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Many mechanisms use Hertzian contacts. During operation, these contacts are generally
excited by a dynamic normal load. To study the non-linear vibrations of a sphere–plane
contact we have built a device which uses a symmetrical plane–sphere–plane contact. The
first step was to study free vibrations under a static normal load. Our elastic system can
be summarized as a one-degree-of-freedom non-linear oscillator. Numerical and analytical
methods were used to predict the main properties of the dynamic response (contact natural
frequency, frequency contents, softening behaviour). A first set of experiments, on free
contact vibrations, has shown that the measured contact natural frequency is in very good
agreement with the theory, and that in dry contacts the contact damping is small and can
be reasonably described by an equivalent viscous damping. In lubricated contacts, a fluid
pumping mechanism can add a noticeable amount of damping. A second set of experiments
on forced contact vibrations was performed in order to study dynamic contact load during
the principal non-linear resonance. A softening dynamic behaviour is observed and the level
of the dynamic contact load can be greater than twice the static load just before the jump
observed during a scan of decreasing frequency.
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1. INTRODUCTION

In many systems such as machines, robots, road, rail, sea or air vehicles, a variety of
mechanisms is used to ensure the transformation of movements and stresses generated by
motors. These mechanical devices generally use Hertzian contacts. This is the case for ball
or roller bearings, gears, push-cam systems, etc. During the operation of the system, the
Hertzian contacts are stimulated by normal and tangential loads.

In the specific case of sphere–plane type contacts subject to static loads, it is possible
to describe the relative displacement field of both solids in contact, the geometry of the
contact area, the distribution of the stresses within this area, as well as the stress field within
elastic solids in contact [1–4].

The case of Hertzian contacts stimulated by a purely normal and dynamic load
characterized by a harmonic time variation superimposed on an average value (static
normal load) constitute a basic case that applies to numerous systems because in
hydrodynamic or elastohydrodynamic lubrication mode, the normal load is much higher
than the tangential load. Moreover, the operation of the mechanical device generally
leads to a variation in the normal load around its average value. For instance, in a
gearbox, transmission error leads to a dynamic load on the teeth and on the ball or roller-
bearings [5].

Because of the non-linear contact stiffness, the excitation of a Hertzian contact by a
harmonic load produces non-linear vibrations. Depending on the value of the harmonic
load frequency, non-linear resonance phenomena may occur and cause high amplification
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of the normal stresses applied within the contact area. To ensure the right approach to
tribology solutions and a good evaluation of the vibroacoustic response of a mechanical
system, these dynamic contact loads should be taken into consideration.

First, the normal vibrations of a cylinder–cylinder contact [6] and a sphere–plane contact
[7] were studied. Other works have been carried out to analyze the influence of normal
vibrations on the friction factor average value [8, 9]. However, there has not yet been any
systematic approach either to describe the dynamic overloads caused by non-linear normal
vibrations within a sphere–plane contact, or to provide quantitative information on the
various mechanisms which contribute to the dissipation capacity associated with this type
of contact vibration.

This theoretical and experimental analysis is aimed at gaining a better understanding
of the dynamic response characteristics of a sphere–plane contact excited by a purely
normal load equal to the sum of a static load and a harmonic load of low amplitude. For
the experimental analysis of the problem, an original device has been designed, built and
used.

In section 2, a non-linear elastic model is associated with the system studied so that,
once the model has been validated and the little known parameters identified, a global
mathematical analysis may be carried out to describe the solution of the non-linear
differential equation that governs the vibrations of the system. After describing and testing
the major numerical integration methods for this equation, the most efficient method is
selected for numerical simulations of the vibration behaviour of the plane–sphere–plane
system. Similarly, among the major approximate analytical methods, the multiple scales
method is used to provide an approximate solution. A comparison between these analytical
results and the previous numerical results then allows the numerical integration method
selected to be validated.

The experimental results on the non-linear free vibrations of the system are described
in section 3. By analyzing the contact natural frequency, the mathematical model described
in section 2 can be validated. Information is then provided relating to the possible choices
in the damping function, and the measured damping values in a sphere–plane contact are
analyzed.

The experimental results associated with the forced vibrations are described and
discussed in section 4. The principal non-linear resonance phenomenon is studied in detail.
Important dynamic normal overloads can be observed and the non-linear characteristics
of the forced responses are analyzed.

2. MODELLING AND MATHEMATICAL ANALYSIS

2.1.     

To analyze the Hertzian sphere–plane contact, the device described in Figure 1 was built.
The moving solid is the upper cylinder of mass M. It moves along a vertical axis and
compresses the sphere which is placed on the upper plane of a thick disc. The two parallel
planes between which the sphere is placed are horizontal.

Under the effect of the cylinder weight and the contact normal stiffness, the upper plane
reaches an equilibrium position z0 and the sphere is prestressed. A vertical harmonic load
Fe cos (vt) applied on the cylinder by means of an adequately hung vibrating exciter causes
a dynamic displacement z(t) of the cylinder around z0.

A normal Hertzian stiffness and an a priori unknown damping function C are associated
with each of the two symmetrical contacts. The two-degree-of-freedom non-linear elastic
model associated with the system studied is illustrated in Figure 2(a). If the mass m of the
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Figure 1. Experimental device: (1) vibration exciter; (2) moving cylinder; (3) fixed plane; (4) impedance head;
(5) three components force transducer.

sphere is very small compared with that of the cylinder, it can be easily shown that the
previous model can be summarized as a one-degree-of-freedom non-linear oscillator,
characterized by a mass M, a new non-linear stiffness equivalent to the two previous
Hertzian stiffnesses placed in series and a damping function C'=2C. The differential
equation governing the non-linear vibrations of this oscillator can then be given by

Mz̈+C'(z, ż)ż+ k'(z0 + z)3/2 =Fs +Fe cos vt, (1)

where Fs =Mg is the normal static load (weight of the cylinder) and k'=2−3/2k is a
constant which can be deduced from Hertz’s theory of elastic point contact [3]. If materials
of the sphere and the plane are identical (Young’s modulus E and Poisson ratio n) then

Figure 2. Dynamic models of the experimental device. (a) Two-degree-of-freedom model; (b) one-degree-of-
freedom model.
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the constant k for a single sphere–plane contact is given by k=4EzR/3(1− n2), where
R is the sphere radius.

Equation (1) is valid only if the deformations within the solids in contact remain elastic
and if there is no contact loss between sphere and upper plane (ze − z0).

2.2.  

In order to write equation (1) in dimensionless form, one can consider the contact
natural frequency vN [7]. This frequency is obtained by linearizing the elastic contact force
around the static equilibrium position z0 as

k'(z0 + z)3/2 =Fs +(3
2 k'z1/2

0 )z, (2)

where (3
2 k'z1/2

0 ) is the linearized stiffness. Hence, the contact natural frequency is defined
by

v2
N = 3

2 z1/2
0 (k'/M). (3)

Further, one can define a dimensionless time t=vN t, a dimensionless forced frequency
v̄=v/vN , a dimensionless displacement h= 3

2 (z/z0), a dimensionless external load
s=Fe /Fs and a damping ratio z=C'(z, ż)/2MvN to obtain a new equation for the
cylinder’s motion,

ḧ+2z(h, ḣ)ḣ+(1+ 2
3 h)3/2 =1+ s cos v̄t, (4)

which remains valid for he−3/2.
In order to obtain approximate expressions describing the motion by analytical methods

[10, 11] one can approach the elastic contact force by expanding it in a third order Taylor
series

(1+ 2
3 h)3/2 3 1+ h+ 1

6 h2 − 1
54 h3. (5)

2.3.   

The undamped free vibrations study can be interesting for analyzing the dynamic
behaviour of the forced response. In particular, knowledge of the natural frequency v0

versus amplitude of the undamped free response gives information about the frequency
response curves of the forced damped motion, because this relation constitutes the
backbone of the principal non-linear resonance.

Letting s=0 and z=0 in equation (4) yields the governing equation of the undamped
free vibrations of the cylinder:

ḧ+(1+ 2
3 h)3/2 =1. (6)

If one wants to find the natural frequency v0, one can introduce at t=0 the initial
conditions

ḣ=0 and h=−ae−3
2 (or z/z0 =−2

3 a). (7)

Considering the following normalized Hamiltonian H of the conservative system,

H= 1
2 ḣ2 + 3

5 (1+ 2
3 h)5/2 − h=H0, (8)

which remains constant and equal to

H0 = 3
5 (1− 2

3 a)5/2 + a, (9)

one can obtain the maximum amplitude hmax of the free undamped response by solving
equation (8) with ḣ=0.
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From equations (8) and (9) one can also express the velocity response as

=ḣ ==z2[H0 + h− 3
5 (1+ 2

3 h)5/2]1/2, (10)

and finally, the period T0 of undamped free vibrations can be obtained by numerical
integration of the integral

t0 =vN T0 =2 g
h max

−a

dh

=ḣ =. (11)

Results are illustrated in Figure 3. One can observe the softening character of the
Hertzian contact non-linearity and the non-symmetrical character of the response
related to the non-symmetrical contact stiffness. Comparisons with results obtained by
numerical integration of equation (6) have confirmed this behaviour. The
numerical integration permits one also to obtain the entire free response of the moving
cylinder.

To choose among classical numerical integration schemes [12], four of them have been
tested (Newmark-beta, Runge–Kutta, central-difference and Houbolt methods). Finally,
they gave results that may be regarded as identical, since for two different method types,
the period variation never exceeds 0·02% and the amplitude variation 0·25%. The explicit
central differences method proved to be the most efficient in terms of computation time.
Implicit methods require the solution of algebraic equations, needing an additional
linearization procedure. The computation time is hence longer than for the explicit central
differences method. The Runge–Kutta method proved to be the most expensive in terms
of computation time, and all the more so as its order is high. The central differences method
was therefore selected for the solutions and the numerical simulations of our non-linear
dynamic problems.

Finally, classical perturbation methods can also be used to obtain an approximate
solution of equation (6) in conjunction with the approximate expression defined in
equation (5). Consider the resulting equation of motion,

ḧ+ h+ a2 h2 + a3 h3 =0, where a2 =1/6 and a3 =−1/54. (12)

Figure 3. Free undamped vibrations: normalized vertical displacement response =h= of the moving cylinder
versus the normalized natural frequency v0/vN . (a) hmax (equation 11); (b): hmax (equation 13); (c): =h== a (equation
11); (d): =h== a (equation 13).
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Approximate solution of this equation, under initial conditions (7) can then be obtained
by using the multiple scales method [10] which yields

h(t)=−$a2

12
−

a3

108%−$a−
a2

18
+

a3

162% cos v̄t−$a2

36
+

a3

324% cos 2v̄t+ o(a) cos 4v̄t,

(13)

where the contribution of the cos 3v̄t term is found to be equal to zero. If the coefficients
of the response h(t) are calculated for a=−3/2 (limit of the contact loss), it can be
observed that the constant term is small compared with the fundamental (approximately
11%) as well as the first harmonic (less than 4%). We may conclude that non-linearity
is low and that the free response spectrum will be dominated by two peaks.

One can also obtain the relationship between natural frequency and amplitude as

v̄0 =1− a2/54. (14)

Furthermore, the maximum value hmax is given by

hmax = h(p)= a−(a2/9)+ (a3/81). (15)

The approximate analytical results can be validated by comparing them with the
previous numerical computation results. A good agreement can be observed in Figure 3
for small and medium amplitudes of =h =.

3. CONTACT FREE VIBRATIONS: EXPERIMENTAL ANALYSIS

3.1. 

Figure 1 illustrates the equipment used for the measurements. Two external charge
amplifiers connected to an impedance head allow the exciting force produced by the
vibration exciter and the acceleration response of the cylinder to be measured. A
three-orthogonal-component piezoelectric transducer allows the contact dynamic load
transmitted onto the lower plane to be measured and the verticality of the cylinder to be
verified. This transducer was rigidly fixed on a rigid and heavy frame (slotting machine’s
table).

The mass M of the moving cylinder was equal to 10·4 kg. The 100C6 steel planes in
contact with the sphere are first straightened, rectified, ground, and then polished to
achieve very slight rugosity (Ra=0·03 mm). Nineteen different spheres were analyzed to
determine the influence of their radius R. These spheres were supplied by a ball bearings
maker. They were constructed from 100C6 steel and had a very slight rugosity as well. The
selected values ranged from R=5 to 15 mm.

The fine signal analyses were carried out by means of a real-time spectrum analyzer.

3.2.  

Figure 4 provides an example of the trend of the normalized contact load FT (t)/FS

transmitted to the lower plane during free vibrations of the moving cylinder. In this
example, the sphere diameter is 2R=12 mm and the vertical projection axis of the load
is oriented upwards. For every other sphere analyzed, a similar measurement was
performed.

The experimental results shown in Figure 4 reveal a single natural frequency: the
one-degree-of-freedom model proposed in section 2 is hence experimentally verified. A
simple computation shows that for the two-degree-of-freedom system and whatever sphere
is used for our tests the value of the second natural frequency is above 4 kHz.
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Figure 4. Example of measurements of the normalized normal contact load FT /FS versus time during free
normal vibrations of the moving cylinder. (Sphere diameter 2R=12 mm.)

It has also been verified that the experimental conditions could not invalidate the use
of the Hertzian theory. In particular, the computation of the maximum pressure in the
contact at the highest dynamic compression forces associated with our tests enabled us to
verify that the deformations remain elastic.

From each of the experimental results similar to those in Figure 4, the natural frequency
related to the smallest amplitudes was determined and this experimental value was
compared with the contact natural frequency vN predicted by the theory, equation (6). This
comparison showed less than 2·5% difference. This small variation validates the
experimental procedure implemented.

The non-linearity of the problem studied is clearly identified in Figure 4 by the
asymmetry observed at the highest amplitudes of the free response. This non-linearity also
leads to a small variation in the frequency as a function of amplitude. Figure 5 illustrates
the changes in the amplitude of the free vibrations (positive peaks) depending on those
of the associated frequency. It has been observed in section 2 that the diasymmetry
generates two distinct amplitude–frequency curves, depending on whether the maximum
or minimum amplitudes are considered. Figure 5 illustrates the theoretical results of the
analysis performed in section 2. If hmax is the maximum position, then the theoretical

Figure 5. Normalized largest amplitude =FT =max /FS of the normal contact load versus the normalized frequency
v/vN during free normal vibrations of the moving cylinder. Q, Experiments; ——, theory. (Sphere diameter
2R=12 mm.)
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analysis provides =FT =max . Figure 5 shows that for frequencies not far from the contact
natural frequency, experimental results match the theoretical predictions rather well.

3.3.  

3.3.1. Introduction
The vibration damping capacity of the Hertzian sphere–plane contact that we are

experimentally analyzing and which is excited by a normal harmonic load can have several
origins. To the inner damping inherent to the materials used [13, 14], the following
phenomena can be added: damping caused by microslidings at the periphery of the contact
area [15–17] and generated by the possible existence of a low tangential dynamic load
produced by a cylinder verticality defect; damping caused by a fluid pumping mechanism
(cyclical discharge and suction applied on the viscous fluid surrounding the contact area);
viscous type damping caused by the acoustic radiation of vibrating surfaces (sphere and
planes).

From equation (4) the damped free vibrations of the cylinder can be described by the
equation

ḧ+2z(h, ḣ)ḣ+(1+ 2
3 h)3/2 =1, (16)

where z=C'(z, ż)/2MvN . To analyze the total contact damping, this equation will be
numerically solved by testing various laws for C'(z, ż), laws that will be validated or
rejected by a comparison with the experimental results (with or without superposition of
the experimental and numerical curves describing the free response of the system).

3.3.2. Numerical simulations and choice of the damping function
From equation (1), the contact load FT induced by damped free vibrations of the cylinder

on the lower plane of the experimental device can be expressed by

FT =−C'(z, z')ż− k'(z0 + z)3/2. (17)

In this formula, we have tested the following laws:

C'(z, z')=C0(z+ z0)n, with n=0, n= 1
2, n=1, n= 3

2, n=2, n= 5
2. (18)

C0 is a constant positive coefficient adjusted by dichotomy to minimize the variations
between the peaks of the experimental curve and those of the numerically computed curve
for each type of law tested.

Figure 6 illustrates an example of the relative variation in the value of each peak of a
theoretical curve compared with the associated experimental curve. Note that this variation
rarely exceeds 1%. For each law tested, a ‘‘global’’ relative error D can be defined. This
error can be quantified by introducing the least squares method,

D=X1
N

s
N

i=1 0FTi (exp)−FTi (num)
FTi (exp) 1

2

, (19)

which permits calculation of the r.m.s. value of the relative variation. For the first four
laws tested, the relative variation ranges around 1% and slightly more for the other laws.
No conclusion can then be drawn about the precise analytical form of the total damping
law, so the most conventional form, an equivalent viscous type damping (n=0) will now
be used. The measured values of the equivalent viscous damping C0 correspond to two
symmetrical sphere–plane contacts of the experimental device. For a single sphere–plane
contact, values provided should therefore be divided by two.
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Figure 6. Normalized difference [FT,exp −FT,num ]/FT,exp between experimental and computed values of the normal
contact load versus time during damped normal free vibrations of the moving cylinder. (Sphere diameter
2R=12 mm and viscous damping C0=208 kg s−1.)

3.3.3. Influence of sphere radius on contact damping
The values of the equivalent viscous damping C0 were determined for a variety of

sphere diameters from measurements of the free vibrations of the cylinder. From
each value obtained, the contact damping ratio (total equivalent viscous damping) was
defined by

z=C0/2MvN , (20)

where vN is the theoretical contact natural frequency. The z value thus obtained are
illustrated in Figure 7. Note that at constant normal load Fs , the equivalent viscous
damping ratio slightly increases as a function of the sphere radius R. From these results,
function z=AR1/3 (with A=constant) was plotted. This law has been observed to
represent approximately the damping ratio trend related to sphere radius. Since the normal
load Fs is constant in our experiments, the contact area radius of the sphere–plane contact
is proportional to R1/3. It can then be deduced that at constant normal load, the contact
damping ratio is approximately proportional to the radius of the contact area.

Figure 7. Measurements of the damping factor z for dry contacts and several sphere diameters.
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At a given normal load, it was also noted that the linearized contact stiffness is inversely
proportional to the relative displacement z0 of both planes. Since z0 is inversely
proportional to R1/3, it can be deduced that the measured contact damping ratio is also
approximately proportional to the linearized contact stiffness.

3.3.4. Origins of contact damping
All spheres analyzed had a low measured contact damping ratio (less than 0·6% for a

single sphere–plane contact). In forced vibrations and for a very low level of the harmonic
excitation force, the energy dissipated per cycle at contact natural frequency can be
evaluated from the relationship [13]

Wd =(C0/2)pvN û2, (21)

where û corresponds to the maximum peak amplitude of the displacement response of the
cylinder during the cycle. Under the experimental conditions corresponding to a sphere
with a diameter of 25·4 mm, Wd approximates 10−6 J.

Various physical phenomena could affect the contact damping measured, so the
influence of each of them should be known. Regarding the influence of the friction
associated with the cyclical microslidings caused at the periphery of the contact area by
a verticality defect on the moving cylinder, the following remarks can be made. On the
experimental device used, the amplitude of the tangential component of the stress applied
on the lower plane was measured by means of a three-component piezoelectric transducer
mounted on the lower plane. The verticality of the moving cylinder could then be adjusted
so that the tangential load T remained lower than 1/100 of the normal load Fs . By
introducing a friction factor m equal to 1 [17], the T/mFs ratio then approximates 10−2. For
this low value, the energy dissipated per cycle in each contact can be given by the simplified
formula [16]

Wm =(2− n)T 3/36GamFs , (22)

where n is the Poisson’s ratio and G the shear modulus of the material of the sphere and
planes. Under the experimental conditions that correspond to a sphere of diameter
2R=25·4 mm, the energy dissipated per cycle approximates 10−8 J. This contribution to
total damping is hence negligible.

For this viscous damping added by acoustic radiation, we know [18] that the acoustic
power radiated by a vibrating surface S in harmonic motion can be given by

Pac = rcSsrad (v)�u̇2(M, v)�S . (23)

In this expression, r and c respectively correspond to the density and sound speed
associated with the compressible fluid surrounding the surface S (here the air), srad is the
radiation factor and �u̇2(M, v)�S is the space average of the time average of the r.m.s.
velocity response u̇(M, v) at a point M on surface S.

In our tests, the largest surfaces that contribute to the radiation are the upper and lower
sides of the moving cylinder (cylinder radius=0·05 m). Both surfaces constitute a rigid
unbaffled piston propelled by a uniform velocity u̇. Upon assuming that the per unit area
radiation resistance srad is independent of the point M on the piston surface, the following
formula can then be used,

Rrad (v)= rcsrad (v), (24)
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and the added viscous damping due to the acoustic radiation of each piston can be
expressed as follows

Cac (v)=SRrad (v). (25)

The energy dissipated per cycle associated with the acoustic radiation at the contact
natural frequency vN can finally be expressed as

Wd =Cac pvN û2 = rcSsrad (vN )pvN û2. (26)

For the radiation factor of an unbaffled piston, there exist no directly usable results so
the acoustic radiation software previously developed and used for calculating the noise
radiated by a gearbox was used [19]. The radiation factor approximates 0·006. From this
value and the experimental data, the energy dissipated by acoustic radiation at contact
natural frequency approximates 10−10 J. In our tests, this contribution to total contact
damping is therefore negligible.

The last source of damping to be considered is the ‘‘fluid pumping’’ phenomenon. There
is no model that allows a quantitative evaluation of this dissipation in a sphere–plane
contact, so tests were conducted by introducing several viscous fluids on the contact areas
before mounting the plane–sphere–plane system. These fluids were water, oil, and several
aqueous solutions of glycerine and glycerine. Their dynamic viscosity was approximately
located between 10−4 and 1·5 Pa s. The new contact damping ratio values thus obtained
are given in Figure 8. It clearly appears that the presence of fluid whose dynamic viscosity
is high can significantly increase the contact damping. This observation, linked to the fact
that the measured contact natural frequency is not significantly modified by the presence
of a viscous fluid, indicates that the fluid pumping phenomenon significantly contributes
to total contact damping if the dynamic viscosity of the fluid surrounding the contact is
high.

Let us now assume that the equivalent viscous damping ratio caused by the fluid
pumping phenomenon is proportional to the dynamic viscosity m of the fluid surrounding
the contact, which is to say

jFP 1 bm where b=constant. (27)

Figure 8. Measurements of the damping factor j for lubricated contacts (water, oil, aqueous solutions of
glycerine, and glycerine) and for a sphere diameter 2R=25·4 mm.
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The total damping ratio can then be expressed as

z= zint + bm, (28)

where zint is the damping factor due to internal damping inherent to the materials used for
the sphere and the planes.

The results shown in Figure 8 are in good agreement with the proposed law (28).

4. FORCED CONTACT VIBRATIONS: EXPERIMENTAL ANALYSIS

4.1. 

After analyzing the free vibrations of the elastic plane–sphere–plane system, a second
set of experimental investigations were performed to analyze the specification of the
non-linear forced vibrations of this system when it is excited by a normal dynamic load
equal to the sum of a static load FS and a purely harmonic load of frequency v and
amplitude Fe which is sufficiently low to avoid the occurrence of contact losses between
sphere and planes.

During our investigations, we focused on the analysis of the dynamic contact load FT

transmitted by the sphere onto the lower plane. The understanding of this load is of the
utmost importance for the analysis of the higher overloads applied on contacts and hence
for the prediction of the life duration and vibroacoustic response of mechanisms.

For the one-degree-of-freedom elastic model associated with our plane–sphere–plane
system, the dimensionless equation governing the cylinder’s displacement in forced mode
can be expressed as

ḧ+2zḣ+(1+ 2
3 h)3/2 =1+ s cos v̄t, (29)

where z=C0/2MvN . In this equation, and in agreement with the conclusions in section
3, the existence of a viscous contact damping C0 is assumed.

4.2.  

The experimental conditions are the same as those described in section 3. The normal
harmonic force of amplitude Fe and frequency v is applied on the upper face of the moving
cylinder by means of a vibration exciter and it is measured by means of an impedance head
placed between the vibration exciter and cylinder (see Figure 1). An external charge
amplifier also allows measurement of the cylinder’s acceleration or velocity.

The three orthogonal components piezoelectrical transducer is fixed onto the lower plane
(see Figure 1) and allows (1) measurement of the contact load FT , (2) adjustment of
cylinder verticality, and (3) checking of the absence of contact losses between ball and
planes.

The experimental data at a fixed excitation level Fe and variable excitation frequency
described the cylinder acceleration (or velocity) and contact load FT transmitted onto the
lower plane during the cylinder’s forced response. The non-linear resonance curve plotting
provided the trend of the r.m.s. value of these responses and also their frequency contents.

Among the numerous measurements made, those obtained with a sphere of diameter
2R=18 mm are described here as an example. The measurements relate to the
specification of contact load FT . The other cylinder acceleration (or velocity) response data
offer similar general specification.

During frequency scans performed for a very small level of exciting force and for various
sphere diameters, it could be verified that within the 20–3000 Hz frequency range, there
was no other significant resonance phenomenon than that of our elastic plane–sphere–
plane system. It will be observed that, considering the following data, the phenomenon
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is centred around contact natural frequency vN and over a small frequency span around
this natural frequency.

4.3. - 

Figure 9 illustrates the principal non-linear resonance phenomenon observed on the
contact load during a scan of increasing frequency and during a scan of decreasing
frequency at an amplitude of excitation force Fe equal to 0·018 times the static load FS .
A dynamic behaviour associated with a softening stiffness can be recognized since the scan
of decreasing frequency is associated with the highest dynamic response. Just before the
corresponding jump, the r.m.s. value of the contact load reaches a high amplitude nearing
static load FS . This result indicates that forced contact vibrations can generate
instantaneous high overloads on contacts. The frequencies associated with both jump
phenomena are rather similar because non-linearity is low. The dynamic amplification
phenomenon due to non-linear resonance is significant only over a small frequency span
(between 0·95 and 1·05 vN ). Figure 9 also shows the trace of the tangential force caused
by the verticality defect on the moving cylinder. Notice that this tangential component is
very low compared with the normal force. For the very small levels of exciting force used
to study the principal non-linear resonance of our system we have not observed secondary
non-linear resonances [20].

Figures 10 and 11 respectively describe the periodic time trend of the contact load and
the spectrum of this function at harmonic excitation frequency equal to 0·97 times contact
natural frequency, which is to say just before the jump observed during a scan at decreasing
frequency, and hence at a high amplitude of the vibration response. The dissymetry of the
plotting shown in Figure 10 illustrates the small non-linearity of the dynamic response.
In Figure 11, the spectrum of this response shows that three harmonics of the excitation
frequency are present, but only the first has a significant amplitude (about 10% of that
of the fundamental). It can then be concluded that, in agreement with the conclusions of

Figure 9. Measurements of the normalized r.m.s. value (FT )r.m.s./FS of the contact load versus the normalized
excitation frequency v/vN for a harmonic excitation force (Fe )r.m.s./FS =0·018 and a sphere diameter 2R=18 mm.
(a) Normal component; (b) ten times the tangential component.
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Figure 10. Measurements of the normalized contact load FT /FS versus time for a normalized excitation
frequency v/vN =0·965 during a scan at decreasing frequency. Sphere diameter 2R=18 mm, normalized
excitation force (Fe )r.m.s./FS =0·018.

the theoretical analysis in section 2, the dynamic spectrum which characterizes the
non-linear resonance is a two-peak spectrum.

Figure 12 shows the trend of the r.m.s. value of the contact load associated with each
of its two harmonic components. The jump phenomena can be observed on both
components.

Figure 13 illustrates the effect of amplitude Fe of the excitation force on the non-linear
resonance phenomenon. Note that for the system analyzed, jump phenomena can be

Figure 11. Spectrum of the normalized contact load FT /FS shown in Figure 9.
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Figure 12. Measurements of the normalized r.m.s. value (FT )r.m.s./FS of the contact load versus the normalized
excitation frequency v/vN for (a) the excitation frequency and (b) the first harmonic of the excitation frequency.
(Sphere diameter 2R=18 mm and harmonic excitation force (Fe )r.m.s./FS =0·018.)

observed over a very small frequency Fe span only. In fact, when the amplitude Fe is very
low, the slight non-linearity of the system stiffness leads to a linear resonance curve,
whereas if the amplitude Fe exceeds a specific level (a level that is relatively small under

Figure 13. Measurements of the normalized r.m.s. value of the normal contact load excitation frequency, for
several values of the normalized r.m.s. excitation force (Fe )r.m.s./FS : (a) 5×10−3; (b) 7·8×10−3; (c) 1·5×10−2;
(d) 1·7×10−2; (e) 1·85×10−2. (Sphere diameter 2R=18 mm.)
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our experimental conditions), contact losses occur between sphere and planes. A series of
impacts governs the cylinder’s dynamic behaviour.

5. CONCLUSIONS

An efficient device has been built and used to study the non-linear vibrations of a
sphere–plane contact excited by a normal load equal to the sum of a static load and a
harmonic load. Numerous experimental and numerical investigations have provided the
following main results.

For free contact vibrations, it has been observed that: the measured contact natural
frequency is in very good agreement with the theory; the damping contact in a dry contact
is small and can be well described by a viscous damping; this equivalent viscous damping
can result from several sources; in a dry contact, the total damping is mainly due to the
damping materials; in a lubricated contact, a fluid-pumping type mechanism can add a
noticeable amount of damping to the existing damping materials.

For forced contact vibrations induced by a small harmonic load added to the normal
static load, it has been shown that: the non-linear resonance of a sphere–plane type contact
is that of a softening system; the largest amplitude of the dynamic contact load is obtained
just before the jump observed during a scan of decreasing frequency and can reach values
twice as large as the static load for a very small amplitude of the harmonic load (about
1% of the static load); when the amplitude of the harmonic load is slightly increased, losses
of contact appear and a succession of impacts is observed; these impacts, which can arise
in mechanisms exhibiting clearances, can therefore induce high levels of vibration, noise
and dynamic loading of contacts.
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