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Laboratoire de Modélisation et Mécanique des Structures, U. R. A. no. 1776 C. N. R. S.,
U. P. M. C./E. N. S. A. M./E. N. S.-Cachan, Box 161, 4 place Jussieu,

75252 Paris Cedex 05, France

(Received 31 January 1997, and in final form 20 February 1998)

This study is concerned with the dispersion of axisymmetric and asymmetric plane waves
in viscoelastic cylindrical shells. The originality of the approach lies in the use of a refined
laminated shell theory that allows one to satisfy exactly the boundary conditions for
displacements and transverse shear stresses, while, at the same time, refinements of
membrane and shear terms are considered. By comparison with previous theories, light is
shed upon the advantage of using such a refined model to determine the dispersive
behaviour of structures. The shell model is then applied to a viscoelastic cylinder, for which
frequency and phase velocity spectra are presented. In order to point out the influence of
viscoelasticity, especially as concerns phase velocities, comparison is made with the
equivalent elastic case.
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1. INTRODUCTION

Deep shells of laminated composite materials are being increasingly used in structural
applications. Yet, despite the modelling of such structures having been the object of
numerous studies over the past few years, there are not many theories that simultaneously
satisfy compatibility conditions for displacements and shear stresses at layer interfaces, and
on the bounding surfaces of the shell.

This paper presents a new approach for developing a simple and refined theory for deep,
doubly curved laminated shells, which allows one to satisfy exactly the continuity of
transverse shear stresses and displacements at layer interfaces, while, at the same time, the
membrane and shear terms are refined. The theory contains the same independent
generalized displacements as in the shear deformation theory, and is based on a new
assumed displacement field in which refined transverse shear and membrane deformations
are represented by trigonometric functions. This is justified from a three-dimensional point
of view in plates. Moreover, the introduction of trigonometric functions in the adopted
form of the displacement field allows one to recover previous theories by developing the
sine and cosine functions to various orders. Mindlin’s [1], Naghdi’s [2] and Koiter’s [3]
theories can thus be obtained. The objective of this research, which extends previous works
by Touratier [4–6], and Touratier and Béakou [7, 8] is to develop efficient (i.e., simple and
accurate) tools to model composite structures. It is proved, by comparison with previous
theories ([5, 9–11]), that the model yields accurate results without the use of transverse
shear deformation correction factors.

The model is then applied to the exploration of the dispersive behaviour of a viscoelastic
cylinder. An analysis of the axisymmetric and asymmetric modes is made, in which the
effects of viscoelasticity are pointed out by comparison with the equivalent elastic case.
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Finally, viscoelastic dispersion is exhibited, and it is shown that torsional waves are weakly
dispersive.

2. THE MULTILAYERED SHELL MODEL WITH INTERLAYER CONTINUITY

2.1.   

Let us consider an undeformed laminated shell of constant thickness h, consisting of
a finite number N of orthotropic layers in a curvilinear coordinate system (x1, x2, x3); see
Figure 1. The space occupied by the shell will be denoted V. The boundary of the shell
is the union of the upper surface Vh , the lower surface V0, and the edge faces A.

The interface between the ith and (i+1)th layer is denoted by Vi , the distance between
V0 and Vi , x3(i ).

The reference surface, defined by x3 =0, coincides with the bottom surface of the shell
V0.

In this paper, the Einsteinian summation convention applies to repeated indices, where
Latin indices range from 1 to 3 while Greek indices range from 1 to 2.

A point M outside of the reference surface V0 being given, let P denote the point of the
reference surface V0 closest to M. Covariant base vectors (a� i ), (g� i ) and contravariant base
vectors (a� i), (g� i) in the undeformed state of the shell are introduced:

a� a =P,a , a� 3 = a� 1ga� 2/>a� 1ga� 2>, (a� 1ga� 2) · a� 3 q 0;

g� i =M,i , (g� 1gg� 2) · g� 3 q 0, a� a · a� b = da
b ,

a� 3 = a� 3, g� a · g� b = da
b , g� 3 = g� 3. (1)

Here differentiation with respect to xi is denoted by M,im.
It is recalled that

M=P+ x3a� 3. (2)

Figure 1. The geometry of the laminated shell.
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The above equations ensure the following relations, due to Naghdi [2]:

g� a = mb
aa� b , g� 3 = a� 3, g� a =−ma

b
−1a� b, g� 3 = a� 3,

g� a = gabg� b, g� a = gabg� b , a� a = aaba� b, a� a = aaba� b . (3)

The components of the shifter tensor are denoted by

ma
b = da

b − ba
bx3, (4)

those of the curvature tensor by

bab = a� a,b · a� 3 (5)

and the curvilinear mixed terms by

ba
b =−a� 3,b · a� a. (6)

The surface metrics a1 and a2 are related to the aab coefficients via

a2
l = all . (7)

In the following, the curvilinear coordinates (or shell coordinates) are supposed to be
orthogonal, and are such that the x1- and x2-curves are lines of curvature on the reference
surface x3 =0; x3-curves are straight lines perpendicular to the surface x3 =0. The values
of the principal radii of curvature of the reference surface are denoted by R1 and R2.

The distance ds between two points P (x1, x2, 0), P' (x1 +dx1, x2 +dx2, 0) of the
reference surface V0 of the shell is given by

(ds)2 = a2
1 (dx1)2 + a2

2 (dx2)2, (8)

where a1 and a2 are the surface metrics

a2
l =(1P/1xl )(1P/1xl ). (9)

The distance dS between two points M (x1, x2, x3) and M'(x1 +dx1, x2 +dx2, x3 +dx3)
outside of the reference surface is given by

(dS)2 =L2
1 (dx1)2 +L2

2 (dx2)2 +L2
3 (dx3)2, (10)

where L1, L2 and L3 are the Lamé coefficients:

L1 = a1(1+ x3/R1), L2 = a2(1+ x3/R2), L3 =1. (11)

2.2.  

Geometrically linear shells are considered including elastic and viscoelastic linear
behaviour for laminates.

The components of the displacement field of any point M (x1, x2, x3) of the volume
occupied by the shell (V), expressed in the contravariant base (g� a, g� 3), are assumed in the
following form:

Ua = ua + x3ha + f (x3)g0
a + g(x3)8a + s

N−1

m=1

u(m)a (x3 − x3(m ))H(x3 −x3(m )),

U3 =w. (12)

Here

f (x3)= (h/p) sin (px3/h), g(x3)= (h/p) cos (px3/h), (13)
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and H denotes the Heaviside step function, defined by

H(x3 − x3(m ))=610 for x3 e x3(m )

for x3 Q x3(m )7. (14)

This step function has been previously used, among others by Di Sciuva [12] and He [13]
to analyze laminated shells in statics. The present work extends the use of the step function
to dynamics.

In the proposed form of the displacement field, ua are membrane displacements, g0
a are

the transverse shear strains at x3 =0, and w is the transverse deflection of the shell. The
g(x3) 8a terms are refinements of membrane displacements, the ha and 8a being functions
to determine by exploiting the boundary conditions of the transverse shear stresses at the
top and bottom surfaces of the shell. The u(m)a , which represent the generalized
displacements Mper layerm, allow one to satisfy automatically the continuity of the
displacements at layer interfaces from the Heaviside step function. They are to be
determined by satisfying the continuity conditions on the transverse shear stresses at the
interfaces.

From a three-dimensional point of view, the kinematics proposed in equations (12), with
the introduction of the sine and cosine functions f and g can be justified on the basis of
the work of Cheng [14], who proposed a method for solving Navier’s equations, in the
case of thick plates. Cheng showed that there exist three distinct types of fundamental
solutions, which will be denoted by U� B, U� S, U� T, each one being the solution of a specific
differential equation (here without any loading, for the sake of simplicity):
U� B, which is the solution of the well-known biharmonic equation

9292U� B =0� ; (15)

U� S, the solution of a so-called shear equation, defined by

(92 − (2p+1)2 p2/h2)s(x1, x2)=0; (p being an integer); (16)

and given by

US
1 = sin 0(2p+1)

px3

h 1s,2, US
2 =−sin 0(2p+1)

px3

h 1s,1; (17)

U� T, the solution of the transcendental equation

(1/92)(1− sin (h9)/h9)H(x1, x2)=0 (H being a stress function). (18)

Hence, the final solution, in terms of displacements, is obtained via

U� =U� B +U� S +U� T. (19)

The shear term in the present theory for plates is therefore naturally obtained by imposing

(h/p)g0
1 =+s,2, (h/p)g0

2 =−s,1, p=0. (20)

Moreover, the advantage of keeping g0
a functions in equations (12) allows one to find

Mindlin’s theory [1] by developing the sine at the first order.
In order to reduce the number of unknowns in the displacement field, the conditions

on the transverse shear stresses at layer interfaces and on the bounding surfaces will be
used in the following way. The transverse normal stress is ignored. It is assumed that no
tangential tractions are exerted on the upper and lower surfaces of the shell.
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2.3.    

It is recalled that the coefficients of the constitutive law for each layer are generally given
in a co-ordinate system related to the material of the layers (that shall be qualified as
Mmaterial co-ordinatesm), whereas the authors presently deal with shell co-ordinates. In
what follows, recall the link between the two coordinate systems.

By taking into account the zero condition on the transverse normal stress s33, the
orthotropic constitutive law Mper layerm can be written as follows in material co-ordinates,
for the ith layer:

s(i)mat

aa =C(i)mat

aabb emat
bb , s(i)mat

ab =C(i)mat

abab emat
ab (b$ a),

s(i)mat

a3 =C(i)mat

a3a3 emat
a3 ; (21)

or, in a matrix form,

{s(i)mat}=[C(i)mat]{emat}. (22)

Here:

{s(i)mat}= {s(i)mat

11 , s(i)mat

22 , s(i)mat

31 , s(i)mat

12 , s(i)mat

32 }, (23)

{emat}= {emat
11 , emat

22 , emat
31 , emat

12 , emat
32 }, (24)

are respectively the stress and strain vectors.
The (i) exponent refers to the (i)th layer, and the Mmatm exponent to the material

co-ordinates.
The C(i)

abgd coefficients are two-dimensional coefficients, related to three-dimensional C(i)3Dmat
abgd

ones via

C(i)mat

aabb =C(i)3Dmat
aabb −

C(i)3Dmat
aa33 C(i)3Dmat

bb33

C(i)3Dmat
3333

,

C(i)mat

abab =C(i)3Dmat
abab (b$ a), C(i)mat

aa33 =C(i)3Dmat
aa33 . (25)

Let (E� 1, E� 2, E� 3) denote the spatial Cartesian system. A point M of the structure will be
located by its co-ordinates (X1, X2, X3) in this system, which are functions of the curvilinear
co-ordinates xa .

The covariant and Cartesian vectors of the shell are related by

g� a = 1M� /1xa =Xb,aE� b , g� 3 =E� 3, (26)

or

&g� 1g� 2
g� 3'=[T]&E� 1

E� 2

E� 3', (27)

where the coefficients of the rotation matrix [T] are given by

Tab =Xa,b , Ti3 = di3. (28)
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Denoting

{s(i)mat}plane = 8s
(i)mat

11

s(i)mat

22

s(i)mat

12 9, {s(i)}plane = 8s
(i)
11

s(i)
22

s(i)
129,

{emat}plane = 8e
mat
11

emat
22

emat
12 9, {e}plane = 8e11

e22

e129, (29)

[C(i)mat]plane = &C
(i)mat

1111

C(i)mat

2211

0

C(i)mat

1122

C(i)mat

2222

0

0
0

2C(i)mat

1212 ',
[C(i)mat]shear =$2C(i)mat

1313

2C(i)mat

1323

2C(i)mat

1323

2C(i)mat

2323%, (30)

one has then, for each layer, in shell co-ordinates,

{s(i)}plane =[T]{s(i)mat}plane = [T][C(i)mat]plane [T]−1{e}plane .

$s(i)
13

s(i)
23%=[Tab ]$s(i)mat

13

s(i)mat

23 %=[Tab ][C(i)mat]shear [Tab ]−1$e(i)
13

e(i)
23%, (31)

or

{s(i)}plane =[C(i)]plane{e}plane , $s(i)
13

s(i)
23%=[C(i)]shear$e(i)

13

e(i)
23%, (32)

where

[C(i)]plane =[T][C(i)mat]plane [T]−1,

[C(i)]shear =[Tab ][C(i)mat]shear [Tab ]−1. (33)

2.4.      

The transverse shear strain components of the shell can be obtained by the formula (see,
for instance, reference [2])

ea3 = 1
2[Ua,3 +U3=a + bb

a (Ub − x3Ub,3)] (34)

where the covariant derivative on the reference surface V0 with respect to xa is denoted
by M=am.

One thus has

ea3 = 1
2[ha +[db

a f '+ bb
a ( f− x3f ')]g0

b +[db
ag'+ bb

a (g− x3g')]8b

+w=a + bb
aub + s

N−1

m=1

[db
a − x3(m )b

b
a ]u(m)bH(x3 − x3(m ))]. (35)
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2.4.1. Free traction conditions for transverse shear stresses on the top and bottom surfaces
of the shell

The traction-free boundary conditions on the top and bottom surfaces of the shell can
be written as follows, according to equations (31):

ea3(x3 =0)=0, ea3(x3 = h)=0. (36)

This yields

ha + g0
a +w=a + bb

a [ub +(h/p)8b ]=0 (37a)

and

ha +[−db
a + hbb

a ]g0
b − bb

a8b +w=a + bb
aub + s

N−1

m=1

[db
a − x3(m )b

b
a ]u(m)b =0, (37b)

Substituting ha from the equation (37a) into the above equation (37b) yields:

bb
a8b =

p

2h
[−2db

a + hbb
a ]g0

b + s
N−1

m=1

p

2h
[db

a − x3(m )b
b
a ]u(m)b , (38)

or

8a = db
a g

0
b + s

N−1

m=1

p

2h
[db

a − x3(m )b
b
a ]u(m)b , (39)

where the tensor [db
a ] is given by

[db
a ]=

p

2h
[bb

a ]−1[−2db
a + hbb

a ]=
p

2h
[−2[bb

a ]−1 + h[db
a ]], (40)

the identity tensor being denoted by [db
a ].

Let D denote the determinant of the latter system. One has

8a = db
a g

0
b + s

N−1

m=1

f b
(m)au(m)b , (41)

where

f b
(m)a =

p

2hD $ s
N−1

m=1

(dl
v − x3(m )b

l
v )%Dvaelmbb

m , (42)

The elm coefficients are defined by

e11 = e22 =0, e12 =−e21 =1, (43)

and the coefficients Dva by

Dva =1− dv
a . (44)
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Thus, the transverse shear strains can be expressed as

ea3 = 1
2[[d

b
a ( f '−1)+ bb

a ( f− x3f ')]g0
b +$db

ag'+ bb
a0g−

h
p

− x3g'1%8b

+ s
N−1

m=1

[db
a − x3(m )b

b
a ]u(m)bH(x3 − x3(m ))]. (45)

2.4.2. Continuity conditions for transverse shear stresses at layer interfaces
These conditions can be written as

s(i)
a3(x3 = x3(i ))= s(i+1)

a3 (x3 = x3(i )), a=1, 2; i=1, . . . , N−1, (46)

or

2C(i)
a3v3{lim

e:0

eq 0

ev3(x3(i ) − e)}=2C(i+1)
a3v3 {lim

e:0

eq 0

ev3(x3(i ) + e)}. a=1, 2; i=1, . . . , N−1.

(47)

Substituting equation (41) into equation (45), and using equation (47) yields

(C(i)
a3v3 −C(i+1

a3v3 )$$db
v ( f '(x3(i ))−1)+ bb

v ( f(x3(i ))− x3(i ) f '(x3(i )))

+db
v$dv

vg'(x3(i ))+ bv
v0g(x3(i ))−

h
p

− x3(i )g'(x3(i ))1%%g0
b

+ s
i−1

m=1

[(db
v − x3(m )b

b
v )]u(m)b

+ s
N−1

m=1 $0dv
vg'(x3(i ))+ bv

v0g(x3(i ))−
h
p

− x3(i )g'(x3(i ))11 f b
(m)v%u(m)b%

−C(i+1)
a3v3 (db

v − x3(m )b
b
v )u(i)b =0. (48)

This can be regarded as a linear algebraic system of 2(N-1) equations, the 2(N-1) unknowns
being the generalized displacements Mper layerm u(m)a (a=1, 2). These latter can thus be
expressed as functions of the generalized displacements g0

a as

u(m)a = ab
(m)ag

0
b , (49)

where the ab
(m)a coefficients depend only on the curvatures and on the material properties

of the various layers.
For a given laminated shell, bb

a are known. All the ab
(m)a are therefore constants.
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2.5.    

Combining equation (37a) with equations (41) and (49) leads to

ha =−bb
aub +L(h)b

(g)a g
0
b −w=a , (50)

where

L(h)b
(g)a =−$db

a +
h
p

bl
adb

l + s
N−1

m=1

h
p

f g
(m)lb

l
aab

(m)g%. (51)

Combining equation (39) with equation (49) yields

8a =L(8)b
(g)a g0

b , (52)

where

L(h)b
(g)a =−$db

a +
h
p

bl
adb

l + s
N−1

m=1

h
p

f g
(m)lb

l
aab

(m)g%. (53)

The approximate expressions of the displacement components become thus

Ua = mb
aub − x3w=a + hb

a g
0
b , U3 =w, (54)

where hb
a are known functions of x3, defined by

hb
a = db

a f(x3)+ x3L
(h)b
(g)a + g(x3)L(8)b

(g)a + s
N−1

m=1

ab
(m)a (x3 − x3(m ))H(x3 − x3(m )). (55)

2.6.    -   

The equations of motion and the natural boundary conditions are derived from the
Hamilton’s principle:

g
t

0 6gV

sij deij dV−gV

rU�
··

· dU� dV+gV

f� · dU� dV+gA

s� · dU� dA

+gV0

(−m(h)ph + p0) dS7 dt=0, (56)

m(h) denotes the value of

m=det [mb
a ] (57)

at x3 = h.
Differentiation with respect to time t is denoted by a superposed dot; r is the mass

density, and d the variational operator; f i are components of body forces, si the prescribed
components of the stress vector per unit area of the undeformed lateral surface of the shell,
and p0 and ph the prescribed components of the stress vector per unit area of the surfaces
V0 and Vh .
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This principle, which is generally used for elastic behaviour, can be extended to
viscoelastic behaviour by using the correspondence theorem, keeping in mind that
boundary conditions can be expressed as separable functions of space and time.

By performing numerical integration (Gauss points) through the thickness of the shell,
the following equations of motion are obtained:

M(1)ab

=b −N(1)a = I(1)baüb − I(2)abẅ=b + I(3)ba

g̈0
b −F(1)a,

M(2)ba

=ab +N(1)3 = I(2)ab

=b üa + I(2)abüa=b + I(1)33ẅ− I(4)ab

=b ẅ=a − I(4)abẅ=ab + I(6)ab

=b g0
a

+ I(6)ab

g̈0
a=b −P3 −F(1)3 −F(2)b

=b ,

M(3)ab

=b −N(2)a −N(3)a = I(3)baüb + I(5)ba

g̈0
b − I(6)abẅ=b −F(3)a, a=1, 2. (58)

Here the generalized stresses are given by

[N(1)a, N(2)a]=g
h

0

slbmv
l [ma

v=b , ha
v=b ]m dx3, N(1)3 =g

h

0

slbmv
lbvbm dx3, (59)

[M(1)ab, M(2)ab, M(3)ab]=g
h

0

slbmv
l [ma

v , x3d
a
v , ha

v ]m dx3, (60)

N(3)a =g
h

0

sl3[mv
lha

v,3 + bv
lha

v ]m dx3, (61)

and

[F(1)a, F(2)a, F(3)a]=g
h

0

f vmb
v [ma

l , da
lx3, ha

l ]albm dx3,

F(1)3 =g
h

0

f 3mdx3, (62)

[S(1)a, S(2)a, S(3)a]=g
h

0

Svb[ma
v , ha

v , x3d
a
v ]nbm dx3, (63)

S(1)3 =g
h

0

s3bnbm dx3, P3 =−m(h)ph + p0. (64)

Inertia quantities are given by

[I(1)ab, I(2)ab, I(3)ab, I(4)ab, I(5)ab, I(6)ab]

=g
h

0

ralv[mb
v m

a
lx3d

b
lm

a
v , mb

v ha
l , x2

3d
b
ld

a
v , hb

v ha
l , db

lha
v ]m dx3

I(1)33 =g
h

0

rm dx3. (65)
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The boundary conditions are

M(1)abnb =S(1)a, or dua =0,

[12(M
(2)ab +M(2)ba)=a +F(2)b]nb =S(1)3, or dw=0,

M(3)abnb =S(2)a, or dg0
a =0,

1
2[M

(2)ab +M(2)ba]nb =S3a, or dw=a =0. (66)

The displacement equations of motion are deduced from equations (58)–(65) including
the constitutive law given by equation (22).

3. APPPLICATIONS IN WAVE PROPAGATION

3.1.  

The solution, in terms of generalized displacements u1, u2, w, g0
1 , g0

2 , is assumed in the
following form

u1 =A1 cos (nx2)exp(i(vt− l1x1)), u2 =A2 sin (nx2)exp(i(vt− l1x1)),

w=B cos (nx2)exp(i(vt− l1x1)),

g0
1 =C1 cos (nx2)exp(i(vt− l1x1)), g0

2 =C2 sin (nx2)exp(i(vt− l1x1)), (68)

which characterizes the propagation of harmonic plane waves of wavenumber l1 and
frequency v; i2 =−1.

By substituting these expressions into the equations of motion given by equations (58)
with equations (59)–(61) and (22), for free motions, five linear equations in terms of
A1, A2, B, C1, C2 are obtained. For a non-trivial solution, the determinant of the coefficient
matrix must vanish, resulting in the frequency equation

det [K−v2M]=0, (69)

where K represents a stiffness matrix, and M a mass matrix.
A sixth-order dispersion equation in l2

1 , with the circumferential mode number n as
parameter (n is an integer), is therefore obtained. For the sake of completeness, the
elements of the determinantal frequency equation coefficients (denoted cij , 1E iE 5,
1E jE 5) are given in the Appendix. Five roots of the dispersion equation represent the
axial wave number in the positive x1 direction.

When the wavenumber l1 is set equal to zero, a number of cut-off frequencies, depending
on the value of n are found, as may be observed in the following spectra.

Simplified expressions (asymptotic ones) for phase velocities can also be obtained when
the wavelength is short (l1:a). Among those values, one will retain the shear-wave
velocity of the medium, that will be denoted by cT .

Geometric and physical parameters being given, the frequency equation (69) constitutes
a transcendental relationship between the nondimensional wavenumber l�1 = l1/pR (70),
the number of circumferential waves n, and the non-dimensionalized frequency v̄, defined
by

v̄=vR/pcT . (71)

When the constitutive law is viscoelastic, this latter equation admits complex
wavenumbers. One recalls that the real part of the wavenumber represents harmonic
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T 1

Free vibration analysis of simply supported cylindrical isotropic shells; comparison of lowest
natural frequency parameters ṽ=(vh/p)zr/G, where G is the shear modulus, n=0·3 the
Poisson’s ratio, R the mean radius of the cylinder, a its length, for l1 =mpR/a=4p, and

m an integer (SDT: shear deformation theory)

n n
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

1 2 3 4 1 2 3 4

h/r=0·06 h/r=0·1
Exact-3D 0·08639 0·08748 0·08933 0·09199 0·20529 0·20802 0·21261 0·21906
Present 0·08636 0·08746 0·08932 0·092001 0·20480 0·20800 0·21201 0·21890
Touratier 0·08635 0·08745 0·08931 0·09200 0·20458 0·20733 0·21192 0·21839
Bhimaraddi 0·08639 0·08728 0·08911 0·09175 0·20478 0·20678 0·21132 0·21771
SDT 0·08611 0·08718 0·08902 0·09165 0·20360 0·20628 0·21077 0·21710
Flügge 0·09161 0·09290 0·09510 0·09824 0·23623 0·23995 0·24620 0·25502

h/r=0·12 h/r=0·18
Exact-3D 0·27491 0·27849 0·28447 0·29287 0·50338 0·50937 0·51934 0·53325
Present 0·27421 0·27828 0·28390 0·29171 0·50048 0·50933 0·51890 0·53319
Touratier 0·27361 0·27721 0·28321 0·29161 0·50002 0·50606 0·51610 0·53008
Bhimaraddi 0·27286 0·27641 0·28233 0·29064 0·49818 0·50418 0·51416 0·52808
SDT 0·27197 0·27547 0·28131 0·28951 0·49479 0·50058 0·51021 0·52366
Flügge 0·32960 0·33479 0·34349 0·35571 0·67100 0·68056 0·69634 0·71803

variations, and that the imaginary part represents spatial attenuation. A direct method has
been used to determine the roots of the frequency equation: i.e., fixing the values of
frequency, restricted to their real part, and searching for the values of the corresponding
wavenumber. For a given value of the frequency, several values of the wavenumber are
obtained, each one corresponding to a peculiar propagating mode.

Figure 2. Non-dimensionalized frequency V� =(vh2/p)zr2/m2 versus real part of the non-dimensionalized
wave number for axisymmetric mode spectrum (n=0) in a three-layered elastic cylinder for h/R=0·1, where
h2 is the thickness of the second layer, r2 its mass density, m2 the corresponding Lamé constant, R the mean radius
of the cylinder, and h its thickness. ——, Model, –––; three-dimensional solution.
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Figure 3. Non-dimensionalized frequency V� =(vh2/p)zr2/m2 versus real part of the non-dimensionalized
wave number for axisymmetric mode spectrum (n=0) in a three-layered elastic cylinder for h/R=1, where h2

is the thickness of the second layer, r2 its mass density, m2 the corresponding Lamé, constant, R the mean radius
of the cylinder, and h its thickness. Key as Figure 2.

Figure 4. The viscoelastic cylinder.

Figure 5. Non-dimensionalized frequency versus real parts of the non-dimensionalized wave numbers for
axisymmetric mode spectrum (n=0) in a three-layered cylinder with a viscoelastic internal layer.



ω
/R

e 
(λ

1)

5

0.4

Re (λ1)

0.3

0.2

0.1

1 2 3 40

.   .544

T 2

Non-dimensional frequency for axisymmetric mode spectrum (n=0) in a three-layered
cylinder with a viscoelastic internal layer

v̄ 1st mode [Re (l�(1)
1 )] 2nd mode [Re (l�(2)

1 )] 3rd mode [Re (l�(3)
1 )]

0 0·000 0·000 —
0·5 1·059 0·559 0·011
1 2·122 0·796 0·023
2 4·264 1·135 0·045
3 6·416 1·400 0·064
5 10·725 1·826 0·094
5·5 11·802 1·919 0·100
7 15·032 2·177 0·115
7·5 16·107 2·258 0·120
8 17·182 2·335 0·124
9 19·753 2·534 0·133
9·5 20·410 2·904 0·136

10 21·487 3·197 0·139
11 23·637 3·817 0·146

3.2.          

In order to assess the accuracy of the proposed laminated shell theory in dynamics,
comparison with previous theories has been made for the case of a homogeneous elastic
cylinder; comparison with the exact three-dimensional solution has also been made for a
three-layered elastic cylinder for axisymmetric motion, which is the only case where an
exact solution has been investigated [15, 17].

3.2.1. Case of an isotropic elastic cylinder
Table 1 contains non-dimensionalized natural frequencies for isotropic short cylindrical

shells obtained by using various theories: three-dimensional elasticity (Armenakas et al.
[16]); present theory; Touratier theory [5]; Bhimaraddi theory [9]; shear-deformation theory
with a shear correction factor equal to p2/12, Mirsky and Hermann [10]; Flügge theory
[11]. Only the most significant problem from the Bhimaraddi paper [9] has been retained:
i.e., l1 =mpR/a=4p. Comparisons of the above theories show that the maximum error
in the present analysis is about −0·57%, whereas in the Touratier theory results are about
−0·6%, Bhimaraddi results about −1%, the shear-deformation theory is about −1·8%,
and the Flügge theory is about +35%. The improvements due to the simultaneous
refinements of the shear and membrane terms are apparent.

Figure 6. Non-dimensionalized phase velocity versus real parts of the non-dimensionalized wave numbers for
axisymmetric mode spectra (n=0) for three-layered cylinders. ——, Viscoelastic case; –––, elastic case.
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T 3

Non-dimensional phase velocity versus frequency axisymmetric mode spectra (n=0) in a
three-layered cylinder with (a) a viscoelastic internal layer, and (b) an elastic internal layer

1st mode 2nd mode 3rd mode
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

v̄ Re (l�(1)
1 ) v̄/Re (l�(1)

1 ) Re (l�(2)
1 ) v̄/Re (l�(2)

1 ) Re (l�(3)
1 ) v̄/Re (l�(3)

1 )

(a)
0·000 0·000 0·048 0·000 0·300 — —
0·051 1·059 0·048 0·559 0·091 0·011 4·636
0·101 2·122 0·048 0·796 0·127 0·023 4·391
0·203 4·264 0·048 1·135 0·179 0·045 4·511
0·304 6·416 0·047 1·400 0·217 0·064 4·750
0·506 10·725 0·047 1·826 0·277 0·094 5·383
0·557 11·802 0·047 1·919 0·290 0·100 5·570
0·709 15·032 0·047 2·177 0·326 0·115 6·165
0·760 16·107 0·047 2·258 0·337 0·120 6·333
0·810 17·182 0·047 2·335 0·347 0·124 6·533
0·912 19·753 0·046 2·534 0·360 0·133 6·857
0·962 20·410 0·047 2·904 0·331 0·136 7·074
1·013 21·487 0·047 3·197 0·317 0·139 7·288
1·114 23·637 0·047 3·817 0·292 0·146 7·630

(b)
0·000 0·000 0·048 — — — —
0·101 2·116 0·048 0·790 0·128 0·029 3·483
0·152 3·174 0·048 0·970 0·157 0·043 3·535
0·203 4·232 0·048 1·122 0·181 0·057 3·561
0·253 5·290 0·048 1·258 0·201 0·072 3·514
0·304 6·347 0·048 1·381 0·220 0·086 3·535
0·355 7·405 0·048 1·500 0·237 0·100 3·550
0·405 8·463 0·048 1·603 0·253 0·115 3·522
0·456 9·521 0·048 1·704 0·278 0·129 3·535
0·506 10·579 0·048 1·801 0·281 0·143 3·538
0·608 12·695 0·048 1·982 0·307 0·172 3·535
0·709 14·811 0·048 2·151 0·330 0·201 3·527
0·810 16·927 0·048 2·310 0·351 0·229 3·537
0·912 19·043 0·048 2·461 0·371 0·258 3·535
1·013 20·567 0·048 2·746 0·369 0·315 3·216

3.2.2. Case of a three-layered elastic cylinder
An infinitely long traction-free circular cylindrical shell, of thickness h and inner radius

R, composed of three orthotropic elastic layers, perfectly bonded at their interfaces is
considered. The purpose of the study being the propagation of plane waves in the infinite
length cylinder, no boundary conditions are requested.

Figures 2 and 3 show the frequency versus real part of the wave number for the first
axisymmetric mode (fundamental torsional one) for h/R=0·1 and h/R=1 respectively.
The results obtained with the present theory are compared to those of the exact
three-dimensional solution of Armenakas [17]. It can be observed that, for h/R=0·1, the
present theory gives results close to the exact three-dimensional solution. The case h/R=1,
where the cylinder can be considered nearly as a solid one, has been examined in order
to show the limitations of the model, as can be observed in Figure 4.
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Figure 7. Non-dimensionalized frequency versus real parts of the non-dimensionalized wave numbers for
asymmetric mode spectra (n=1) for three-layered cylinders having viscoelastic internal layer.

3.3.      

An infinitely long traction-free circular cylindrical shell, of thickness h and inner radius
R(R=9·5h), composed of three orthotropic layers of equal thickness, perfectly bonded
at their interfaces is considered (see Figure 4). The internal layer of the cylinder is made
of a viscoelastic polymer and the external skins are purely elastic, all the corresponding
constitutive law being isotropic (Young’s moduli E1, E3, Poisson’s ratios n1, n3 , mass
densities r1, r3 respectively). A viscoelastic Kelvin–Voigt constitutive law, using complex
Young moduli, has been retained for the viscoelastic layer, in the form

E2 =E'2 + jvE02 , (67)

where E'2 and E02 are constants. The Poisson’s ratio and the mass density of the viscoelastic
core will respectively be denoted n2, r2.

T 4

Non-dimensional frequency for asymmetric mode spectra (n=1) in a three-layered cylinder
with a viscoelastic internal layer

1st mode 2nd mode 3rd mode 4th mode 5th mode
v̄ Re (l�(1)

1 ) Re (l�(2)
1 ) Re (l�(3)

1 ) Re (l�(4)
1 ) Re (l�(5)

1 )

0·000 0·000 — — — —
0·159 4·660 0·325 0·300 — —
0·955 8·073 0·780 0·644 0·611 —
1·591 10·791 1·243 1·233 0·907 —
1·750 11·440 1·752 1·566 1·253 0·703
2·068 12·752 2·603 1·925 1·500 1·104
2·227 13·419 2·978 2·026 1·663 1·336
2·387 14·092 3·298 2·094 1·844 1·591
2·546 14·775 3·578 2·141 2·026 1·846
2·705 15·449 3·827 2·308 2·162 1·952
2·864 16·126 4·027 2·478 2·274 2·052
3·023 16·819 4·186 2·811 2·280 2·147
3·182 17·504 4·299 3·162 2·310 2·238
3·500 18·865 4·364 3·531 2·371 2·268
3·819 20·215 4·74 3·916 2·500 2·294
4·773 24·227 7·574 4·257 2·718 2·364
6·364 30·127 12·307 26·378 2·510 2·400



ω
/R

e 
(λ

1)

0.4

Re (λ1)

0.2

2 40

    547

Figure 8. Non-dimensionalized phase velocity versus real parts of the non-dimensionalized wave numbers for
first asymmetric mode spectra (n=1) for three-layered cylinders. Key as Figure 6.

The mechanical properties of the different layers are as follows; steel skins,
r1 = r3 =7800 kg/m3, n1 = n3 =0·3, E1 =E3 =210 GPa, viscoelastic core, r2 =980 kg/m3,
n2 =0·453, E'2 =100 GPa, E02 =20 GPa · s−1. In this paper, the frequency-versus-real part
of the wave number for axisymmetric and asymmetric modes are presented.

T 5

Non-dimensional phase velocity versus frequency for asymmetric mode spectra (n=1) in a
three-layered cylinder with (a) a viscoelastic internal layer and (b) an elastic internal layer

1st mode
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

v̄ Re (l�(1)
1 ) v̄/Re (l�(1)

1 ) v̄ Re (l�(1)
1 ) v̄/Re (l�(1)

1 )

(a) (b)
0·000 0·000 — 0·000 0·000 —
0·955 8·073 — 0·477 3·204 —
1·591 10·791 — 0·509 3·417 —
1·750 11·440 2·489 0·573 3·843 —
2·068 12·752 1·873 0·636 4·268 —
2·227 13·419 1·667 0·700 4·694 —
2·387 14·092 1·500 0·796 5·331 —
2·546 14·775 1·379 0·859 5·755 —
2·705 15·449 1·467 0·955 6·390 —
2·864 16·126 1·473 1·018 6·815 —
3·023 16·819 1·482 1·114 7·450 —
3·182 17·504 1·564 1·177 7·873 —
3·500 18·865 1·684 1·273 8·508 —
3·819 20·215 2·081 1·432 9·565 —
4·773 24·227 2·692 1·591 10·622 —

1·909 12·735 13·636
2·068 13·791 13·605
2·227 14·848 13·579
2·387 15·904 13·563
2·546 16·961 13·543
2·705 18·018 13·525
2·864 19·074 13·509
3·023 20·131 13·496
3·182 21·188 13·483
3·500 23·301 13·462
3·819 25·415 13·447
4·455 29·644 13·459
4·773 31·758 13·445
6·364 42·333 13·426
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3.3.1. Axisymmetric modes
For axisymmetric motion (n=0), a number of terms in the frequency determinant (69)

vanish, reducing the frequency equation to

c220c55 −
c25c52

c22 1nc11

c31

c41

c13

c33

c43

c14

c34

c44n=0, (72)

so that only three modes, among which two fundamental ones (with a zero cut-off
frequency) exist.

3.3.1.1. Frequency spectrum. Figure 5 and Table 2 show the frequency-versus real part
of the wave number for axisymmetric mode spectrum, in the case of the viscoelastic
cylinder described above. The three different modes, among which the fundamental
torsional and longitudinal modes, clearly appear.

In the viscoelastic case studied, the fundamental torsional and longitudinal modes are
coupled, as can be proved by developing equation (72); in an elastic case, they would on
the contrary be uncoupled, as can also be proved by developing equation (72). The
remaining mode (torsional upper mode) is an upper one, with a non-zero cut-off frequency.

3.3.1.2. Phase–velocity spectrum; comparison with the equivalent elastic case. Figure 6
shows the phase velocity versus real part of the wave number for the two first axisymmetric
modes (torsional and longitudinal) spectra, in the case of the viscoelastic cylinder and for
the elastic case.

Viscoelasticity affects the first fundamental torsional mode, which becomes weakly
dispersive, with an asymptotic velocity numerically found equal to the shear-wave velocity
in the cylinder (cT ). The fundamental longitudinal mode is, on the contrary, much more
sensitive to viscoelasticity. Frontwave phase-velocities are however the same in both cases;
the mode tends to become non-dispersive as Re (l�1) increases, with an asymptotic velocity
that is numerically found to be equal to cT , for the elastic and viscoelastic internal layer
(see Tables 3(a, b)). This figure shows that even for a viscoelastic constitutive law for the
core, torsional waves are weakly dispersive (not dispersive in the elastic case), while
longitudinal waves are dispersive.

3.3.2. Asymmetric modes

3.3.2.1. Frequency spectrum. Figure 7 and Table 4 show the frequency-versus real part
of the wave number for asymmetric mode spectra, in the case of the three-layered cylinder
with a viscoelastic internal layer. The five different modes, among which is the fundamental
flexural mode, clearly appear.

3.3.2.2. Phase-velocity spectrum; comparison with the equivalent elastic case. Figure 8
and Tables 5(a, b) show the phase velocity-versus real part of the wave number for the
first asymmetric mode (flexural) spectra, in the case of the three-layered cylinder with a
viscoelastic or an elastic core.

In the viscoelastic case, phase velocity is much more sensitive to the variations of the
real part of the wave number. As for the longitudinal motion, it can also be observed that,
at a fixed wavenumber, the flexural harmonic waves propagate with larger phase velocities
in the viscoelastic cylinder than in the equivalent elastic one. In both cases, as usually, this
flexural mode tends to become non-dispersive as Re (l�1) increases.
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4. CONCLUSIONS

A new refined two-dimensional laminated shell theory, which allows the continuity
requirements for displacements and stresses at layer interfaces to be satisfied exactly, is
proposed. The model, which keeps only five generalized displacements, also takes into
account refinements of membrane and shear terms. The efficiency of this new kinematics
for the modelling of shells in dynamics is proved through comparison with previous
theories in a case for which an exact three-dimensional theory is known (Armenakas
[15, 16]). The results presented here show the improvements due to the theory, for which
no need for shear correction factors is requested The model is then applied to the
determination of the dispersive behaviour of a circular cylindrical viscoelastic shell. The
influence of viscoelasticity, as concerns dispersion, clearly appears.
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APPENDIX

The elements of the determinantal frequency equation are given below, where cij is an
element in the ith row, jth column:
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