . (25, 26)

A mode was considered as localized when the span response ratio was less than 0·1 in
reference 9. To be consistent with that terminology, a mode is considered as localized when
=ḡ=e 2.

Considering the above localization conditions and the results of the previous section,
one can draw a characteristic graph as in Figure 2. In Figure 2, the horizontal and vertical
axes represent b1 and b2 respectively. The characteristic curves represent the characteristic
equation, equation (15), and the structural line and the structural slope represent equations
(18) and (19) respectively. The localization conditions that are vertical and horizontal thin
solid lines mean equations (25) and (26) respectively. The crossing points of the
characteristic curves and the structural line indicate the eigensolutions of the system. By

Figure 2. Characteristic graph of the two-span beam. Key: +, localization conditions; ——, characteristic
curve; W, eigensolution point.
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using b1 or b2 of the eigensolution points and equation (16) or (17), one can calculate the
natural frequencies of the system. The more an eigensolution is close to one of the thin
solid lines and is far from the other ones, the more the mode is strongly localized. However,
if an eigensolution is close to the vertical and the horizontal localization condition lines
concurrent or on their crossing point, the mode is not to be localized since the points satisfy
(b1 − b2)= np.

For example, in Figure 2, the first, second and third modes are localized while the fourth
and fifth modes are not. Because the first three modes are close to one of the localization
conditions, but the fourth mode is close to two localization conditions and the fifth one
is at a crossing point. The first and the third modes especially are close to the vertical
localization conditions. That means that the b1’s of them satisfy equation (25), so it is
certain that their mode localization factors have negative large values and the vibration
is confined at the first substructure of the system. And for the second mode, it is close to
the horizontal localization condition, so the vibration is localized at the second
substructure.

What makes the best use of the characteristic graph is that one can roughly predict the
mode localization phenomenon incurred by any disturbances introduced into a two-span
beam. Small changes in system parameters produce the changes in the structural slope and
the characteristic curves, but the variation in characteristic curves are small. The change
in structural slope shifts the eigensolution points and the degrees of mode localization of
each mode are varied also. Since the structural line starts at the origin, the shifting caused
by the change in slope is increasingly steeper with the increased mode number. For such
reason, the shifting of higher modes can be very serious and so is the variation in degree
of mode localization. Considering the system depicted in Figure 2, for instance, one can
say that if the structural slope is increased by some disturbances, all the eigensolution
points are shifted. And as a result of that the degrees of mode localization of the first and
second modes are decreased while the others are increased.

4. 

4.1. The system considered
In this section the foregoing results are confirmed by some examples. In this example,

the mode localization phenomenon caused by the small changes in system parameters in
the strongly or weakly coupled periodic and non-periodic systems are discussed by using
characteristic graphs.

The example structures are continuous beam structures resting on the three simple
supports, which are constrained by torsional spring at mid support as shown schematically
in Figure 1. The torsional spring plays the role of a decoupler. As KR:a, the spans are
fully decoupled from each other because no moment can be transmitted from one
substructure to the other. For KR =0, the substructures are strongly coupled since no
restoring moment is exerted. The effects of the coupling and the periodicity on the
mode localization are studied by considering four cases. In the first two cases the effect
of the coupling on mode localization in periodic structure is studied, and in the next two
cases the non-periodic structure is considered. All the example structures have the same
material properties and each of the cases is classified by the strength of the torsional spring
and the span length of the second substructure. However, one can study the effects of any
other material properties using the same procedure presented in this paper, and will get
similar results because the non-dimensional parameters b1 and b2 are mainly used in the
procedure.
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Figure 3. Characteristic graph of case 1 and 2. (a) Case 1-a, a=1·0; case 1-b, a=0·95; (b) Case 2-a, a=1·0;
case 2-b, a=0·95.

4.2. The periodic structures; cases 1 and 2
The mode localization phenomena in the ordered and the disordered periodic two-span

beams are examined for two coupling conditions. In the disordered cases, the ratio of the
span length of the second substructure to that of the first one is 0·95 while the ratio is unity
in the ordered cases. The masses per unit length of each substructure are m1 =m2 =25·0
kg/m, the flexural rigidities EI1 =EI2 =2×107 Nm2, and the span length l1 = l2 =1·0 m
in ordered cases and l2 =0·95 m in disordered ones. The torsional spring constants are
KR =0·00 Nm and KR =2×108 Nm in cases 1 and 2 respectively. The substructures of
case 1 are strongly coupled with each other since they have no torsional spring, and the
next case is a weakly coupled system. The results of the ordered and the disordered cases
are discussed in pairs because this example is performed on the assumption that some
errors such as manufacturing errors or structural damages make an ordered system into
disordered one. Figure 3 shows the characteristic graph of the cases 1 and 2. Subcases a
and b imply an ordered system and a disordered one respectively. Selected mode shapes
of each case are shown in Figure 4. The lowest five natural frequencies and the degrees
of mode localization of each case and its differences are given in Tables 1 and 2.

All the eigensolution points of the case 1-a and case 2-a satisfy (b1 − b2)= np where
n=0 as shown in Figure 3, and it is clear that all the modes are not localized as shown

Figure 4. Mode shapes of case 1 and 2. (a) Case 1-a; (b) case 1-b; (c) case 2-a; (d) case 2-b.
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T 1

Natural frequencies and degrees of mode localization: case 1

Case 1-a Case 1-b Differences
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Mode f (Hz) ḡ f (Hz) ḡ df (%) dḡ

1 444·28 0·000 465·46 −0·1384 4·77 −0·1384
2 694·06 0·000 733·86 0·1731 5·73 0·1731
3 1777·2 0·000 1854·7 −0·2695 4·36 −0·2695
4 2249·2 0·000 2387·3 0·3032 6·14 0·3032
5 3998·6 0·000 4158·4 −0·3880 4·00 −0·3880

in Figure 4. However, for the disordered cases such as case 1-b and case 2-b, (b1 − b2)= np

is not satisfied and all the modes are localized to some degree as shown in Figure 4. The
eigensolution points are shifted by the length disturbance and the shift steeper in the higher
modes. That is, the mode localization occurs in all modes simultaneously, and the degree
of mode localization increases with the mode number. As shown in Figure 3(b), the
characteristic curves of the weakly coupled systems are close to the localization conditions.
This means that if the coupling is very weak, many eigensolution points of the disordered
system satisfy the localization condition, equation (25) or (26), and the localization occurs
to a large extent in those modes as shown in Figure 4 and Tables 1 and 2. The degrees
of mode localization are more severe in the weakly coupled systems than in strongly
coupled ones. The effect of the coupling strength is more serious in lowest modes. The
extents of the differences of each mode increase with the strength of the torsional spring,
and the rate of the increase in the lowest mode is much higher than that in the higher modes
as shown in Tables 1 and 2. Considering the characteristic equation, equation (15), one
concludes that the first term of that equation can be neglected since b1 and b2 are very large
in higher modes, and for this reason the mode localizations of the higher modes are rarely
affected by the coupling strength.

4.3. The non-periodic structures; cases 3 and 4
The normal modes of the non-periodic two-span beams are examined for two coupling

conditions. In the cases of the non-periodic systems, the words of ordered and disordered
do not have meanings any longer because the undisturbed initial structures have no
regularity now. So in this study the structures of case 3-a and case 4-a are called the initial
system, and the others the disturbed system. The material properties, mass per unit length
and flexural rigidity, of these cases, are equal to those of the cases 1 and 2. The span

T 2

Natural frequencies and degrees of mode localization: case 2

Case 2-a Case 2-b Differences
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Mode f (Hz) ḡ f (Hz) ḡ df (%) dḡ

1 669·01 0·00 679·16 −1·487 1·52 −1·487
2 694·06 0·00 756·90 1·485 9·05 1·485
3 2172·6 0·00 2204·2 −1·521 1·45 −1·521
4 2249·2 0·00 2454·5 1·521 9·13 1·521
5 4541·7 0·00 4605·4 −1·546 1,40 −1·546
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Figure 5. Characteristic graph of case 3 and 4. (a) Case 3-a, a=0·5556; case 3-b, a=0·5278. case 4-a,
a=0·5556; case 4-b, a=0·5278.

Figure 6. Mode shapes of the case 3 and 4. (a) case 3-a; (b) case 3-b; (c) case 4-a; (d) case 4-b.

lengths, however, are determined by considering the characteristic graph so that the mode
localization may not occur in the third mode satisfying =b1 − b2== np where n=1. Figure
5 shows the characteristic graph of the cases 3 and 4. Selected mode shapes of each case
are shown in Figure 6. The lowest five natural frequencies and the degrees of mode
localization of each case and its differences are given in Tables 3 and 4.

T 3

Natural frequencies and degrees of mode localization: case 3

Case 3-a Case 3-b Differences
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Mode f (Hz) ḡ f (Hz) ḡ df (%) dḡ

1 560·52 −0·7785 564·94 −0·7778 0·78 0·0007
2 1615·1 0·3878 1703·1 0·2031 5·45 −0·1847
3 2249·0 0·0000 2346·4 0·2273 4·33 0·2273
4 4289·1 −0·7223 3428·1 −0·7637 9·09 −0·0414
5 6331·6 0·6684 6771·0 0·3960 6·94 −0·2724
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T 4

Natural frequencies and degrees of mode localization: case 4

Case 4-a Case 4-b Differences
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Mode f (Hz) ḡ f (Hz) ḡ df (%) dḡ

1 681·42 −2·889 681·48 −2·873 0·009 0·016
2 2142·8 0·511 2197·5 −0·925 2·55 −1·437
3 2249·0 −0·000 2426·1 1·428 7·87 1·428
4 4615·1 −2·136 4614·9 −2·153 0·039 −0·017
5 7026·7 1·617 7703·7 0·425 9·63 −1·192

The characteristic graphs depicted in Figure 5 show that all the modes except the third
mode of the initial system are already localized in some degree, and Figure 6 and Tables
3 and 4 confirm that. The length disturbance introduced into the second span yields the
changes in the natural frequencies and degrees of mode localization as predicted by the
characteristic graphs, and Tables 3 and 4 certify that. Observe that in some modes the
degrees of mode localization are increased and in the others decreased by the disturbance.
That is not in accordance with the result of the periodic system in which the trends of
variations are consistent with the mode number in all modes. It is obvious, however, that
the weak coupling makes the system sensitive to the disturbance independently of the
periodicity of the system.

5. 

The present study is concerned with the occurrence and the variation of the mode
localization in both periodic beams and non-periodic ones. It investigates the effects of the
coupling strength on mode localization in those systems. The main findings of the work
are summarized as follows.

(1) A mode satisfying (b1 − b2)= np makes possible the drastic occurrence of mode
localization independent of the periodicity of the two-span beams when the coupling
is weak.

(2) Mode localization of a two-span beam with equal span lengths occurs
simultaneously in all modes.

(3) Mode localization of a two-span beam with arbitrary span lengths occurs in some
(not all) modes.

(4) Mode localization in the higher modes is more sensitive to the system parameters
than in the lower ones.

(5) Weak coupling makes the modes sensitive to mode localization. This effect is
especially more pronounced in the lowest modes than in the higher modes.

The second result is well known in the present time. However, the other results are new
or are extensions of already established work. From the results of this study, one can say
that mode localization may occur in non-periodic structures as well as periodic ones.
Extended studies on mode localization phenomena of general non-periodic structures are
required.
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