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OPTIMAL DESIGN TO REDUCE DYNAMIC
INSTABILITY OF A TURBINE GENERATOR

DUE TO MICROSLIP

H. L. W

Department of Mechanical Engineering, Linköping University, 58183 Linköping, Sweden

(Received 15 May 1996, and in final form 26 January 1998)

This paper is concerned with dynamic instability of a turbine generator due to friction
between rotor slot wedges and the rotor. The energy transferred due to friction can be
reduced by increasing wedge length, coefficient of friction or normal force or by reducing
the cross-section area of the wedge. The bearing damping is normally sufficient to master
the energy input from the wedges. This bearing damping becomes more powerful the
weaker the bearings are. The size of the rotor cross-section area affected by the wedge is
difficult to estimate but it is shown to be of minor importance for the results, provided it
is larger than the wedge-cross-section area.
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1. INTRODUCTION

For simple rotor systems there are some well-known basic reasons for instability, for
instance non-conservative bearing stiffness forces, asymmetric shaft stiffness and internal
damping. It is a well-known fact that when there is viscous damping in a rotating
symmetrical shaft supported in symmetrical bearings, motion may be unstable above a
certain speed, always above the lowest critical speed. The internal damping is however
seldom viscous. A more common mechanism is the so-called microslip. The microslip
phenomenon in rotordynamics was for the first time experimentally confirmed by Kimball
[1] in a special test rotor with rings on hubs and shrunk on the shaft. Other papers in that
subject are, for instance, those of Gunter [2] and Bently [3].

In this paper instability of a turbine generator due to this microslip will be studied; see
Figure 1. The windings of turbine generators are built up in a number of axial slots milled
in the rotor. The slots are rectangular and mostly in the radial direction to the rotor center.
To hold the wound copper and the cooling pipes, rotor slot wedges are pressed into the
slot.

When the generator is running microslip takes place between the wedges and the rotor.
It is a well-known fact that when there is viscous or hysteretic damping in a rotating system
instability may occur: see, for instance, references [4] and [5]. Friction models that include
microslip have been derived since the 1950s [6]. Measuring microslip, however, is difficult
because it is difficult to distinguish the elastic deformation of the contact from sliding in
the contact. A good apparatus for measuring microslip has been developed by Hagman
and Björklund [7].

In a previous paper Wettergren and Csaba [8] developed a method for tackling the
microslip problem due to friction between the wedge and shaft in a turbine generator. They
found that when the normal force on the wedge is constant the dissipated energy is of the
same type as hysteretic material damping in the sense that for a circular motion excluding
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Figure 1. The winding of turbine generators.

gravity it is independent of the rotational frequency, but changes sign when the rotational
frequency exceeds the vibrational frequency. The magnitude of the dissipated energy will
however depend on the rotational frequency as the normal force does. The transferred
energy due to friction is a non-linear phenomenon and approximately proportional to the
amplitude cubed, and may be much larger than material damping. It was also shown that
when gravity is included or the motion is elliptical the energy transferred is larger than
for a simple circular motion.

The damping energy in the bearings is normally sufficient to master the energy
transferred to the rotor from the wedge friction. This ratio is, however, affected by many
design parameters, and cases may exist where the wedge friction is of decisive importance.
Some of these design parameters will be investigated in this paper.

2. THE MODEL

A complete dynamic analysis of a turbine generator is complicated. The effects due to
microslip can be isolated by drawing benefit from the knowledge that if the rotor becomes
unstable it will start to vibrate with a frequency close to the first eigenfrequency. The
vibration shape will be close to the first mode shape. Therefore the turbine generator can
be reduced to a basic disc-shaft-bearing system; see Figure 2. The rotor system consists
of a generalized mass, m, symmetrically mounted on a flexible shaft with the equivalent
stiffness ki obtained from the bending stiffnesses EI1 and EI2. The shaft is supported in two
bearings with stiffness kex and key and damping cex and cey . There are naxial × ncirc wedges,
where naxial is the number of sets in the axial direction with ncirc wedges in the circumferential
direction (a list of nomenclature is given in the Appendix).

In the microslip model one assumes that there is a part of the friction interface that slips,
and another part that is stuck. The wedge and the rotor are shown in Figure 3. The wedge
has modulus of elasticity Ew and cross-section area Aw . It is assumed to affect a part of
the rotor having area Ar and modulus Er .

The compression spring (see Figure 1) and the centrifugal acceleration exert a pressure
on the wedge. The normal component of this pressure is assumed to give a constant
distributed force q on the wedge. The friction force per unit length due to this normal force
is defined upon using Coulomb friction as

Ff = mq. (1)
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Figure 2. Simple rotor wedges.

Finally, the slip length da is defined so that the strain in the wedge and the strain in the
rotor are the same where the slip region ends.

The left part of one rotor wedge is shown in Figure 3.
Assume that just a part of the rotor is affected by the wedge. The additional bending

moment on the rotor due to the wedge is the difference between the bending moment due
to the force F and the corresponding bending moment if the wedge were not present. The
forces required to force the rotor to perform circular motion can now be determined. This
force due to the motion is illustrated in Figure 4.

Figure 3. Forces acting on the left part of the wedge and the rotor.
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Figure 4. Deflection of the rotor.

If the forces on the rotor were purely elastic, they would be collinear with the deflection.
The non-conservative nature of the microslip forces makes them have another direction:
i.e., they add energy to the rotor or subtract energy from it. If energy is transmitted to
the rotor instability may result.

The energy transferred to the rotor is

DE=g0QvtE 2p

(Fx dx+Fy dy). (2)

The energy transferred is compared with the total potential energy stored in the shaft. As
the motion is circular and it fluctuates between a negative and a positive value the total
potential energy becomes

E1 2ki r2
max , (3)

where rmax is the maximal deflection of the shaft. The ratio between the energy
dissipated and the elastic energy is in some sense a value of the damping in the shaft.
The values for rotor materials, which can be used as a reference, are in the region of
0·01–0·1%.

3. RESULTS

Several simulations have been done using data from a real turbine generator. Details
of the method used have been given by Wettergren and Csaba [8]. Without any
ambition to describe quantitatively with a high degree of accuracy the behavior of a real
turbine generator in this paper, which is mainly concerned with investigating the
phenomenon in question, the following data are used as reference data from which the
values may vary: the distance between the bearings, l=9·2 m; the generalized mass
for the first eigenmode, m=37,363 kg; the diameters of the shafts, d1 =0·7 m, d2 =1·15 m;
the distance, l1 =2·25 m. Except for the last calculation, the shaft is simply supported:
i.e. kex = key =a, cex = cey =0. The number of wedges is chosen to be 36, i.e. ncirc =36,
and as before naxial is equal to one. The length of the wedge is lwedge =0·6 m. The
friction coefficient is m=0·1 and the stiffness ratio is b=(Er Ar )/(Ew Aw )=10,
where Ew =2·06 GPa and Aw =0·0014 m2. The size of Ar is difficult to estimate, but
it can be shown that it is of minor importance for the results, provided it is larger than
Aw .
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The normal force on the wedge depends on the prestressed spring between the wedge
and the conductors and the centrifugal acceleration. When the rotational frequency
exceeds a certain value the contact force between the conductors and the rotor vanishes
and the normal force on the wedge becomes the sum of the centrifugal forces from the
wedge and the conductors (see Figure 1). In these calculations the following contact forces
are used:

N=Fprestressed +
rwedge lwedge Aw dV2

2 sin awedge
, VEv*0 ,

N=
mcond rcond V2

sin awedge
+

rwedge lwedge Aw dV2

2 sin awedge
, Vqv*0 , (4)

where Fprestressed is the force in the prestressed spring, awedge is the slope of the wedge contact
area increasing when the wedge becomes less pointed, mcond is the effective mass of the
conductors, rcond is the average radius where mcond is applied and v*0 is the alteration
frequency when the conductors lose the contact force from the rotor. In this paper the force
in prestressed spring is equal to the centrifugal force for the conductors when V=ve : i.e.
v*0 =ve in this special case.

Let the mass perform a circular motion around the origin. To bring out the effects
of the wedges the bearings are assumed to be rigid and the gravity force is ignored.
Figure 5 shows how much energy per cylce is transferred to the system when the shaft is
forced to make a revolution with the radius 0·001 m. Negative energy means that enery
is added to the system and instability occurs. The average of 20 revolutions has been
plotted.

From Figure 5 it is noted that instability may only occur when Vqv0. A detailed
discussion of how internal damping, such as friction, may cause instability can be found
in Wettergren [9]. The energy transferred depends on V/v0 and it changes sign when V

passes through v0. When the normal force is constant, however, the energy transferred
is constant except that it changes sign when V passes through v0, analogously with material
damping.

Figure 5. Energy transferral to the rotor per cycle due to the wedge microslip. (a) Constant normal force; (b)
normal force increased by centripedal acceleration.
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Figure 6. Energy transferral to the rotor per cycle due to the wedge microslip vs coefficient of friction when
V/v0 =1·1.

3.1.  

In Figure 5 the energy transferred is shown for one particular configuration of the wedge
set. The parameters may, however, vary within wide ranges. In this section the parameter
affecting the energy transferred for one rotational frequency ratio, namely V/v0 =1·1, will
be studied.

In contrast to what can first be expected, the magnitude of the transferred energy
decreases when the friction coefficient increases. This is shown in Figure 6. This is due to
the fact that the energy transferred it proportional to the slip length squared but just
linearly proportional to the friction force, and when the friction force is reduced the length
of the slip zone is increased correspondingly.

The length of the wedge, or more accurately the position of the slip zone, seem to
have a large influence on the energy transferred and, with reference to Figure 7,
consequently the length of the wedge should be as large as possible. The slope of the shaft
decreases the farther away from the middle of the shaft the slip zone is positioned. This
decreases the strain in the wedge. In a real turbine generator the whole length of the wound
part of the rotor consists of wedges, consequently the number of wedges in the axial
direction decreases while the length of the wedges increases. This also decreases the energy
transferred since the number of slip zones becomes smaller.

The wedge cross-section area contributes to the energy transferred in two ways. The
larger the area is, the larger is the friction force that has to be transferred between the rotor

Figure 7. As Figure 6 except vs wedge length.
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Figure 8. As Figure 6 except vs wedge cross-section area.

and the wedge and, consequentially, the larger will the slip zone and the energy transferred
be. On the other hand the larger wedge cross-section area, the larger will the normal force
due to the centripetal acceleration be.

In Figure 8 the energy transferred has been plotted for different wedge cross-section
areas, but without changing the normal force. It is noted that the energy transferred
increases when the cross-section area increases. It can be shown that the energy transferred
is in principle independent of the equivalent rotor stiffness Er Ar as long as it is larger than
the wedge stiffness Ew Aw .

As was discussed earlier the normal force on the wedge depends on the prestressed spring
between the wedge and the conductors but also on the centrifugal forces. Their normal
force can be increased either by increasing the prestress in the spring and/or reducing the
slope of the wedge contact area: i.e. making the wedge more pointed. As shown in Figure 9,
these will reduce the energy transferred.

From the results above the energy transferred can be written as

DE0 (Ew Aw )2

mNL3
wedge

. (5)

3.2.  

Up to now the bearings have been assumed to be rigid. Consequently no energy has been
dissipated in the bearings. The instability can however be suppressed by a sufficient amount

Figure 9. As Figure 6 except vs normal force.
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Figure 10. Bearing damping required to avoid instability. The bearing stiffnesses are 2ke =10ki .

of bearing damping. Figure 10 shows an example of how much bearing damping is needed
to suppress the instability. The radius of the motion is r=0·001 m and the bearing
damping factor is defined as

ze =
2ce

2ve m
, (6)

where

ve =X (kex + key )ki

(kex + key + ki )m
. (7)

It is noted in Figure 10 that if the bearing damping factor, ze , is larger than 0·057 the
motion is stable for all rotational frequencies. The same analysis has been done for several
different stiffness ratios and the result is shown in Figure 11. As can be seen in Figure 11
the bearing damping becomes more powerful the weaker the bearings are, for the simple
reason that the motion decreases in the shaft, and so consequently does the dissipative
energy.

Figure 11. Bearing damping required to avoid instability.
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4. CONCLUSION

The conclusions from this study can be summarized as follows.
The transferred energy decreases when the friction coefficient increases.
The energy transferred decreases when the length of the wedge increases or, more

accurately, the farther away from the middle of the shaft the slip zone is positioned. It
also decreases when the number of wedges becomes smaller although this is not as
important.

The energy transferred also decreases when the normal force increases.
The energy transferred increases when the wedge cross-section area increases.
Within the range of the parameters in the study the results can be written as

DE0 [(Ew Aw)2]/[mNL3
wedge ].

The stiffness of the bearings has a large influence on the required bearing damping to
avoid instability. The larger the stiffness the larger the bearing damping.
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APPENDIX: NOMENCLATURE

Ararea of the shaft
Awarea of the wedge cross-section
d1, d2shaft diameters
Emaximal potential energy to the rotor
Ermodulus of elasticity of the shaft
Ewmodulus of elasticity of the wedge
EI1, EI2bending stiffnesses of the shaft
Fforce in the shaft due to the wedge
Fx , Fycomponents of the applied force
Fwcross-section force in the wedge
fffriction force per unit length
I1, I2moment of inertia of the beam
kex , keybearing stiffness
kiequivalent shaft stiffness
ldistance between the bearings
lwedgelength of the wedge
l1, lw , lslip geometric properties of the shaft
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M bending moment
m generalized mass of the shaft
mcond effective mass of the conductors
N normal force on the wedge
naxial number of wedge sets
ncirc number of wedges in each set
q normal force per unit length
r deflection of the rotor
rcond radius to the mass center of the conductors
rmax maximum deflection of the shaft
t time
x, y, z Cartesian co-ordinate system
xe , ye deflection in the bearing
awedge angle between the wedge top surface and the normal force
b stiffness ratio
da total slip length
DE energy transferred to the rotor
m friction coefficient
rwedge density of the wedge material
ze bearing damping factors
V rotational frequency
ve resonance frequency
v0 vibrational frequency
v*0 alteration frequency
E maximal potential energy to the rotor


