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A theoretical analysis on the hydroelastic behavior of a circular cylindrical sector shell,
attached to incompressible and frictionless liquid layers on both its sides, has been
performed in a zero-gravity environment. The motion of the section shell is described by
the equations of Flügge. The coupled vibration problem has been reduced to an eigenvalue
problem by applying the Galerkin method and yields the coupled natural frequencies and
vibration modes as eigenvalues and eigenvectors respectively. Numerical calculations were
carried out to find the influence of the parameters of the structure–liquid system. Stability
boundaries of vibration modes with circumferential wave number N=0 and N=1 of a
liquid attached inside or outside a rigid cylindrical wall were also investigated.
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1. INTRODUCTION

The advent of orbital space flights and orbital space stations with long time periods in a
zero- or micro-gravity environment presents one, due to the required light and very flexible
structures, unique problems on the interaction of liquids and elastic structures. Cylindrical
configurations seem to be the basic geometry. These hydroelastic problems will influence
the design of these space structures and may lead to complicated dynamic phenomena. For
this reason, it is necessary to clarify the vibration characteristics of the structure–liquid
systems and determine first of all the coupled frequencies of liquid and the elastic structural
oscillations. A large number of studies, theoretical and experimental, have been performed
previously [1–15] for liquid containing structures mainly under gravity condition. In these
studies, where the interest emphasized propellant containers in missiles, space vehicle,
satellites and also large capacity oil storage tanks, the hydroelastic investigations
concentrated mainly on upright circular cylindrical containers. Some problems concerning
hydroelasticity under micro- or zero-gravity conditions have also been treated previously
[16]. In addition some work has been performed for spinning systems in zero-gravity
environment [17]. Recently [18] the coupled frequencies of an elastic sector shell and
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frictionless liquid in zero-gravity have been determined in which axial dependency has been
neglected. The three-dimensional problem, i.e., the inclusion of this dependency in the x
direction was treated in [19], where the interaction of the elasticity of a cylindrical sector
shell and the liquid with a free surface, held in position by mere surface tension, had been
investigated.

In the following investigation, the uncoupled vibration characteristics of a sector shell
without liquid and the uncoupled frequencies of incompressible liquids around a rigid
curved sector wall have been determined together with the coupled problem of the total
elastic and sloshing system. The sector shell was modelled as a thin cylindrical shell with
clamped–clamped circumferential and simply supported boundary conditions in the axial
direction. Flügge’s thin shell theory has been employed. The effect of the various
parameters of the hydroelastic system, such as the aspect ratio, the thickness ratio, the apex
angle of the shell, the density ratio, the surface tension parameter and the thickness
parameter of the liquid, have been investigated. The coupled natural frequencies have been
determined and the unstable vibration region of the liquid attached inside or outside a rigid
wall, where some natural frequencies disappear, has been clarified.

2. BASIC EQUATIONS

An elastic cylindrical sector shell (Figure 1) at r=R and the attached liquid layers of
outer thickness (bo −R) and inner thickness (R− bi ) are performing oscillations under the
influence of the elastic structure and the free liquid surface, if disturbed. The elastic shell,
of length l (x direction), exhibits an apex angle U and clamped boundaries in the
circumferential direction. The shell is simply supported at its ends x=0 and l. The liquids
of density rj (j= o outer, i inner) and surface tensions sj are allowed to freely slip at the
rigid sector walls u=0, U. One treats here a wetting liquid system which remains in
contact with the walls throughout the motion. The contact angle of the liquids with the
side walls is assumed to remain p/2 or in the immediate vicinity of p/2, thus rendering an
equilibrium surface of the liquid which is of circular cylindrical form. For small liquid
velocities and small elastic deformations the governing equations may be linearized. With

Figure 1. Elastic sector cylindrical shell with attached liquids.
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the liquid motion assumed to be irrotational, the continuity equation div v� =0 leads to
the Laplace equations for the velocity potential Fj .

DFj =0, RQ rQ bo , bi Q rQR, 0Q uQU

D=(1/r)(1/1r)(r 1/1r)+1/r2(12/1u2)+ 12/1x2, (1)

which have to be solved with the appropriate boundary conditions. Subscript j (= o, i)
corresponds to the outer ( j= o) and the inner ( j= i) liquid attached around the elastic
wall respectively.

The boundary conditions at the rigid side walls are

(1/r)Fj,u =0, RQ rQ bo , bi Q rQR, u=0, U, (2)

while at the free liquid surfaces the kinematic conditions are

zj,t =Fj,r , r= bj , 0Q uQU (3)

and the dynamic conditions

−rjFj,t 2 (sj /b2
j )(zj + zj,uu + b2

j zj,xx )=0, r= bj , 0Q uQU, (4)

where zj = zj (u, x, t) are the free liquid surface displacement. In equation (4), + and −
correspond to the dynamic condition of the outer and the inner liquid respectively. At the
shell surface, the compatibility condition

W,t =Fj,r , r=R, 0Q uQU, (5)

has to be satisfied, so that the velocity of the shell is equal to the velocities of the liquids
at the shell wall. This is valid for wetting liquid and small oscillation frequencies, where
no cavity effects may be present.

With the displacements of the middle surface of the elastic sector shell in the x, u and
r directions, as U, V and W respectively, the equations of motion of the shell are given
by using the equations of Flügge [20],

R2U,xx + 1
2(1− n)U,uu + 1

2(1+ n)RV,ux + nRW,x −[rs (1− n2)/E]R2U,tt

+ k�{1
2(1− n)U,uu −R3W,xxx + 1

2(1− n)RW,xuu}=0, (6)

1
2(1+ n)RU,ux +V,uu + 1

2(1− n)R2V,xx +W,u −[rs(1− n2)/E]R2V,tt

+(k�/2)R2{3(1− n)V,xx −(3− n)W,xxu}=0, (7)

nRU,x +V,u +W+(h2R2/12)94W+[rs (1− n2)/E]R2W,tt +2k�W,uu + k�W

−Rk�{R2U,xxx − 1
2(1− n)U,xuu +(R/2)(3− n)V,xxu}=(R2/J)(roFo,t − riFi,t ),

(8)

where 0E xE l, and

J=Eh/(1− n2), 92 = 12/1x2 + (1/R2) 12/1u2, k�= h2/12R2. (9)

It may be noted that the influence of the frictionless liquids appears only on the right side
of equation (8). If in the above equations the underlined terms are neglected, the basic
equations of Donnell, which are widely used as shallow shell equations, are obtained. In
non-dimensional form the above equations (1)–(8) yield

D'fj =0, 1Q rQ do , di Q rQ 1, 0QcQ p, (10)

(1/r)fj,c =0, 1Q rQ do , di Q rQ 1, c=0, p, (11)
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z�j,t =fj,r , r= dj , 0QcQ p, (12)

−r̄jd 2
j fj,t 2 s̄jb

2{z�j +(1/4a2)z�j,cc +(dj /b)2z�j,jj}=0, r= dj , 0QcQ p, (13)

−r̄jd 2
j fj,tt 2 s̄jb

2{fj,r +(1/4a2)fj,rcc +(dj /b)2fj,rjj}=0, r= dj , 0QcQ p,

(14)

w,t = h�fj,r , r=1, (15)

L1 0 u,jj + 1
2(1− n)b
 2u,cc + 1

2(1+ n)b
 v,cj + nw,j − u,tt

+ k�{1
2(1− n)b
 2u,cc −(1/b2)w,jjj +(1/8a2)(1− n)w,jcc}=0, (16)

L2 0 1
2(1+ n)b
 u,cj + b
 2v,cc + 1

2(1− n)v,jj + b
 w,c − v,tt

+(k�/2){3(1− n)v,jj −(1/2ab)(3− n)w,jjc}=0, (17)

L3 0 nu,j + b
 v,c +w+(k�/b4)9�4w+(1/b2)w,tt

+ k�{(1/2a2)w,cc +w−(1/b2)u,jjj +(1/8a2)(1− n)u,jcc −(1/4ab)(3− n)v,jjc}

=(1/b2)(r̄ofo,t − r̄ifi,t ) (18)

where the dimensionless values

j=(p/l)x, c= u/2a, t=V0t, b= l/Rp, b
 = b/2a ,

V0 = (p/l)zE/rs (1− n2), (u, v)= (Rp/lh)(U, V), w=W/h,

s̄j = sj (1− n2)/RE, v=V/V0, r= r/R, z�j =(R/h2)zj , h�=R/h,

k�=1/12h�2, dj = bj /R, r̄j = rj /rs , U=2pa, 0Q aQ 1,

fj =Fj /V0h2, 9�2 = 12/1j2 + b
 2 12/1c2,

D'= 12/1r2 + (1/r) 1/1r+(1/4a2r2) 12/1c2 + (1/b2) 12/1j2 (19)

have been used. Equation (14) is the combined free surface condition, as obtained from
equations (3) and (4) or (12) and (13). In equations (13) and (14), the + and − correspond
to the equation when the liquid is attached to the outer and inner surface of the shell
respectively. The values rs , rj are the density of the shell and liquids respectively, E, n are
Young’s modulus of elasticity and Poisson’s ratio of the shell, t and V are time and natural
circular frequency respectively. l could either be considered as the length of the shell in
the axial direction or the length of one half of the axial mode. v, dj and h� are the
non-dimensional parameters concerned with the natural frequency, liquid thicknesses and
shell thickness respectively.

3. METHOD OF SOLUTION

The solution of the Laplace equation (10) by separation of variables satisfying the rigid
wall boundary condition (11) renders the equations

fo (j, 8, r, t)= iv eivt s
m

s
k 6AkmIk/2a0mb r1+BkmKk/2a0mb r17 sin mj cos kc,

m=1, 2, . . . , k=0, 1, 2, . . . (20)
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fi (j, 8, r, t)= iv eivt s
m

s
k 6CkmIk/2a0mb r1+DkmKk/2a0mb r17 sin mj cos kc,

m=1, 2, . . . , k=0, 1, 2, . . . , (21)

where Akm , Bkm , Ckm and Dkm are unknown constants, and Ik/2a and Kk/2a are modified Bessel
functions of order k/2a and of the first and second kind.

3.1.       

For a rigid sector wall the boundary condition is

1fj /1r=0 at r= dj , 0QcQ p, (22)

which yields together with the combined free surface condition (14) the uncoupled
frequencies of the liquid as

V2
km =(sj /rjR3)(mdj /b)[(mdj /b)2 + (k/2a)2 −1]

× {I'k/2a (m/b)K'k/2a ([m/b]dj )− I'k/2a ([m/b]dj )K'k/2a (m/b)}

× {I'k/2a (m/b)Kk/2a ([m/b]dj )− Ik/2a ([m/b]dj )K'k/2a (m/b)} (23)

The prime ' is the derivative with respect to the argument.

3.2.  

The coupled structure–liquid system is obtained from equations (14), (16–18) by
observing the compatibility condition (15). Assuming w=eivt am an GnmCn (c) sin mj (see
equation (33)) and multiplying it by cos kc dc and integrating and by observing the
orthogonality condition, one obtains from the compatibility conditions (15) the
expressions

Bkm =6 2
h�p(dk0 +1)

s
n

Gnmknk −Akm I'k/2a0mb17$1/K'k/2a0mb1%, k=0, 1, 2, . . . , (24)

Dkm =6 2
h�p(dk0 +1)

s
n

Gnmknk −Ckm I'k/2a0mb17[1/K'k/2a0mb1%, k=0, 1, 2, . . . , (25)

where

knk =g
p

0

Cn (c) cos kc dc, k=0, 1, 2, . . . . (26)

The free liquid surface equation (14) is combined with equations (20), (21). After
eliminating Bkm , Dkm , with equations (24) and (25), a coupled system of k equations for
Akm , Gnm , and Ckm is obtained as

[(M1okk M2okn )−v2(M3okk M4okn )]6Akm

Gnm7= {0}, (27)

[(M1ikk M2ikn )−v2(M3ikk M4ikn )]6Ckm

Gnm7= {0}, (28)
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where

M1jkk = s̄jb
2Xjk$I'k/2a0mb dj1−I'k/2a0mb1K'k/2a0mb dj1>K'k/2a0mb1%,

M2okn =[2s̄ob
2Xok /h�p(dk0 +1)]$K'k/2a0mb do1>K'k/2a0mb1%knk ,

M2ikn =[2s̄ib
2Xik /h�p(dk0 +1)]$K'k/2a0mb di1>K'k/2a0mb1%knk ,

M3jkk =2r̄d2
j $I'k/2a0mb1Kk/2a0mb dj1>K'k/2a0mb1−Ik/2a ([m/b]dj )%,

M4jkn =3[2r̄d2
j /h�p(dk0 +1)]$Kk/2a0mb dj1>K'k/2a0mb1%knk , (29)

Xjk =1−(k/2a)2 − (djm/b)2. (30)

Next, one considers the equation of motion of the sector shell assuming that the straight
edge along c=0, p is clamped, and that the curved edges j=0, p are simply supported.
Therefore the boundary conditions of the shell are

u= v=w=w,c =0 at c=0, p, (31)

and

nx = v=w=mx =0 at j=0, p, (32)

where

nx = u,j + n{(b/2a)v,c +w}−(k�/b2)w,jj ,

mx =w,jj + n{(b3/2a)v,c +(b/2a)2w,cc}+ b2u,j .

With these boundary conditions the shell displacements u, v and w may be represented
in the form

8u(j, c, t)
v(j, c, t)
w(j, c, t)9=eivt s

m

s
n 8FnmCn (c)

FnmCn (c)
GnmCn (c)98cos mj

sin mj

sin mj9, n, m=1, 2, . . . , (33)

where Enm , Fnm , Gnm are unknown constants. Cn (c) is a beam function which satisfies the
clamped–clamped boundary conditions.

Cn (c)=Cn,c (c)=0 at c=0, p. (34)
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Introducing equation (33) into equations (16–18), and applying the Galerkin method, one
obtains

g
p

0 g
p

0 2L1(j, c)
L2(j, c)
L3(j, c)3Cp (c)2cos qj

sin qj

sin qj3 dc dj=0, p=1, 2, . . . , q=1, 2, . . . , (35)

Rearranging the results in a matrix form yields finally

&20 0 0 0
0 0 0 0
0 0 0 0

M5pn

M6pn

M7pn

M6pn

M8pn

M9pn

M7pn

M9pn

M10pn3
−v22 0

0
M11opk

0
0

M12opk

0
0

M11ipk

0
0

M12ipk

dpn

0
0

0
−dpn

0

0
0

dpn /b23'
Akm

Bkm

Ckm

× Dkm = {0}, (36)g
G

G

G

G

G

G

F

f

h
G

G

G

G

G

G

J

j

Enm

Fnm

Gnm

where

M5pn =m2dpn − 1
2(1− n)b
 2J02

pn − 1
2k�(1− n)b
 2J02

pn ,

M6pn =(b
 /2)m(1+ n)J01
pn ,

M7pn =mndpn +(m3/b2)k�dpn +(m/8a2)k�(1− n)J02
pn ,

M8pn = b
 2J02
pn −(m2/2)(1− n) dpn −(3m2/2)k�(1− n)dpn .

M9pn = b
 J01
pn +(m2/4ab)k�(3− n)J01

pn ,

M10pn = dnp +(k�/b4){(m4 + a4
nb
 4)dpn −2m2b
 2J02

pn}+(k/2a2)J02
pn + k�dnp

M11opk =−(r̄o /b2)Ik/2a (m/b)kpk , M12opk =−(r̄o /b2)Kk/2a (m/b)kpk ,

M11ipk =(r̄i /b2)Ik/2a (m/b)kpk , M12ipk = r̄i /b2 Kk/2a (m/b)kpk , (37)

and where

J00
pn =g

p

0

Cp (c)Cn (c) dc= dpn

J02
pn =g

p

0

Cp (c)C0n (c) dc=[CpC'n ]p0 −g
p

0

C'p (c)C'n (c) dc=−J11
pn



.   .252

J01
pn =g

p

0

Cp (c)C'n (c) dc, J11
pn =g

p

0

C'p (c)C'n (c) dc.

dpn is Kronecker’s delta. Neglecting the influence of the liquid (M11jpk =M12jpk =0),
equation (29) reduces to the uncoupled frequency equation of the shell wall.

Combining equations (27), (28) and equation (36), one obtains

M1okk 0 0 0 M2okn

0 M1ikk 0 0 M2ikn

G
G

G

G

G

K

k

G
G

G

G

G

F

f

G
G

G

G

G

J

j

0 0 M5pn M6pn M7pn

0 0 M6pn M8pn M9pn

0 0 M7pn M9pn M10pn

M3okk 0 0 0 M4okn Akm

0 M3ikk 0 0 M4ikn Ckm

G
G

G

G

G

F

f

G
G

G

G

G

J

j

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

−v2 0 0 dpn 0 0 Enm = {0} (38)

0 0 0 −dpn 0 Fnm

M13pk M'13pk 0 0 M14pn Gnm

where

M13pk =−(r̄o /b2)kpk [Ik/2a (m/b)− I'k/2a (m/b)Kk/2a (m/b)/K'k/2a (m/b)],

M'13pk =(r̄i /b2)kpk [Ik/2a (m/b)− I'k/2a (m/b)Kk/2a (m/b)/K'k/2a (m/b)], (39)

M14in =
dpn

b2 −
2r̄o

b2h�p
s
k

1
(dk0 +1)

Kk/2a (m/b)
K'k/2a (m/b)

knkkpk +
2r̄i

b2h�p
s
k

1
(dk0 +1)

Kk/2a (m/b)
K'k/2a (m/b)

knkkpk

(40)

These are (k+3n), k=0, 1, . . . , n=1, 2, . . . , coupled linear algebraic equations for
the unknowns Akm , Ckm , Enm , Fnm , and Gnm . From this one obtains the coupled natural
frequencies and mode shapes of the vibration of the coupled liquid-structure system as an
eigenvalue and eigenvector, respectively.

4. NUMERICAL RESULTS

The above obtained analytical results have been evaluated numerically for some special
cases. Since the precision of the uncoupled vibration of a sector shell without liquid has
already been shown in [19], the present paper will first present the uncoupled frequencies
of a liquid attached to a rigid sector shell.

4.1.    

The uncoupled natural frequency of the liquid has been obtained by evaluating
equations (27) and (28) where Gnm (i.e., the elastic displacement of the sector shell) has been
neglected. The uncoupled natural frequency variation of the liquid attached inside the shell
wall with the apex angle is presented in Figure 2(a) for b=0·5, m=1, s̄i =1·0×10−14

and di =1/1·2, 1/1·8. In the figure, the thick lines represent the uncoupled natural
frequencies for di =1/1·2, while the thin lines are those for di =1/1·8. One notices that with
increasing apex angle, a, the natural frequency of the liquid decreases. At a=0·5 one can
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Figure 2. Natural frequency of liquid attached to a rigid cylindrical wall with a: b=0·5, m=1,
s̄i = s̄o =1·0×10−14; (a) Inside liquid with ————, di=1/1·2; ——, di=1/1·8; (b) Outside liquid with ————, do=1·2;
——, do=1·8.

see sudden drops of the natural frequency in the N=1 mode for both di =1/1·2 and 1/1·8.
Simultaneously, the mode N=1 corresponds to the minimum natural frequency. With
further increase in a, this frequency decreases to zero when di =1/1·2, which corresponds
to an instability of the N=1 mode, and there exists no stable solution for further higher
value of a. The critical point at which v is equal to zero shifts to the regions with large
value of a as di becomes small. This means that with the inner liquid becoming thicker,
for example di = bi /R=1/1·8, that mode is stable for a wider range of a.

Similar tendencies have been obtained for the liquid attached outside the shell wall [19],
as shown in Figure 2(b), where liquid thickness ratio do =1·2 and 1·8.

4.2.       

Next, the coupled natural frequency of the elastic shell and liquids inside and outside
the shell wall are considered, by investigating the effect of the liquid thickness parameters,
do = bo /R, di = bi /R, the surface tension parameter, s̄, and the density ratio, r̄ of liquid
and shell density.

4.2.1. Effect of liquid thickness
Since this is a coupled dynamic system involving an elastic sector shell and liquids,

coupled natural frequencies of both the bulging (flexural)- and sloshing-type will be
obtained, in which the shell motion and the liquid surface motions are predominant
respectively. As an example, the variations of coupled natural frequencies with inner liquid
thickness di −1, when a=0·5, b=0·5, m=1, r̄=0·13, s̄i =1·0×10−14, h�=50,
do −1=0, i.e., without outer liquid, are shown in Figure 3. In the figure, the lowest three
natural frequencies for each type are presented. In the abscissa, di −1=0 and −1
correspond to the zero thickness case and fully filled case respectively. Since the
magnitudes of each bulging- and sloshing-type natural frequency are far apart, different
ordinates have been taken. From the figure, one can see the variation of the coupled
natural frequencies with inner liquid thickness, i.e., with the increase of the liquid
thickness, sloshing natural frequencies with N=1 and 2 gradually increase, while the
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Figure 3. Effect of inner liquid thickness di on the coupled natural frequency: a=0·5, b=0·5, m=1,
r̄i =0·13, s̄i =1·0×10−14, h�=50, do −1=0; (a) bulging type (b) sloshing type.

bulging-type natural frequencies decrease with decrease of di −1, which is usually due to
the added mass effect of the liquid.

It should be noted here that the variation of the sloshing mode with N=0 exhibits a
quite different behavior than the other sloshing modes N=1, 2. One observes that with
an increase in liquid thickness, the natural frequency increases and then decreases, and
finally reaches zero at di −1=−0·5. For further increase in the inner liquid thickness,
this mode disappears and becomes unstable.

The results for a decrease of the aspect ratio parameter of the shell b to 0·25 are shown
in Figure 4(a). Corresponding results when the liquid is outside the shell wall [19] may be
seen in Figure 4(b). Compared with the results when b=0·5 (shown in Figure 3), the
bulging-type natural frequencies decrease in magnitude, while those of the sloshing-type
exhibit a slight decrease. A significant change is that the critical value for the sloshing mode
with N=0 shifts from −0·5 to di −1=−0·75. Comparing the results in Figure 4(a) and

Figure 4. Effect of liquid thickness dl on the coupled natural frequency: a=0·5, b=0·25, m=1,
r̄i = r̄o =0·13, s̄i = s̄o =1·0×10−14, h�=50; (a) Inner liquid with do −1=0; (b) Outer liquid with di −1=0.
Upper graphs, bulging type; lower graphs, sloshing type.
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Figure 5. Effect of liquid thickness dj on the coupled natural frequency: a=0·5, b=0·5, m=1, r̄i =0·13,
s̄j =1·0×10−14, h�=50; (a) Inner liquid with do −1=0·25; (b) Outer liquid with di −1=−0·2. Upper graphs,
bulging type; lower graphs, sloshing type.

4(b), i.e., for liquid in the shell to that out of the shell, one observes that the tendency
of the frequency variation for the bulging-type is similar, but that for the sloshing-type
is quite different. With the decrease in thickness of the layer the sloshing frequency
decreases for the inside liquid and increases for the liquid layer outside the shell.

In the above results so far, only the case when the liquid is attached to one side of the
shell is presented. Hereafter, the case when the liquids are attached to both sides of the
shell wall will be considered. Such a case is shown in Figures 5(a) and 5(b). In Figure 5(a),
the natural frequency variations with inner liquid are shown when the outer liquid is
do −1=0·25, which corresponds to the system of Figure 3 with no liquid on the outside,
i.e., do =1, while in Figure 5(b) those with the outer liquid are shown when the inner liquid
di −1=−0·2.

In Figures 5(a) and 5(b), dashed lines correspond to the results for sloshing natural
frequency of the outer and the inner liquid respectively. A comparison of the results in
Figure 5(a) and Figure 3 shows that the bulging-type natural frequency decreases due to
the existence of the mass of the outer liquid in magnitude, while that of the sloshing-type
does not exhibit much change. The ordinates are modified to show the results in a more
lucid form. Similar results for the sector shell of very thin thickness with h�=1000 are
shown in Figures 6(a) and 6(b). When the results of Figure 5 when h�=50 are compared
with those of Figure 6, the bulging-type natural frequencies, due to the increased flexibility
of the shell, significantly decrease, while those of the sloshing liquids do not show much
change.

4.2.2. Effect of surface tension parameter s̄

In the results so far, the values of the tension parameters, s̄i and s̄o , were taken as
1·0×10−14. From the definition of this parameter, s̄j = sj (1− n2)/(RE); j= i and o, j, is
the ratio of the surface tension of liquids and the stiffness of a shell in terms of Young’s
modulus E. A small value of s̄j means that the surface tension is smaller than the shell’s
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Figure 6. Effect of liquid thickness dj on the coupled natural frequency: a=0·5, b=0·5, m=1, r̄j =0·13,
s̄j =1·0×10−14, h�=1000; (a) Inner liquid with do −1=0·25; (b) Outer liquid with di −1=−0·2. Upper
graphs, bulging type; lower graphs, sloshing type.

stiffness, and vice versa. In the results therefore, the order of the natural frequencies of
the sloshing-type and the bulging-type may depend on the values of s̄j . In Figure 7, for
example, the natural frequency variation is presented as a function of the tension
parameter of the outer liquid s̄o , when a=0·5, do −1=0·25, b=0·25, m=1, r̄o =0·13,
h�=50. In this case the surface tension of the inner liquid is fixed at s̄i =1·0×10−14. In
the figure, the lowest three natural frequencies of the liquid and elastic structure are
presented. The sloshing natural frequencies around a rigid surface are shown as broken
lines, for reference. When starting from small values of the surface tension so , increasingly

Figure 7. Effect of surface tension parameter of the outer liquid s̄o on the coupled natural frequency: a=0·5,
do −1=0·25, di −1=−0·2, b=0·25, m=1, r̄j =0·13, s̄i =1·0×10−14, h�=50.
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Figure 8. Effect of surface tension parameter of the outer liquid s̄o on the coupled natural vibration mode:
a=0·5, do −1=0·25, di −1=−0·2, b=0·25, m=1, r̄j =0·13, s̄i =1·0×10−14, h�=50; (a) Bulging type; (b)
Sloshing type.

one finds that after exchanging the order of the natural frequencies of each type, sloshing
natural frequencies of the outer liquid become higher than the uncoupled values presented
as broken lines, while bulging-type natural frequencies become lower than before.
Corresponding mode changes are shown in Figure 8. They are presented as contour lines
of the vibration mode. A similar tendency can be seen when changing the surface tension
parameter of the inner liquid s̄i while keeping the value of s̄o .

4.3.  

In the foregoing results, depending on the vibration mode, the thickness of liquid layers,
apex angle, a, and aspect ratio, b, some natural vibrations become unstable and
frequencies vanish, i.e., see Figures 3 and 4. The unstable regions in which the natural

Figure 9. Unstable region of the N=0 and N=1 mode of a liquid outside a rigid cylindrical surface: m=1,
s̄o =1·0×10−14. Key: — —, N=0; ——, N=1.
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Figure 10. Unstable region of the N=0 and N=1 mode of a liquid inside a rigid cylindrical surface: m=1,
s̄o =1·0×10−14; (a) b=0·5; (b) b=0·25.

frequency vanishes will now be considered. In Figure 9, the unstable regions of the natural
frequency of the outer liquid layer attached around a rigid cylinder are shown with apex
angle a and liquid thickness do −1, whilst varying the aspect ratio parameter
b=0·7, 0·8, 0·9, 1·0, 1·1. In the figure, solid lines and broken line correspond to the critical
boundaries of the mode N=1 and N=0, respectively. Unstable regions are the right side
or downward region of the curves.

For the mode with N=1, when b decreases from 1·1 to 0·7, the unstable region narrows
down to the region in which the curved wall assumes nearly a circular shell covered by
a liquid of smaller layer thickness. The unstable region for the mode N=0 does not exist,
if bQ 1, appears at b=1·1 and does not depend on the apex angle a.

Next, the unstable regions for the liquid attached inside the rigid the rigid cylinder will
be considered. In Figure 10(a), the unstable regions for an aspect ratio b=0·5 are shown.
The mode N=0 becomes unstable at di −1E−0·5 and is independent of a. The unstable
regions for the mode N=1 are given by a, di −1, and b. For example one notices two
unstable regions for a=0·8.

The results when the aspect ratio b decreases to 0·25 are shown in Figure 10(b).
Comparing them with b=0·5 (shown in Figure 10(a)), one notices a shift of the unstable
region for the mode N=0 to di −1E−0·75.

From these results, one finds that the unstable boundary for the mode N=0
corresponds to the b value, b= dj , j= i and o. The unstable region for the mode N=1
is dependent on a, dj −1, and b. These unstable regions come from the negative values
in the parentheses in equation (23).

5. CONCLUSIONS

A theoretical analysis has been carried out in a zero-gravity condition, on the linear free
hydroelastic vibration of liquid layers attached to both inside and outside of a sector
cylindrical shell. In the analysis, the liquids are assumed to be frictionless ideal liquids with
free surfaces, while the motion of a sector shell is described by the thin elastic shell
equations by Flügge. After applying the Galerkin method, the problem yields an
eigenvalue problem from which the coupled natural frequencies and vibration modes can
be obtained as an eigenvalue and eigenvector, respectively.
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In the numerical calculations, the influence of some system parameters, such as apex
angle, aspect ratio, thickness ratio, circumferential wave number, liquid thickness, surface
tension, density ratio, on the vibration characteristics of a coupled system are investigated.
The unstable regions in which the natural frequencies vanish were also clarified.

On the variation of the uncoupled natural frequency of a liquid inside or outside a rigid
cylindrical wall with apex angle a, the natural frequency of the mode N=1 with m=1
suddenly changes at a=0·5. And when the liquid is attached outside the shell, the natural
vibration of the mode N=1 with m=1 becomes unstable for large values of a and thinner
regions, depending on the aspect ratio b of the sector shell. If the liquid is inside, as the
aspect ratio b decreases, the unstable boundary shifts to a thicker liquid region in the mode
N=1.

The unstable region for the mode N=0 is predicted by b and is independent of a.
With an increase in liquid thickness, the coupled sloshing type natural frequency rapidly

increases at the region 0Q do −1Q 0·2 and tends to a gradually increased value when the
liquid is attached outside the shell, while it rapidly increases at the region di −1Q−0·7,
N=2 when the liquid is inside the shell. These can be seen when the liquids are attached
both inside and outside the shell.
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