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BANDPASS VIBRATION ABSORBER
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A new concept for active vibration absorption is presented. A properly designed
compensator in the local feedback converts the well-known passive absorber into a
bandpass absorber. Such an absorber amplifies frequencies in a given frequency range, thus
almost producing resonance for all these frequencies. If such an absorber is attached to
a vibrating body, it absorbs vibrations at all frequencies that belong to the bandpass range.
The presented compensator design guarantees the stability of the system. The proposed
concept needs an additional local control of the absorber mass displacement, which has
also been resolved. The paper presents the idea, the design procedure, and the simulation
results that prove the relevance of the solution.
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1. INTRODUCTION

Vibration absorbers have a history of almost a century [1] and the research in the field
is still very productive. A common passive absorber [2, 3] is a mass–damper–spring trio
(Figure 1(a)), whose purpose is to suppress the disturbances from the primary system that
the absorber is attached to. Using one of the optimal designs [4] the response of the primary
structure can be highly attenuated.

Further improvements in the absorption are possible with an additional active force
introduced as a part of an absorber (Figure 1(b)). Such an active absorber is then
controlled with different algorithms making it more responsive to primary disturbances.
With the usage of modern control techniques they are becoming an alternative in new
fields: structural control [5, 6], flexible space structures [7], vehicle suspension [8],
super-rapid trains [9], helicopter vibrations [10], etc.

A special type of active absorber uses only a local feedback force, thus acting as a
separate unit without the need for measuring the primary system state (e.g. primary
displacements). Such active resonant absorbers [11, 12] are able to suppress discrete
frequencies very efficiently.

This paper introduces a new type of active absorber with a local feedback force. The
intention is to give it the ability to absorb all disturbances in a given frequency band. This
should be done by expanding a single resonance frequency of a resonant absorber into a
band of frequencies. However, it will be shown in the paper that this is not a
straightforward step, since the stability of the system can be ruined. With the approach
proposed in the next section, the simulations show that the bandpass absorber (BPA,
patent pending) is stable and able to suppress vibrations in a given frequency band for
a wanted degree of suppression.

The paper is organized as follows. In section 2 the concept for the design of the BPA
is presented. A simple model is used in section 3 to present characteristics of the combined
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Figure 1. (a) Passive absorber; (b) active absorber.

system with the BPA. Section 4 shows simulation results and, finally, the conclusion and
possible applications are considered in section 5.

2. THE CONCEPT OF THE BPA

Taking the same approach as for the design of the resonant absorber [12], the aim is
to design a feedback compensator to achieve a bandpass absorber with the frequency
characteristics depicted in Figure 2(a).

The global system with such a BPA would have the bandstop frequency characteristics
shown in Figure 2(b), as required. However, the stability of the combined system would
not be guaranteed. This drawback imposes a different approach for the design. In other
words, during the design the primary system characteristics should be taken into
consideration and, thus, the feedback compensator would also depend on the system.
Therefore, the design is changed.

The following design procedure is proposed: the primary system transfer function Gp (s)
is modified only in a given absorption frequency range leaving Gp (s) untouched outside
that absorption bandwidth. This can be achieved by multiplying Gp (s) with a bandstop
filter transfer function Fbs (s), so obtaining the global transfer function

G(s)=Fbs (s)Gp (s). (1)

Figure 2. Frequency characteristics of an ideal (a) bandpass absorber, (b) system with the BPA.
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Figure 3. Single-d.o.f. primary system with the vibration absorber.

Figure 4. Dynamic model of the vibration absorber.

Figure 5. Dynamic model of the global (combined) system.

Consequently, the absorber feedback compensator should be designed so as to achieve the
given stable global transfer function G(s). This should be attained with a local absorber
feedback as in the case of resonant absorbers.

The system depiction is given in Figure 3. For this purpose the primary will be a
single-d.o.f. system. The active force fact should depend only on the absorber position. The
transfer function of the feedback filter Fa (s), shown in Figure 4, should be determined by
the BPA design. It is assumed that the parameters of the passive part of the absorber
(ma , ca , ka ) are already known. The model of the global system is given in Figure 5. First,
the following transfer functions are derived: Ga (s) of the BPA alone, Gp (s) of the primary
alone, and G(s) of the global system. The transfer functions are derived simultaneously
for two cases: when the input signal into the feedback filter is the absolute absorber
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Figure 6. (a) Control structure for the DC compensation; (b) the active part.

position xa (d=0), as well as when the input signal is the relative position xa − x (d=1).
This is achieved by using the general feedback signal xa − dx for the following transfer
functions.

The primary system ( fback =0):

Gp (s)=
x(s)
f(s)

=
1

M(s)
. (2)

The BPA (x=0):

Ga (s)=
xa (s)
fa (s)

=
1

Ma (s)+Fa (s)
. (3)

The global system (fa =0):

G=
x(s)
f(s)

=
1

M(s)+mas2(Ca (s)+ dFa (s))Ga (s)
, (4)

where

M(s)=ms2 + cs+ k, Ma (s)=mas2 + cas+ ka , Ca (s)= cas+ ka .

Figure 7. Frequency characteristic of (a) Fbs , (b) the primary Gp and the desired combined system G.
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Figure 8. Frequency characteristic of the filter Fa (s) in the speed feedback.

If the transfer functions are denoted by their numerator and denominator polynomials

G(s)=
N(s)
D(s)

, Fa (s)=
Na (s)
Da (s)

,

then the global transfer function is (the dependency on s dropped)

G=
N
D

=
MaDa +Na

M(MaDa +Na )+mas2(CaDa + dNa )
. (5)

From equation (5) the degree of the polynomials can be determined:

deg N=max (2+deg Da , deg Na ), (6)

deg D=2+deg N. (7)

Figure 9. Frequency characteristics of (a) the BPA alone, G'a (s), (b) the global system, G'(s).
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T 1

Zeros and poles of the feedback filter, the BPA, and the global system

Feedback filter F'a (s) Absorber G'a (s) Global system G'(s)

−4·46352 j35·3063 −1·6072 j40·251 −44·5032 j93·631
−1·66652 j40·5092 −1·2132 j30·386 −0·16922 j34·911

Zeros −1·15472 j30·2710 −0·99252 j35·553 −0·16512 j37·333
−1·02322 j35·5678 −10 000 0·1540 2 j32·660

−1·60692 j40·2508 −44·5032 j93·631 −28·7592 j102·293
−1·21312 j30·3858 −0·16922 j34·911 −14·5032 j30·629
−0·99252 j35·5530 −0·16512 j37·333 −0·99252 j35·553

Poles −10 000 0·15402 j32·660 −0·88112 j40·724
0 0 −0·66252 j30·078

From equation (7) it can be seen that the system should have a strictly proper transfer
function (deg NQ deg D) with the relative degree two. One would like to have the primary
system transfer function Gp (s) untouched outside the absorption frequency range. This can
be achieved with a multiplicative factor Fbs in

G(s)=Fbs (s)Gp (s)=Fbs (s)
1

M(s)
, (8)

where Fbs (s)=NF (s)/DF (s) should have a bandstop frequency characteristic in order to
suppress vibrations in a given frequency range.

This is the main goal of the BPA design: given the bandstop frequency characteristic
Fbs (s), find the feedback filter Fa (s). Because of equation (7) and deg M=2, it is
deg NF =deg DF .

From equation (4) and using equation (8) it is

Fa =
CaK−Ma

1− dK
where K(s)=

mas2

(1/Fbs (s))−1
1
M

(9)

Figure 10. Frequency characteristics of (a) the BPA alone, (b) the global system, with the PI controller.
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Figure 11. Frequency sweep (26–44) rad/s with the step of 2 rad/s every 10 s.

or

Fa =
Na

Da
=

mas2CaNF −MaM(DF −NF )
M(DF −NF )− dmas2NF

. (10)

Since Fbs (s) has the bandstop characteristic, it is Fbs (0)=Fbs (a)=1; in other words, both
NF (s) and DF (s) are monic and they both have equal lowest polynomial coefficients. Hence,
in the difference (DF −NF ), the highest and the lowest polynomial coefficients do cancel.
Thus, deg (DF −NF )=deg NF −1, and also one s can be extracted. Therefore, a new
symbol D(s) is introduced, denoting the remaining polynomial after the subtraction:

DF −NF = sD, (11)

where deg D=deg NF −2. The extraction of an s leads in equation (10) to the cancellation
of s in the numerator and the denominator:

Fa =
Na

Da
=

masCaNF −MaMD

MD− dmasNF
. (12)

The degrees of the filter polynomials are then

deg Na =2+deg NF , (13)

deg Da =6deg NF ,
1+deg NF ,

d=0
d=1

Q deg Na ! (14)

The feedback filter Fa (s) is then not proper (deg Na q deg Da ). Since this cannot be realized,
one of the following solutions could be implemented. For the absolute position feedback
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(d=0): (a) two new poles should be introduced into Fa (s) which will not influence the
feedback in the operating frequency range, i.e., F'a (s)=Fa (s)/(1+ sTc )2, where Tc should
be much smaller than the smallest system time constant; (b) instead of the position signal,
the acceleration signal can be used and then two poles in the origin are included, i.e.,
F'a (s)=Fa (s)/s2.

If d=1, the feedback is relative, it suffices to use the velocity signal and to include an
integrator in the compensator: F'a (s)=Fa (s)/s.

Inserting the solution (12) for Fa (s) into equation (3) gives

Ga =
MD− dmasNF

masNF (Ca − dMa )
. (15)

Thus, the BPA transfer function has an integrator which can be unpleasant if the
disturbance has a DC component. Therefore, a new additional control of the absorber
displacement should remove the low frequency moving average.

For that purpose, Figure 6(a) that includes a PI controller in the classic control structure
is considered. The parameters g and T of the controller should be designed so to influence
only very low frequencies, much lower than the BPA suppression frequencies,
v�va =35 rad/s.

Since it should be (xa − x)ref =0, the PI controller operates parallel to the feedback
compensator Fa (for d=1) and, therefore, they both can be incorporated into one control
algorithm (Figure 6(b)). The PI controller is denoted by its transfer function FPI (s). With
FPI (s)= g(1+ sT)/s included, the transfer function of the BPA becomes

G0a (s)=
1

Ma (s)+Fa (s)+FPI (s)
, (16)

Figure 12. Multi-harmonic disturbance absorption in the system with BPA; at t=5 s the PI controller is
turned on.
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Figure 13. White noise disturbance response of the system without absorber.

which transforms equation (15)—by inserting expression (12) into (16)—to

G0a (s)=
s(MD− dsmaNF )

[sMa + g(1+ sT)](MD− dmasNF )+ s(masCaNF −MaMD)
. (17)

Thus, the integrative property of the absorber is removed.

3. AN EXAMPLE: VIBRATIONS OF A PAPER MILL WINDER

The whole paper mill model is a multi-mass system with some prominent resonant
frequencies. The speed of the paper is limited by the vibrations of the winder. The
suppression of these vibrations could improve the efficiency of the paper mill since higher
paper velocities would be allowed.

The concept of the BPA is applied to a single-d.o.f. model of the paper winder. The
primary system parameters are: m=20 000 kg, c=39 700 Ns/m, k=25 300 000 N/m,
with the natural frequency vn =zk/m=35·7 rad/s and the damping ratio z= c/
z2mk=0·0279. The absorber parameters are chosen to be: ma =500 kg, ca =4900 Ns/m,
ka =632 500 N/m, with the natural frequency va =vn and the damping ratio
za =0·1378.

The bandstop filter function Fbs (s) is designed using Matlab Signal Processing Toolbox.
It is chosen to design an elliptic filter of the third order (n=3) with rp=3 dB of ripple
in the passband and a stopband rs=40 dB down from the peak value in the passband
(suppression ratio). The bandwidth is bw=10 rad/s and the centre frequency
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wo=35 rad/s. The Matlab commands are:

[z, p, k] = ellipap(n, rp, rs) % prototype low-pass IIR filter
[A, B, C, D] = zp2ss(z, p, k) % zero-pole to state space conversion
[At, Bt, Ct, Dt] = 1p2bs(A, B, C, D, wo, bw) % low-pass to bandstop transformation
[NF, DF] = ss2tf(At, Bt, Ct, Dt) % state space to transfer function conv.
[zf, pf, kf] = ss2zp(At, Bt, Ct, Dt) % state space to zero-pole conversion

Then one has

Fbs =
NF

DF
=

(s2 +1391)(s2 +1225)(s2 +1079)
(s2 +1·785s+1659)(s2 +30·95s+1225)(s2 +1·318s+904·6)

. (18)

The frequency characteristic of Fbs (s) is shown in Figure 7(a). The characteristics of the
primary single-d.o.f. system Gp (s) and the desired combined system G(s)=Fbs (s)Gp (s) are
depicted in Figure 7(b). Consequently, the peak of the primary system should be removed.
Using MapleV, the ideal non-proper feedback compensator Fa (s) is calculated and its
frequency characteristic is shown in Figure 8. The compensator transfer function is

Fa (s)=−496·4
(s2 +2·310s+917·66)(s2 +8·927s+1266·5)

(s2 +2·427s+924·77)

·
(s2 +2·046s+1266·1)(s2 +3·334s+1643·9)
(s2 +1·985s+1265)(s2 +3·215s+1622·8)

.

Figure 14. White noise disturbance absorption of the system with the passive absorber.
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Figure 15. White noise disturbance absorption in the system with BPA.

In order to find the proper F'a (s) with the same frequency characteristic in the operating
frequency range like Fa (s), the suggested solutions in the previous section give the following
results: (Ad a) the additional double pole −1/Tc should be larger than −109 s−1 in order
not to change the =Fa (s)= significantly, which caused unsolvable numerical problems in
Matlab; (Ad b) using the acceleration signal for the feedback produces one algebraic loop
in the Simulink model and any further analysis in Matlab is therefore not possible.

The problem has been solved by using a ‘‘middle’’ solution: the velocity signal is used
for the feedback and one new pole is added with Tc =10−4 s; thus

F'a (s)=Fa (s)
1

s(1+ sTc )
. (19)

Accordingly, in equations (3) and (4) the Fa (s) should be exchanged with sF'a (s).
The resulting frequency characteristics of the BPA alone, G'a (s), and the global system,

G'(s), are given in Figure 9.
In Table 1 the poles and zeros of the feedback filter F'a , of the absorber G'a and of the

global system G'without the PI controller are given. Note that, though the global system
and the feedback filter are stable, the BPA alone is unstable (the pole with the positive real
part). Thus, with this design method the stability of the combined system is guaranteed,
but it is achieved with an unstable absorber.

Obviously, the poles of the feedback filter are the zeros of the absorber, and the poles
of the absorber are the zeros of the global system.

With the PI controller the very low part of the BPA frequency characteristic G0a (s) in
Figure 10(a) is changed and does not contain an integrator. The global frequency
characteristic G0(s) in Figure 10(b) is not significantly changed.
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4. SIMULATION RESULTS

The simulations in this section use the model from Figure 3 with the same parameters
as before.

4.1.   

The BPA suppression characteristics are shown at different frequencies by frequency
sweep in Figure 11. The excitation has the amplitude of 1000 N and the frequency changes
from 26 to 44 rad/s. The upper graph shows the response of the primary system alone.
The largest amplitudes are at 36 rad/s. Attaching the passive absorber, the amplitudes
around the peak frequency are lowered (except at 30 and 32 rad/s); see the middle graph
in Figure 11. However, the absorber with the feedback designed according to the BPA
concept suppresses vibrations at the bandpass frequencies much more efficiently, see the
lower graph in Figure 11. This is exactly what is wanted by the BPA design.

4.2. - 

The response of the combined system to the four-harmonic disturbance force

f=A s
4

i=1

sin vit,

where A=1000 N and v1,2,3,4 = {32, 34, 36, 38} rad/s is studied next. Without the absorber
the maximal amplitude in the steady state is 1·45 mm.

Applying the BPA, all four frequencies inside the given absorption frequency range are
suppressed (Figure 12). Obviously, the PI controller removes the DC component of the
absorber displacement and, therefore, the actuator is also disburdened. This is achieved
with the PI controller parameters g=2000 N/m and T=1 s. Absorption properties are

Figure 16. Absorber displacements during the absorption with BPA, with and without DC control.
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not influenced by the additional moving average control. The amplitude of the primary
displacement is now much smaller and amounts to 0·026 mm. Comparing maximal
amplitudes in steady state, the absorption with the BPA is 34·9 dB better than without an
absorber (and 31·6 dB better than with the passive absorber).

The figure shows that the actuator should be able to produce forces around 1000 N and
amplitudes around 8 mm.

4.3.  

Thus far, the absorption of forced disturbances with discrete spectra has been examined.
Here, the efficiency of the BPA attached to the primary system that is subjected to random
vibrations with a (pseudo)white noise continuous spectrum is inspected.

The disturbance force f and its power spectral density psd are generated by means of
the Matlab–Simulink block Band-Limited White Noise. The noise power is 1000 W and
the sample time 0·01 s.

The response of the primary system alone is given in Figure 13. The frequency response
has a peak at vp =35·54 rad/s and the spectrum of mass movements is modulated
correspondingly. The peak of the frequency response is GM = =G( jvp )==7·08 ×
10−7 m/N. The maximal magnitude of the primary mass displacements is xM =
x(t)max =6·89×10−5 m. The r.m.s. primary mass displacement is so

x =2·32×10−5 m.
These three parameters, GM , xM and so

x , are used as a reference for further results.
A standard solution for vibration suppression is the application of the passive absorber.

The frequency response of the system with the passive absorber, Figure 14, shows that the
peak is lowered and moved to a lower frequency. This passive absorber is not optimized
by any criterion (this is not the issue here). The peak is at the frequency v=33·9 rad/s
and amounts to 3·02×10−7 m which is 42·6% of GM . The maximal amplitude is 71·1%
of xM , and the standard deviation (r.m.s. value) is reduced to 67·3% of so

x . The power
spectral density of the primary mass displacement, psd(x), is modulated by the frequency
transfer function G( jv). Hence, the frequencies around v=32 rad/s are even amplified
compared to Figure 13.

If the feedback is designed so that the absorber becomes a bandpass absorber, the
absorption is much better. From Figure 15 it is obvious that the frequency response is
always lower than or equal to the frequency response of the primary alone. The use of
the BPA gives significant improvements: the peak frequency amplitude is 18%, the
maximal displacement amplitude 35·7% and the r.m.s. displacement 33·5% of the initial
primary results, respectively.

The band-limited white noise generated in Matlab is not DC free. Therefore, the
absorber mass displacements without PI control, and thus the active actuator force, include
the DC component (Figure 16). However, the PI controller keeps absorber displacements
inside the 2-mm limits.

5. CONCLUSION

The concept of the bandpass absorber (BPA) has been introduced. The BPA comprises
the standard passive absorber and a single local feedback with a compensator designed
to obtain a desired bandstop system characteristic. With such an absorber the vibrations
of the primary mass can be suppressed in a given range of frequencies. The design
procedure given in the paper guarantees the stability of the system. The suppression degree
is a design parameter.
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The integrative operation of the BPA is eliminated by the additional PI control of the
relative absorber displacement. This control operates with a slower dynamics than the
main compensator, and so does not deteriorate the absorption quality.

The application of the BPA can be justified in systems acted upon by disturbances with
variable frequency, or more frequencies, in some fixed frequency range, as well as for
suppression of ‘‘coloured’’ vibrations. If the frequency range itself is time variable, the
feedback of the BPA could be made adaptive with the self-tuning of the compensator
parameters.
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