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1. 

Axially moving string-like continua such as threads, wires, magnetic tapes, belts,
band-saws, chains, and cables have been subjects of the study of researchers in recent years;
see survey papers [1–3] for extensive lists of references. Researchers have derived and
studied different linear and non-linear mathematical models which describe the dynamics
of such systems; see, e.g., references [4–28]. Recently, the important problem of designing
stabilizing controllers to suppress the vibration of axially moving string-like continua has
received attention by researchers; see, e.g., references [29–35]. Controllers in these
references, except those in references [32] and [35], are designed for the linear models of
axially moving strings. One way to describe the dynamics of an axially moving string is
to model it as the moving Kirchhoff string; see, e.g., references [9] and [26]. The axially
moving Kirchhoff string is represented by a non-linear partial differential equation. Our
goal in this note is to show that the linear boundary control is a stabilizing controller for
the axially moving Kirchhoff string. We achieve this goal by using an approach analogous
to that in reference [35]. To the best of our knowledge, this note is the first to present the
application of the boundary control to the moving Kirchhoff string.

We consider the axially moving string in Figure 1. The string is pulled at a constant speed
through two eyelets which are distanced from each other by 1. One of the eyelets is fixed
and the other one can move freely in the direction of the Y-axis. A control input force,
denoted by u in Figure 1, can be applied to the free-to-move eyelet transversally. By
transversal we mean in the direction of Y.

The dynamics of the string in Figure 1 can be represented by the following nonlinear
partial differential equation (see, e.g., references [9] and [26]):

ytt (x, t)+2vyxt (x, t)=01− v2 + b g
1

0

y2
x (x, t) dx1yxx (x, t), (1a)

for all x$(0, 1) and te 0. In equation (1a), y(·, ·)$R denotes the transversal displacement
of the string, yxM1y/1x, yxxM12y/1x2, yttM12y/1t2, yxtM12y/1x 1t, and bq 0 is a constant
real number, and ve 0 is proportional to the speed of the string trhough the eyelets. In
realistic physical situations, vQ 1.

The tension in the string represented by equation (1a) is not constant and is given by

T(t)=1+ b g
1

0

y2
x (x, t) dx,
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Figure 1. The string is pulled at a constant speed through two eyelets. The eyelet at x=0 is fixed and the
one at x=1 can move freely in the direction of the axis Y. The control input force u(t)=−kyt (1, t) for all
te 0, where kq 0 is a constant real number, is applied to the free-to-move eyelet in the direction of Y.

for all te 0 (see reference [36]). Having the tension T, we have the following boundary
conditions:

y(0, t)=0, 01− v2 + b g
1

0

y2
x (x, t) dx1yx (1, t)= u(t), (1b, c)

for all te 0. The boundary condition in equation (1b) states that the string is fixed at
x=0. The boundary condition in equation (1c) represents the balance of forces applied
to the string at x=1 in the direction of Y.

The initial displacement and velocity of the string are, respectively,

y(x, 0)= f(x), yt (x, 0)= g(x), (1d)

for all x$(0, 1), where ytM1y/1t. We assume that f$C1[0, 1], and that at least one of the
functions f or g is not identically zero over [0, 1].

When the string does not move (v=0), the system (1) represents the dynamics of a string
known as the Kirchhoff string, which was originally studied by Kirchhoff in reference [37].
The Kirchhoff string has been studied by many researchers from the physical and
mathematical points of view; see, e.g., references [38, pp. 220–254], [39], and [40] for
extensive lists of references.

The control input u in equation (1c) is commonly known as the boundary control. In
this note, we study the stabilization of the string in equation (1a) by u. More precisely,
we study a u that results in y(x, t):0 as t:a for all x$ [0, 1]. As a stabilizing control
input, the following is proposed:

u(t)=−kyt (1, t), (2)

for all te 0, where kq 0 is a constant real number. With this choice of u, the boundary
control is the negative feedback of the transversal velocity of the string at x=1, with the
gain k. It is known that fixed linear strings represented by equation (1), in whcih v=0
and b=0, can be stabilized by the control law in equation (2); see, e.g., references [41–47].
Also, it is known that axially moving linear strings represented by equation (1), in which
vq 0 and b=0, can be stabilized by the control law in equation (2); see references [31]
and [33]. Roughly speaking, the boundary control in equation (2) provides a dissipative
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effect in linear strings, because it is of the form of negative velocity feedback. This is in
accordance with the well known fact that the negative velocity feedback increases damping
in most finite dimensional inertial systems, such as, large flexible systems and robotic
manipulators.

Our goal in this note is to show that the boundary control u in equation (2) stabilizes
the non-linear axially moving non-linear string in equation (1), i.e., u results in y(x, t):0
as t:a for x$ [0, 1].

2.    

Our plan to establish the stability of the non-linear string represented by equations (1)
and (2) is as follows. We define an energy like (Lyapunov) function of time for the string
and denote it by t�V(t). We show that V tends to zero exponentially.

The scalar-valued function V is defined as

V(t)ME(t)+ g g
1

0

[xyt (x, t)yx (x, t)+ vxy2
x (x, t)] dx, (3)

for all te 0, where g is a constant real number satisfying

0Q gQmin 61− v2

1+2v
,
2(1− v2)(k+ v)

1− v2 + k2 7 , (4)

and

E(t)M
1
2 g

1

0

[y2
t (x, t)+ (1− v2)y2

x (x, t)] dx+
b
4 0g

1

0

y2
x (x, t) dx1

2

, (5)

and y(·, ·) satisfies equations (1) and (2). From equations (3), (5), and (1d), we obtain

E(0)=
1
2 g

1

0

[g2(x)+ (1− v2)f2
x (x)] dx+

b
4 0g

1

0

f2
x (x) dx1

2

, (6a)

V(0)=E(0)+ g g
1

0

[xg(x)fx (x)+ vxf2
x (x)] dx, (6b)

where fx (x)Mdf (x)/dx. Recall that at least one of the functions f or g is not identically
equal to zero over [0, 1]. Furthermore, the function f, for which f(0)=0 by equation (1b),
cannot assume a non-zero constant value over [0, 1]. Thus, E(0)q 0.

Now, we prove a property of V.

Lemma 2.1. The function V satisfies

0EK1E(t)EV(t)EK2E(t), (7)

for all te 0, where K1 q 0 and K2 q 0 are constant real numbers given by

K1 =1− g(1+2v)/(1− v2), K2 =1+ g(1+2v)/(1− v2). (8a, b)
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Proof. For the integral terms in equation (3), whose coefficient is g, we have (the
argument (x, t) of the functions is deleted)

g
1

0

xytyx dxEg
1

0

x=yt = =yx = dxE 1
2 g

1

0

y2
t dx+

1
2 g

1

0

y2
x dx, (9a)

g
1

0

vxy2
x dxE v g

1

0

y2
x dx, (9b)

for all te 0. Adding equations (9a) and (9b), we obtain

g
1

0

(xytyx + vxy2
x ) dxE 1

2 g
1

0

y2
t dx+

1+2v
2(1− v2) g

1

0

(1− v2)y2
x dx, (10)

for all te 0. Since

(1+2v)/(1− v2)e 1, (11)

for all 0E vQ 1, we conclude that

g
1

0

(xytyx + vxy2
x ) dxE 1+2v

1− v2 0 1
2 g

1

0

[y2
t +(1− v2)y2

x ] dx1E 1+2v
1− v2 E(t), (12a)

for all te 0. Similarly, we obtain

g
1

0

(xytyx + vxy2
x ) dxe−

1+2v
1− v2 E(t), (12b)

for all te 0. Using inequalities (12) in equation (3), we obtain inequality (7). Note that
gQ (1− v2)/(1+2v) by inequality (4). Therefore, K1 and K2 in equation (8) are positive
real numbers. q

Remarks. (1) Since (1+2v)/(1− v2)e 1 for all 0E vQ 1, then g in inequality (4) is at
least less than 1.

(2) By inequality (7) and the fact that E(0)q 0, it is concluded that V(0)q 0. q

Next, we use equation (2) in equation (1c) and rewrites the boundary conditions as

y(0, t)=0, yx (1, t)=−kyt (1, t)>01− v2 + b g
1

0

y2
x (x, t) dx1 , (13a, b)

for all te 0. We now prove some identities for the functions satisfying equation (13).

Lemma 2.2. Let y(·, ·) satisfy the boundary conditions in equation (13). Then,

2 g
1

0

yxtyt dx= y2
t (1, t), (14a)

g
1

0

(yxxyt + yxtyx ) dx=−ky2
t (1, t)>01− v2 + b g

1

0

y2
x dx1 , (14b)
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g
1

0

xyxtyt dx=
1
2

y2
t (1, t)−

1
2 g

1

0

y2
t dx, (14c)

g
1

0

xyxxyx dx= k2y2
t (1, t)>201− v2 + b g

1

0

y2
x dx1

2

−
1
2 g

1

0

y2
x dx, (14d)

for all te 0.

Proof. From equation (13a), we have yt (0, t)=0 for all te 0. Thus, we obtain

2 g
1

0

yxtyt dx=g
1

0

(y2
t )x dx= y2

t (1, t), (15)

for all te 0. That is, equation (14a) holds.
Having yt (0, t)=0 for all te 0, we next obtain

g
1

0

(yxxyt + yxtyx ) dx=g
1

0

(yxyt )x dx= yx (1, t)yt (1, t), (16)

for all te 0. Using equation (13b) in equation (16), we obtain equation (14b).

Next, we write

g
1

0

xyxtyt dx=
1
2 g

1

0

(xy2
t )x dx−

1
2 g

1

0

y2
t dx, (17)

for all te 0. Thus, equation (14c) follows.
Finally, we write

g
1

0

xyxxyx dx=
1
2 g

1

0

(xy2
x )x dx−

1
2 g

1

0

y2
x dx=

1
2

y2
x (1, t)−

1
2 g

1

0

y2
x dx, (18)

for all te 0. Using equation (13b) in equation (18), we obtain equation (14d). q

Next, we compute the time-derivative of the function E.

Lemma 2.3. The time-derivative of the function E in equation (5), along the solution
of the system (1a), (1d), and (13) (equivalently, the system (1) and (2)) satisfies

E� (t)=−(k+ v)y2
t (1, t)E 0, (19)

for all te 0.

Proof. From equation (5), we obtain

E� (t)=g
1

0

[yttyt +(1− v2)yxtyx ] dx+ b g
1

0

y2
x dx g

1

0

yxtyx dx, (20)

for all te 0. Substituting ytt from equation (1a) into equation (20), we obtain

E� (t)=−2v g
1

0

yxtyt dx+01− v2 + b g
1

0

y2
x dx1 g

1

0

(yxxyt + yxtyx ) dx, (21)

for all te 0. Using equations (14a) and (14b) in equation (21), we obtain inequality (19).
q
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Using the preliminary results obtained thus far, we next prove that the functions V and
E tend to zero exponentially.

Theorem 2.4. The functions V and E, along the solution of the system (1a), (1d), and
(13) (equivalently, the system (1) and (2)) satisfy

0EV(t)EV(0) e−gt/K2, 0EE(t)E (V(0)/K1) e−gt/K2, (22a, b)

for all te 0, where K1 and K2 are given in equation (8).

Proof. From equation (3) we obtain

V� (t)=E� (t)+ g g
1

0

(xyttyx + xytyxt +2vxyxtyx ) dx, (23)

for all te 0. Substituting ytt from equation (1a) into equation (23), we obtain

V� (t)=E� (t)+ g g
1

0

xyxtyt dx+ g01− v2 + b g
1

0

y2
x dx1 g

1

0

xyxxyx dx, (24)

for all te 0. Using equations (19), (14c), and (14d) in equation (24), we obtain

V� (t)=−gE(t)− (k+ v)y2
t (1, t)−

gb
4 0g

1

0

y2
x dx1

2

+
g

2
y2

t (1, t)+ gk2y2
t (1, t)>201− v2 + b g

1

0

y2
x dx1, (25)

for all te 0. Neglecting the third term of equation (25) and f1
0 y2

x dx in the last term of
this equation, we obtain

V� (t)E−gE(t)− (k+ v)y2
t (1, t)+ gy2

t (1, t)/2+ gk2y2
t (1, t)/2(1− v2), (26)

for all te 0. Therefore,

V� (t)E−gE(t)−F(t), (27)

for all te 0, where

F(t)M[(k+ v)− g(1− v2 + k2)/2(1− v2)]y2
t (1, t). (28)

Having g satisfying inequality (4), we conclude that the coefficient of y2
t (1, ·) in equation

(28) is positive, and hence F(t)e 0 for all te 0. Using the non-negativeness of F in
inequality (27), we obtain

V� (t)E−gE(t), (29)

for all te 0. Using inequality (7) in inequality (29), we obtain the following differential
inequality:

V� (t)E−(g/K2)V(t), (30)

for all te 0, with the initial condition V(0)q 0 given in equation (6b). By a comparison
theorem given in reference [48, p. 3] or reference [49, p. 2], we conclude that V in inequality
(30) satisfies V(t)EV(0) e−gt/K2 for all te 0. Note that by inequality (7), we have
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V(t)e 0 for all te 0. Thus, inequality (22a) holds. By inequalities (7) and (22a), we
conclude that inequality (22b) holds. q

Finally, we show that the boundary control u in equation (2) stabilizes the non-linear
string in equation (1).

Corollary 2.5. The solution of the system (1a), (1d), and (13) (equivalently, the system
(1) and (2)), y(x, t):0 as t:a for all x$ [0, 1].

Proof. For the system (1a), (1d), and (13) we choose the Lyapunov function V in
equation (3). Then, by Theorem 2.4, the function E tends to zero exponentially. From
equation (5), we conclude that yx (x, t):0 as t:a for all x$ [0, 1]. Since, y(0, t)=0 for
all te 0, we conclude that y(x, t):0 as t:a for all x$ [0, 1]. q

3. 

In this note, the Lyapunov technique has been used to prove that the non-linear axially
moving Kirchhoff string represented by equation (1) can be stabilized by the linear
boundary control in equation (2). The boundary control is the negative feedback of the
transversal velocity of the string at one end.
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