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In this paper, a simple technique combining the straightforward perturbation method
with Laplace transform has been developed to determine the transient response of a single
degree-of-freedom system in the presence of non-linear, dissipative shock isolators.
Analytical results are compared with those obtained by numerical integration using the
classical Runge–Kutta method. Three types of input base excitations, namely, the rounded
step, the rounded pulse and the oscillatory step are considered. The effects of nonlinear
damping on the response are discussed in detail. Both the positive and negative coefficients
of the nonlinear damping term have been considered. It has been shown that a critical value
of the positive coefficient maximizes the peak values of relative and absolute displacements.
This is true for any power-law damping force with an index greater than 1. On the other
hand, the overall performance of a shock isolator improves if the nonlinear damping term
is symmetric and quadratic with a negative coefficient.
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1. INTRODUCTION

Non-linearity is ubiquitous in nature. Linearity is an approximation to reality. In shock
and vibration systems, isolators such as air springs, elastomeric dampers, and wire-rope
isolators are inherently nonlinear. Assumption of Hooke’s law for springs and linear
viscous damping for dampers is done just for mathematical simplicity. Sometimes the
amplitudes of steady-state vibration are small enough to justify the assumption of linearity.
However, the transient displacements may often be sufficiently large when the nonlinearity
in springs and dampers cannot be ignored.

Ravindra and Mallik [1–3] have studied the effect of nonlinear damping on the
performance of vibration isolators under harmonic loading. They observed bifurcations,
chaos and strange attractors due to the presence of nonlinearity in springs and dampers
in vibration isolators. They concluded that a strictly dissipative nonlinear damping may
be used as a passive control strategy to suppress various instabilities occurring in nonlinear
vibration isolation systems. The major objective of the present study is to ascertain the
effect of nonlinear damping on the response of shock isolators.

Linear shock isolation problems are discussed in several books [4–7]. Snowdon [7]
presented the response of nonlinear shock isolator modelled as a nonlinear elastic (tangent
and inverse tangent elasticity) spring parallel to a viscous damper. He concluded that a
soft spring (inverse tangent elasticity) performs better than a hard spring. In [8], Snowdon
compared the performance of a dual-phase damper mounting system with that of a linear,
simple mounting system. Guntur and Sankar [9] reported the performance of different
kinds of dual-phase damping shock mounts. Hundal [10] reviewed the literature on
pneumatic shock absorbers and isolators.
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Hundal [11] has also compared the performances of shock isolators with linear and
quadratic damping with a base input in the form of an acceleration pulse of rectangular
shape. By using the concept of a variable friction force, Mercer and Rees [12] proposed
a new form of shock isolator which is adaptive in its action but is still composed of entirely
passive elements.

Various analytical methods are available in the literature [13–20] for transient analysis
of non-linear systems, namely, Linearization method [14], Ultraspherical polynomial
method [15–17], and Lighthill’s extension of Poincare’s perturbation method [18]. In this
paper, a simple straightforward perturbation method along with Laplace transform is
used. This method is applicable for any order of non-linearity, both in the restoring and
damping forces, expressed in the form of polynomials. A cubic non-linearity in the
restoring force is assumed, whereas various forms of nonlinearities so far as the damping
force is concerned have been included. For example, a cubic type non-linearity over and
above the common linear viscous damping, as exhibited by fluid-dampers at high velocities,
has been given special attention. Numerical results are included for a typical elastomeric
damper which can be modelled by a combination of linear viscous damping and a
dissipative quadratic damping with a negative coefficient.

Three types of base excitations, namely, the rounded step, the rounded pulse and
the oscillatory step given in [8] are considered. Analytical results obtained by the present
method are compared with those obtained by direct numerical integration. For
the quadratic damping case, results are obtained by numerical integration alone since the
symmetric dissipative quadratic damping cannot be expressed in polynomial form. The
effects of nonlinear damping on the response of various models of shock isolators are
discussed in detail.

Figure 1. Non-linear base excited system.
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2. EQUATIONS OF MOTION

A single degree-of-freedom shock isolator system is shown in Figure 1, where the base
is subjected to a shock displacement. The spring and the damper elements of the isolator
are taken to be nonlinear with a cubic nonlinearity superimposed on a linear term. The
equation of motion for the mass m, to be isolated, is

mẍ2 + c0 (ẋ2 − ẋ1)+ c1 (ẋ2 − ẋ1)3 + k0 (x2 − x1)+ k1 (x2 − x1)3 =0 (1)

where x1 and x2 are the absolute displacements of the base and the mass m, respectively,
and the dots denote derivatives with respect to time t. The initial conditions on x2 are taken
to be zero, i.e., x2 = ẋ2 =0 at t=0. This equation is written in the non-dimensional form
as

D0+2zD'+ d*(D')3 +D+ o*D3 = f(T) (2)

where D=(x2 − x1)/x1max is the relative displacement, between the mass m and the base,
non-dimensionalized with respect to the maximum base displacement x1max , the
non-dimensionalized time T=v0 t with v0 =zk0 /m , the primes denote derivatives with
respect to T, and the other non-dimensional parameters are

z=
c0

2mv0
, d*=

c1 v0 (x1max )2

m
, o*=

k1 (x1max )2

k0
, and f (T)=−

x01
x1max

.

The three commonly considered shock displacements of the base [7, 8], taken as input
x1 (t) in equation (1), are shown in Figure 2 and are expressed in functional forms as
follows:

Case (a) Rounded displacement step:
x1 (t)= x1max [1− (1+ gv0 t) e(−gv0 t)] (3)

for te 0
with g as the severity parameter. The nonhomogeneous term in equation (2) is then

f (T)=−g2(1− gT) e(−gT) (4)

for Te 0.

Case (b) Unidirectional rounded displacement pulse:
x1 (t)= x1max (e2/4) (gv0 t)2 e(−gv0 t) (5)

for te 0.
Therefore f(T) in equation (2) is

f (T)=−
e2g2

4
(2−4gT+ g2T2) e(−gT) (6)

for Te 0.
The general form of forcing functions in equations (4) and (6) may be written as

f (T)=0s
N

j=0

Aj Tj1 eaT. (7)

Case (c) Oscillatory displacement step:

x1 (t)= x1max (0·68684) [1− {cos (gv0 t)+0·25 sin (gv0 t)} e(−0·25gv0 t)] (8)

for te 0.
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Figure 2. Different forms of base excited functions. (a) The rounded step displacement; (b) the rounded pulse
displacement; and (c) the oscillatory displacement step.

The corresponding input function in equation (2) is

f (T)=−(17/16) (0·68684)g2[cos (gT)−0·25 sin (gT)] e(−0·25gT) (9)

for Te 0.
In a general form, equation (9) may be rewritten as

f (T)=$s
N

j=0

{Cj cos (vj T)+Dj sin (vj T)}% eaT (10)

3. CLOSED FORM SOLUTIONS

It is desirable to have an analytical solution of equation (2) with f(T) given by either
equation (7) or (10). This would facilitate calculating transients at any given
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instant directly from the closed form solution rather than integrating numerically equation
(2) from T=0. To this end, the perturbation method [18–26] has been used to separate
the terms of the same order and then the solutions of differential equations are obtained
through Laplace transformation.

The parameters d* and e* in equation (2) are taken to be small and of the same order,
when equation (2) can be rewritten as

D0+2zD'+D+ e(d1 (D')3 + e1 D3)= f (T) (11)

where, by putting e1 and d1 equal to zero or one, the effect of non-linearity, in only stiffness
or in only damping or in both stiffness and damping, can be studied. The solution of
equation (11) is perturbed in small parameter e(�1) as

D(T)= s
a

i=0

eiDi (T). (12)

Substitution of equation (12) in equation (11) and collection of like power terms of e yields

D00 +2zD'0 +D0 = f(T) (13)

and

D0i +2zD'i +Di =−e1 $s
i−1

j=0

s
j

n=0

Di− j−1 Dj− n Dn %− d1 $s
i−1

j=0

s
j

n=0

D'i− j−1 D'j− n D'n % (14)

for ie 1, with Di =D'i =0 at T=0[iq 0.

Figure 3. Comparison of analytical and numerical results for the cubic non-linearity in stiffness only. z=0.1,
g=20, o=0.01, o1 =1, d1 =0. w, for linear; *, for I order; y, for II order; —— for numerical. (a) The rounded
step displacement; (b) the rounded pulse displacement; and (c) the oscillatory displacement step.
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Figure 4. Comparison of analytical and numerical results for the cubic nonlinearity in damping only. z=0.1,
o=0.01, o1 =0, d1 =1. w, for linear; *, for I order; y, for II order; —— for numerical. (a) The rounded step
displacement for g=20; (b) the rounded pulse displacement for g=20; (c) the oscillatory displacement step for
g=20; and (d) the oscillatory displacement step for g=1.

The series in equation (12) is a Cauchy product

s
a

i=0

ei and s
a

i=0

Di (T). For e�1, s
a

i=0

ei

is a convergent geometric series and

s
a

i=0

Di (T)

is bounded for zq 0, gq 0 since the solution of equations (13) and (14) are bounded.
Therefore, the series

s
a

i=0

eiDi (T)
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Figure 5. The effect of nonlinear cubic damping on the relative displacement for the rounded displacement step.
g=50, z=0.1, o*=0. ——, d*=0; w, d*=0.01; *, d*=0.05; y, d*=0.1.

is convergent [27]. It is to be noted here that the damping term is retained in equation (13)
in order to avoid secular terms and thereby ensuring bounded solutions [20].

The focus here is on transients alone and over a short time duration when the solution
of equation (11) were observed to give good convergence with only two terms [i.e., i=2
in equation (12)].

3.1.   

With the initial conditions D=D'=0 at T=0, the solutions of equation (13), for the
three forcing functions in equations (4) (6) and (9), are obtained using Laplace
transformation and are listed below:

Cases (a) and (b): corresponding to the generalized forcing function of equation (7),

D0 (T)= e(−zT) [P1 cos (bT)+Q1 sin (bT)]/b+e(aT)$s
N

j=0

(Bj+1 /j!)Tj% (15)

where b=z(1− z2). The other terms, namely P1, Q1 and Bj+1, are given in case (i) of
the Appendix.

Case (c): the solution of equation (13) with f(T) given by equation (10) is

D0 (T)= e(−zT) [P2 cos (bT)+Q2 sin (bT)]/b+eaT$s
N

j=0

(Rj cos (vj T)+Sj sin (vj T))% (16)

where P2, Q2, Rj and Sj are given in case (ii) of the Appendix.
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Figure 6. The effect of nonlinear cubic damping on the response for the rounded step. g=50, z=0.1, o*=0.
——, d*=0; w, d*=0.01; *, d*=0.05; y, d*=0.1. (a) Relative velocity; (b) velocity; and (c) acceleration.

3.2.     

For i=1 and i=2, equation (14) yields

D01 +2zD'1 +D1 =−[e1 (D0)3 + d1 (D'0 )3] (17)
and

D02 +2zD'2 +D2 =−3[e1 (D0)2D1 + d1 (D'0 )2D'1 ], (18)

respectively. Depending upon the type of shock loading, the solution given by equations
(15) or (16) for D0 can be used to obtain the forcing function in equation (17). The solution
of equation (17) can then be obtained by using Laplace transformation with zero initial
conditions. The same process is repeated for the solution of equation (18). When D0 from
equation (15) is substituted in equation (17) and the corresponding D0 and D1 in equation
(18), the non-homogeneous terms can be expressed as a combination of three generalized
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Figure 7. The effect of nonlinear quadratic damping on the acceleration for the rounded step. g=50, z=0.1,
o*=0. ——, d*=0; w, d*=0.01; r, d*=−0.01.

functions: two of which are given by equations (7) and (10) and the third function is

eaT [E cos (VT)+F sin (VT)] 0s
N

j=0

Aj Tj1. (19)

If D0 from equation (16) is substituted in equation (17) and the corresponding D0 and D1

in equation (18), the homogeneous terms can be expressed in the form given by equation
(10).

The Appendix lists the general forms of solutions of equations (17) and (18)
corresponding to the non-homogeneous terms of the form of equations (7), (10) and
(19).

4. RESULTS AND DISCUSSIONS

The results are presented in two parts: the first part to validate the accuracy of the closed
form solutions and the second part to highlight the effects of non-linearity in isolator
elements. The linear damping ratio z is taken to be 0·1 in all the results.

4.1.     

The closed form solutions of equation (2), obtained through Laplace transformation of
equations (13) and (15), were checked against the numerically integrated solutions of
equation (11). Numerical integration was carried out by using the classical fourth order
Runge–Kutta method.

First, the non-linearity in stiffness alone is considered by taking e=0·01, e1 =1 and
d1 =0 in equation (11). Figure 3(a), (b) and (c) show the comparative results for the three
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types of excitation, given by equations (4), (6) and (9), respectively. The severity parameter
of the shock displacement, g, is taken to be equal to 20 for all these results. It is clear from
these figures that even the linear solution is very close to the exact numerical solution. This
indicates that the effect of non-linearity in stiffness of the isolator is negligible. The same
behaviour was observed for a large range of the severity parameter g.

The closed form solutions for an isolator with non-linearity in damping alone are
presented in Figure 4(a)–(c), with e=0·01, e1 =0, d1 =1 and g=20. It is evident from
these figures that the non-linearity in damping affects the response, especially for rounded
pulse and oscillatory step inputs [Figure 4(b) and (c)]. Further, as more terms are included
in equation (12), the result progressively converges to the numerically integrated solution.
It is evident from Figure 4(a) and (b), that closed form solutions match well with the
numerical solution. Similar results were obtained over a large range of g. On the other
hand, for case (c) as seen from Figure 4(c) the two terms solution is still far away from
the numerically integrated results. While varying g for this case, it was observed that only
when the value of g is around 10 did the closed form solution match closely with the
numerical solution. For a value of g around 10, the effect of nonlinear damping is not very
pronounced. The closed form solution again does not yield good results if the severity
parameter g is around 1; in fact, as shown in Figure 4(d), the solution diverges as more
terms are taken in the closed form solution. This is expected near g=1 with the oscillatory
input, because the oscillations in the input are at the linear natural frequency of the isolator
which in turn gives rise to secular terms in the perturbed solutions.

4.2.    

The nonlinear damping term makes the isolator response differ appreciably from the
response of a linearly damped isolator [e.g., see Figure 4(a)]. This difference increases as
the severity parameter g is increased. The effect of nonlinear damping on the response
(relative displacement) to the rounded step input is highlighted in Figure 5. These results
for various vlaues of d* have been obtained through numerical integration of equation (2)
with e*=0. With increasing values of d*, the peak response values increase up to
d*1 0·05, thereafter an increase in d* reduces the peak value. However, the peak values
are always higher for d*q 0 than that for d*=0. Similar trends were also observed for
other types of inputs, namely, inputs of cases (b) and (c). In fact this trend was also
observed for any power-law damping forces with the exponent greater than one.

The relative displacement of the mass is only one of the measures of the isolator
performance. Other performance criteria of a shock isolator are indicated by the absolute
displacement, the relative velocity, the absolute velocity and acceleration of the mass. The
absolute displacement exhibits features similar to those shown in Figure 5 (for the relative
displacement) and is not shown again. The effect of nonlinear damping on the other three
criteria are depicted in Figure 6(a)–(c). Figure 6(a) shows that the peak value of the relative
velocity is reduced by increasing the coefficient of the nonlinear, cubic damping term.
However, Figure 6(b) and (c) clearly indicate that an increase in the same coefficient results
in higher peaks in both the absolute velocity and the acceleration of the isolated mass.

With a shock displacement to the base, the initial velocity across the damping element
is quite large. The cubic non-linearity in damping then causes a large excitation to the mass
which in turn accounts for the high value of its response.

It may be mentioned here that a similar isolator system with various types of shock force
excitation was also investigated. Especially the effect of non-linearities in damping was
studied. It was found that the effect of nonlinear damping with positive coefficients on the
response peaks was negligible, and an increase in the nonlinear damping coefficient always
reduces the peak-response.
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Fluid dampers, in certain range of velocity across them, can be better modelled by
including a quadratic damping term. Some elastomeric isolators are also modelled by a
combination of linear and quadratic damping forces. In the first case the coefficient of the
quadratic term is positive, whereas in the latter, this coefficient is a small (compared to that
of the linear term) negative number. Both these types of damping can be incorporated in
equation (2) if the term d*(D')3 is replaced by d* = D' = D' with d* positive or negative as the
case may be. Figure 7 shows that the peak value of the absolute acceleration can be very
effectively controlled with a negative d*. It was also seen that the effects of such quadratic
damping terms are negligible so far as the relative and the absolute displacements are
concerned.

5. CONCLUSIONS

A single degree-of-freedom, shock isolator system with nonlinear spring and damper has
been considered with the base subjected to three types of shock displacements. A closed form
solution has been approximated through Laplace transformation of the perturbed
differential equations. It has been shown that for rounded step and pulse inputs, the two
term closed form solution suffices to yield accurate response history. For the oscillatory
displacement step input, however, the closed form solution is effective only for a limited
range of the severity parameter g. The advantage of having a closed form solution is in
directly evaluating the transient response at any desired instant, rather than numerically
integrating the equation of motion from t=0.

The non-linearity in the restoring force has negligible effect on the response. On the other
hand, the non-linearity in the damping term appreciably affects the response indices. In
general, the performance of such an isolator with a positive nonlinear coefficient is worse
than that of an isolator with linear damping. However, for elastomeric isolators having a
small negative coefficient of the nonlinear damping term, there is a considerable reduction
in the peak of the acceleration response.
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APPENDIX

In this Appendix the solution of linear second order differential equations with
time-invariant coefficients for three types of generalized non-homogeneous functions with
initial conditions x= ẋ=0 at t=0 are presented.

Consider the equation

ẍ+2zẋ+ x= f(t) (A1)

with initial conditions x(0)= ẋ(0)=0.
Solution of equation (A1) is obtained by using Laplace transformations for three types

of non-homogeneous functions f(t).

Case (i)

f (t)= eat$ s
N

m=0

Am tm%
This is the generalized form of both rounded step and pulse inputs. Solution of equation

(A1) may be written as

x(t)= x1 (t)+ x2 (t)
where

x1 (t)= e−zt [P1 cos (bt)+Q1 sin (bt)]/b

and

x2 (t)= eat$ s
N

m=0

Bm+1 tm/m!%
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where

b=z1− z2;

a=−z+ ib;

and

i=z(−1);

Q1 + iP1 =$ s
N

m=0

(N−m)!AN−m (a− a)m%>(a− a)N+1;

BN+1 =N!AN /G;

BN =[(N−1)!AN−1 −2(a+ z)BN+1]/G,

and

BN+1−m =[(N−m)!AN−m −2(a+ z)BN+2−m −BN+3−m ]/G;

for 2EmEN

where

G= a2 +2az+1.

Case (ii)

f (t)= eat$ s
N

m=0

{Cm cos (vm t)+Dm sin (vm t)}%
This function is a generalized form of the oscillatory step. Solution of equation (A1)

may be written as

x(t)= x1 (t)+ x2 (t)

where,

x1 (t)= e−zt [P2 cos (bt)+Q2 sin (bt)]/b
and

x2 (t)= eat$ s
N

m=0

{Rm cos (vm t)+Sm sin (vm t)}%
where

b=z1− z 2;

a=−z+ ib;

i=z(−1);
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Q2 + iP2 = s
N

m=0

Cm (a− a)+Dm vm

(a− a)2 +v2
m

and

am = a+ ivm ;

Sm + iRm =
Dm + iCm

a2
m +2zam +1

.

Case (iii)

f (t)= eat [E cos (Vt)+F sin (Vt)] 0 s
N

m=0

Am tm1
This type of non-homogeneous terms occur in equations (17) and (18) and it is similar

to equation (19). Solution of equation (A1) may be written as

x(t)= x1 (t)+ x2 (t)

where

x1 (t)= e−zt [P3 cos (bt)+Q3 sin (bt)]/b

and

x2 (t)= eat$ s
N

m=0

{Rm cos (Vt)+Sm sin (Vt)}tm/m!%
where

b=z(1− z2);

a2 =−z+ ib;

and

i=z(−1);

Um =$ s
4m/25

k=0

(−1)k0m+1
2k 1(a− a)m+1−2kV2k%

Vm =$ s
6m/27

k=0

(−1)k0m+1
2k+11(a− a)m−2kV2k+1%

G=(a− a)2 +V2;

Q3 + iP3 =$ s
N

m=0

m!Am (EUm +Vm F)GN−m%>GN+1;

a2 = a+ iV;

G2 = a2
2 +2za2 +1;
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BN+1 =N!AN /G2 ;

BN =BN+1 [(N−1)!AN−1 −2(a2 + z)BN+1]/(N!AN );

BN+1−m =BN+1 [(N−m)!AN−m −2(a2 + z)BN+2−m −BN+3−m ]/(N!AN );

for 2EmEN.

Sm + iRm =(F+ iE)BN+1−m for 0EmEN.


