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A new procedure of non-linear system identification is presented. The procedure employs
the slowly-varying, time-dependent amplitude and phase functions of the impulse response
of the system. These instantaneous characteristics are obtained from the ridges and
skeletons of the wavelet transform. The ridge extraction procedure uses the modulus of the
transform and involves a combinatorial optimization algorithm based on simulated
annealing. The method is illustrated using two simple simulated examples. It is shown that
the procedure can be used for multi-degree-of-freedom systems due to the frequency
localization property of the continuous Grossman–Morlet wavelets.
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1. INTRODUCTION

All physical and engineering systems exhibit in practice non-linear behaviour to some
degree. Non-linearities may arise from structural, geometric and material properties or due
to damage of the structure. Since non-linear systems can display complex phenomena
which linear systems cannot, the distinction between linear and non-linear systems is an
important problem. Classical linear methods applied to non-linear structures provide no
means of describing this complex phenomena. This analysis may also result in inaccuracies
which are too significant to be neglected. Many different procedures have been developed
in structural dynamics to analyze non-linear systems. The most relevant methods that can
be employed in dynamic testing are summarized in reference [1]. Some of these methods
detect non-linearities, others can characterize the type of non-linearity and/or identify
structural parameters. The object of identification is to obtain a mathematical model on
the basis of measured data. If the data is in the time domain (acceleration, force), the
identification is said to be in the time domain. If the measured data takes the form of the
frequency response function (FRF) or spectra, the analysis is said to be in the frequency
domain. Time and frequency analysis has been extended to the use of phase plane,
time–frequency, time–scale approaches, multi-dimensional spectra and models.

The first step in system identification begins with the choice of the input excitation.
Transient response is obtained when the system is excited by a signal of short duration.
This analysis does not appear to be commonly used for non-linear system identification.
However, it offers some important advantages. Transient response exhibits oscillations at
the natural frequencies of the system with the amplitude dependent on the type of
excitation. Different types of excitation can be used to obtain transient response; impulse
excitation, for example, displays the decay nature of vibration. Impulse excitation is very
covenient for a wide variety of applications, especially in laboratory conditions. Different
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excitation levels can be reached with a single dynamic test. Transient response based
procedures do not need any information about the input excitation and allow a direct
non-parametric identification.

It is well known that many types of non-linearities display varying natures of restoring
forces and natural frequencies of the system. The most successful approach to studying
this varying nature of vibration is offered by the Hilbert transform. The method uses the
instantaneous amplitude and frequency of the impulse response function in order to obtain
the backbone curve and the instantaneous logarithmic decrement of the system. These
characteristics give quantitative information about the non-linear behaviour. The method
was developed in the 1980s [2, 3] and has received much attention since that time [4–9].
Despite its success, the Hilbert transform procedure is limited to some types of
applications. The limitation of the method comes from the fact that the Hilbert transform
based envelope and instantaneous frequency is valid only for asymptotic signals, i.e.,
signals which have slowly varying amplitudes compared with phase variations. Even if the
asymptotic signals are used, the Hilbert transform method requires a signal filtration and
differentiation procedure; the latter is not any easy task [10]. In order to avoid these
drawbacks the Wigner–Ville distribution [11, 12] and Gabor transform [13] based
procedures have been used to study the non-linear nature of instantaneous vibration
characteristics. The techniques developed using the Hilbert transform and Wigner–Ville
distribution give the most effective results for single-degree-of-freedom (SDOF) systems.
Applications to multi-degree-of-freedom (MDOF) systems have proved difficult since the
analysis requires bandpass filtration of the signal. This can produce complicated results,
and even fail, if system modes are close in frequency.

Recent developments in the area of time–scale analysis open some possibilities in using
the wavelet transform to study non-linear vibration. Unfortunately, non-linear system
identification has not fully benefited from these developments. A few attempts [14–16] have
been made to detect non-linearities from the amplitude and phase plots of the wavelet
transform. Other applications involve: extraction of impulse response function [17–19],
identification of damping [19, 20], time-dependent FRFs [16] and general system
identification procedures based on wavelet localization and filtration properties [21–23].
There also exists a number of applications limited to fault detection procedures; those
related to structural damage detection include references [24–26]. More recently, the
procedure based on the impulse response function and the wavelet analysis has been
proposed by the author [27, 28]. The method uses the wavelet transform ridges of the
impulse response functions in order to obtain the backbone curve of the system. The ridge
detection procedure was based on the phase of the transform. This could be ineffective
in noisy situations. The method has been used for a SDOF system exhibiting a cubic
stiffness non-linearity.

The aim of this paper is to present an identification procedure for MDOF non-linear
systems. The procedure is based on ridges and skeletons of the wavelet transform. The
ridge detection procedure uses the amplitude of the transform and involves combinatorial
optimization. The paper comprises two major parts. The first part includes sections 2 and
3. Most of the material presented in these sections has been already reported. However,
for the sake of completeness and better understanding of identification procedures it is
necessary to bring some of these developments together. This is especially important for
newcomers to wavelet analysis. Thus, the wavelet transform is briefly introduced in section
2. The ridges and skeletons of the wavelet transform are described in section 3. The
algorithm of ridge extraction is given in the Appendix. Sections 4 and 5 form the new
developments relating to the analysis of non-linear systems. The identification procedure
based on the wavelet transform ridges is given in section 4. Examples of application to
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simulated non-linear systems are presented in section 5. Finally, the paper is concluded
in section 6.

2. CONTINUOUS WAVELET TRANSFORM

A linear transformation which decomposes a function in terms of a basis of elementary
functions can be achieved by the Fourier transform. This decomposition does not give any
local time information about the function due to the infinite nature of the trigonometric
functions used in the analysis. One of the most rapidly evolving methods which provides
for locality is the wavelet transform. This section briefly introduces the continuous wavelet
transform. The reader is referred to references [29–31] for a historical perspective and more
detailed mathematical theory or to references [32, 33] for vibration and signal processing
applications.

2.1. 

A wavelet c(t) is a square integrable function which holds the following admissibility
condition.

0QCc =g
+a

−a

=C(f)=2
=f= dfQa, (1)

where C(f) is the Fourier transform of c(t). A whole family of equally shaped functions
can be generated from this wavelet by shifts in time domain (b-translation) and scaling
in the scale domain (a-dilation),

ca,b (t)=
1

za
c 0t− b

a 1 , aq 0, b$R. (2)

The idea of the wavelet transform is to decompose a signal x(t) into wavelet coefficients
(Wcx)(a, b) using the basis of wavelet functions ca,b (t). This can be expressed
mathematically by the following equations,

(Wcx)(a, b)= �x, ca,b�=g
+a

−a

x(t)c*(a,b)(t) dt, (3)

where c*( · ) is the complex conjugate of c( · ). The locality of the transform requires that
c(t) decays at infinity. Many applications impose additionally regularity and vanishing
moments on wavelets. There are many functions used in practice as wavelets. In this paper,
the Morlet wavelet [34] is used, being defined as,

c(t)= ei2pf0=t= e−=t=2/2. (4)

Other wavelet functions used in pratice can be found in reference [30].

2.2.  

A number of interesting properties of the wavelet transform have been studied and well
documented, e.g., reference [31]. A brief summary of the properties used throughout this
paper and important for the analysis in sections 3 and 4, is given below.

One of the most important properties of the wavelet transform is its conservation of
energy formula, which in fact is a reconstruction. The concentration of energy in the
time–scale domain is discussed in more detail in the next section.
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Since the wavelet transform is a linear representation of a signal, it follows that for given
N functions xi , and N complex values ai (i=1,2, . . . , N),

0Wc s
N

i=1

aixi1(a, b)= s
N

i=1

ai (Wcxi )(a, b). (5)

This property is useful for the analysis of multi-component signals.
It is clear from the definition that the Fourier transform extracts periodic infinite waves

from the analyzed function. In contrast, the wavelet transform analyzes a function only
locally at windows defined by a wavelet function. The frequency localization is clearly seen
when the wavelet transform is expressed in the frequency domain,

(Wcx (a, b)=za g
+a

−a

X(f)C*a,b (af) ei2pfb df, (6)

where C*( · ), is the complex conjugate of C( · ). This localization depends on the dilation
parameter a. The local resolution of the wavelet transform in time and frequency is
determined by the duration and bandwidth of analyzing functions given by reference [31],

Dt= aDtc , Df=
Dfc

a
, (7)

where Dtc and Dfc are the duration and bandwidth of the basic wavelet function,
respectively.

Although the wavelet transform is a time–scale decomposition, there is a relationship
between scale parameter (dilation) and frequency [31]. For the Morlet wavelet given by
equation (4), the relationship between the dilation parameter af and the signal frequency
fx at which the wavelet is focused, can be given as [35].

af = f0
fs

fw

1
fx

, (8)

where fs and fw are the sampling frequencies of the signal and the analyzing wavelet,
respectively. The frequency bandwidth of the wavelet function for the given dilation af can
be expressed as,

Dfx =
1

paf

fs

fw
. (9)

Equations (8) and (9) allow one to obtain a single element of the wavelet decomposition
of the function for a given value of frequency (dilation) and frequency bandwidth.

3. RIDGES AND SKELETONS OF THE WAVELET TRANSFORM

For a physical interpretation, the square of the modulus of the wavelet transform can
be interpreted as an energy density distribution over the (a, b) time–scale plane. The energy
of a signal is mainly concentrated on the time–scale plane around the so called ridge of
the wavelet transform. Following reference [36], the basic description of ridges and
skeletons is presented in this section.
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3.1. 

Assuming that the signal and the wavelet are asymptotic, let us introduce some
stationary points ts of,

f�a,b (t)=fx (t)−fc 0t− b
a 1 , (10)

where fx and fc denote the instantaneous phases of the signal and the wavelet,
respectively. Mathematically the ridge of the function is the curve a= r(b), which consists
of points (a, b) satisfying the condition ts (a, b)= b [36]. This means in practice that the
wavelet transform gives the contribution of such stationary points to the scalar product
between the signal and the wavelet in equation (3). The ridge of the wavelet transform is
directly related to the instantaneous frequency of the signal. This property follows from
the ridge definition [36]

r(b)=
f� c (0)
f� x (b)

. (11)

The values of the wavelet transform restricted to its ridge form the skeleton of the wavelet
transform, which can be represented as [36]

(Wcx)(r(b), t)=C(t)xa (t), (12)

where C(t) is the correction function completely determined by the wavelet and the ridge
and xa (t) is the analytic signal defined as

xa (t)= x(t)+ ix̂(t), (13)

where x̂(t) is the Hilbert transform of the x(t) defined as

x̂(t)=
1
p g

+a

−a

x(t)
1

t− t
dt. (14)

This means in practice that the signal and its Hilbert transform are approximately given
by the real and imaginary parts of the skeleton of the wavelet transform, respectively.

3.2.   

There exist different algorithms for the ridge extraction. The most usual one uses the
local maxima of the amplitude of the transform. However, this algorithm gives exact values
only for linear ridges. The better way of extraction can be obtained from the phase
function. This algorithm was proposed by Tchamitchian and Torresani [36]. It uses the
following properties of the ridge [36],

1V(a, b)
1a

=0, $dV(a, b)
db %ts(a,b)= b0

=
f� c (0)

a
(15)

on the ridge and on the intersection with the ridge, respectively. Here V(a, b) is the phase
of the wavelet transform. It appears in practice, that the phase of the wavelet trnasform
is often difficult to control in the presence of the noise in the data. Thus, Carmona et al.
[37] proposed two improved algorithms based on the amplitude of the wavelet transform.
The first one uses a concept of the parametrized ridge based on the so called ‘‘snake’’
functions. The second one employs the combinatorial optimization procedure. A
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Figure 1. Impulse response function for the analyzed SDOF system.

comparative study presented in reference [37] shows that both algorithms are very effective
for the ridge extraction. The simplified algorithm, based on the amplitude of the wavelet
transform and involving the combinatorial optimization procedure, is used in the present
work. For the sake of completeness this algorithm is described in the Appendix.

4. PARAMETER IDENTIFICATION PROCEDURE

Vibration instantaneous characteristics of restoring forces and natural frequencies can
be used for system identification. In the case of non-linear systems these characteristics
simply vary in time and become functions of the vibration amplitude. It has been shown
in the previous section that instantaneous characteristics, namely the envelope and
instantaneous frequency, can be obtained using wavelet transform ridges and skeletons.
This section gives the non-linear system identification procedure based on the ridges and
skeletons of the wavelet transform.

4.1.    

The linear MDOF system is governed by the general equation,

[M]X� +[C]X� +[K]X=P, (16)

Figure 2. Wavelet transform for the impulse response function from the analyzed SDOF system: (a) amplitude;
(b) phase.
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Figure 3. Graph of the fitness function for the ridge extraction procedure.

where [M], [C], [K] are mass, damping and stiffness matrices, respectively, and P is the
excitation vector. The response X of the system can be obtained using modal analysis or
a direct forced response approach. Mathematically equation (16) is in general a set of N
coupled equations. If the MDOF system given by equation (16) is linear and conservative,
the impulse response can be expressed by a linear combination of its modal components.

Figure 4. Ridge (a) and Skeleton (b) of the wavelet transform given in Figure 2. ––, Real part; - - - , imaginary
part.
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Figure 5. Instantaneous characteristics for the analyzed SDOF system: (a) envelope; (b) frequency.

In practice, when the damping is assumed to be small, N uncoupled equations similar to
SDOF systems can be obtained,

miẍi (t)+ ciẋi (t)+ kixi (t)= pi (t), (17)

for i=1, 2, . . . , N. The impulse response of this MDOF system can be given in general
form as,

h(t)= s
N

i=1

Ai e−zivni
t sin (z1− z2

i vnit+ ui ), (18)

where vni is the natural frequency, N is the number of considered modes, Ai is the residue
magnitude of the ith mode and zi is the damping ratio. This response represents a linear
combination of its single modal components. Each mode is given by an exponentially
decaying harmonic function. For a non-linear MDOF system and weak non-linearities it
is still possible to use the above decoupling procedure. However, it is obvious that the
decay amplitude and frequency characteristics in equation (18) are no longer constant. This
is discussed in section 4.2.

As shown in section 2, the wavelet transform is a signal decomposition procedure
working as a filter in the time–frequency domain. Thus, it offers a possible means of
uncoupling vibration modes. Since the analyzing wavelet function has compact support
in the time and frequency domains, equation (3) can be re-written for multicomponent
signals, using equations (5) and (7),

0Wc s
N

i=1

xi1(a, b)=
1

za
s
N

i=1 g
t+ aDtc

t− aDtc

xi (t)c* 0t− b
a 1 dt. (19)
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From equations (6) and (7) this can be expressed in the frequency domain as,

0Wc s
N

i=1

xi1(a, b)=za s
N

i=1 g
fi +Dfc /a

fi −Dfc/a

X(f)C*a,b (af) ej2pfb df. (20)

The wavelet analyzing function for each ith mode is peaked at modal frequency fi . For
the Morlet wavelet function the relationship between frequency and dilation, and the
frequency bandwidth of the filter is given by equations (8) and (9), respectively.

Figure 6. Backbone curve (a) and decaying envelope (b) for the analyzed SDOF system. ––, wavelet analysis;
- - - , theory.
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Figure 7. Impulse response function for the analyzed SDOF system in the presence of 20% noise.

Figure 8. Wavelet transform amplitude (a) and its ridge (b) for the impulse response given in Figure 7.

4.2. - -   

For the simple case of a linear SDOF system,

mẍ(t)+ cẋ(t)+ kx(t)= p(t), (21)
the impulse response function is given as,

h(t)=A0 e−zvn t sin (z1− z2vnt+ u), (22)

T 1

System identification parameters
Analyzed ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

data Damping Error Stiffness Error Stiffness Error
sets c % k1 % k3 %

Theory 0·0013 – 0·16p2 1 1·558 – 100·0 –

0% noise 0·001296 −0·3 1·586 +1·8 97·0 −3·0
5% noise 0·001320 +1·5 1·590 +2·1 96·3 −3·7

10% noise 0·001296 −0·3 1·578 +1·3 96·9 −3·1
20% noise 0·001238 −4·8 1·584 +1·7 106·7 +6·7
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Figure 9. Backbone curve (a) and decaying envelope (b) for the analyzed SDOF system in the presence of
20% noise. ––, wavelet analysis; - - - - , theory.

where vn is the natural frequency, A0 is the residue magnitude and z is the damping ratio.
Here the oscillating term is given by a sine wave at the damped natural frequency and the
damping is represented by the exponentially decaying envelope. It is well known that the
dissipative mechanism of the system can be detected by the analysis of the decaying
envelope A(t) of the impulse response function. In turn, the restoring force mechanism can
be studied using the time varying frequency content f(t) of the impulse, response function.
For the system given by equation (21) the constitutive functions A(t) and f(t) are known
in the explicit form as,

A(t)=A0 e−zvn t, f(t)=z1− z2vnt+ u, (23)

where z= c/2zkm, m and k are mass and stiffness of the system, respectively.
For non-linear systems the decay envelope and frequency characteristic given by

equations (23) are modified according to the type of damping and stiffness non-linearities.
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Figure 10. Impulse response functions (x1(t)− (a) and x2(t)− (b)) for the analyzed MDOF system.

For simplicity, consider a non-linear SDOF system represented by the general equation
of the free decay,

mẍ(t)+D(x, ẋ)=0, (24)

where D(x, ẋ) represents linear and non-linear damping and restoring forces. This
equation can be rewritten as,

mẍ(t)+v2
nx+ oS(x, ẋ)=0, e�1, (25)

Figure 11. Wavelet transform amplitude (a) and its ridge (b) for the impulse response given in Figure 10.
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Figure 12. Wavelet transform amplitude (a) and its ridge (b) for the x1(t) impulse response function from the
analyzed MDOF system.

and solved using the Kryloff–Bogoliuboff method [38]. The solution can be given in the
general form of slowly-varying, time-dependent amplitude and phase functions. For a
simple example of Coulomb friction, i.e., S(x, ẋ)= c sgn (ẋ), the solution of equation (25)
yields,

A(t)=A0 −
2c
pmXm

k
t,

u(t)= u0. (26)

This clearly shows that the decay envelope for a Coulomb friction system is linear and
the instantaneous frequency is constant. In contrast the linear system exhibits the
exponential behaviour of the decay envelope as shown by equation (23). Other examples
of instantaneous characteristics of typical non-linear systems are given in references
[7, 13, 39].

Often a natural frequency and damping coefficient of a system are given as functions
of the free vibration envelope A. A graphical representation of vibration behaviour in the
form of a function of natural frequency versus free vibration envelope is called a backbone
curve. For a linear system a backbone does not depend on the envelope and is constant.
For a simple example of cubic stiffness, i.e., S(x, ẋ)= kx+ k3x3, the backbone is given
by [39],

f(t)=
1
2pXk

m 01+
3
8

k3

k
A21 , (27)

and clearly shows the non-linear dependency of the natural frequency on the free response
envelope A. Other examples can be found in references [7, 13].

The backbone and damping characteristics can be obtained from the wavelet transform
ridges and then used for the system identification. Consider the solution of equation (25)
in the form of the analytical signal,

x(t)=A(t) ejf(t). (28)
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Assume that the envelope A(t) is slowly varying. For the Morlet wavelet function c(t)
given by equation (4), which is also an analytic complex-valued function and has good
localization properties in the frequency domain, the wavelet transform of the solution (28)
can be approximated as [37],

(Wcx)(a, b)1A(b)C*((af� (b)) ejf(b) + 0(=A� =, =f� =), (29)

where C*( · ) denotes the complex conjugate of C( · ). The modulus of this function is
given by,

=(Wcx)(a, b)=1A(b)=C*(af� (b))=. (30)

It can be seen that this modulus is maximum in the neighbourhood of the ridge defined
in section 3.1. Thus, from equation (11) the instantaneous frequency of the analytical
solution can be obtained from the ridge of the wavelet transform. If the ridge is known,
the envelope of the signal can be approximately recovered from the skeleton of the wavelet
transform following equation (30).

Figure 13. Backbone curve (a) and decaying envelope (b) for the first mode of the analyzed MDOF system.
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The above analysis does not need to be restricted to the analytic form of the solution
given by equation (28). In the case of the real valued signals, when the progressive Morlet
wavelet function c(t) is used, the corresponding wavelet transform is given by [37].

(Wcx)(a, b)= �x(t), ca,b (t)�= 1
2�xa (t), ca,b (t)�, (31)

where �x, c� is the orthogonal projection of functions x(t) and c(t); xa (t) is the analytic
signal of x(t).

Finally, the identification procedure can be summarized in the following steps: (1)
Compute the wavelet transform of the impulse response function using equation (6) and
employing the classical FFT procedure. (2) Select the wavelet parameters for the mode
decoupling procedure using equations (8) and (9). (3) Apply equation (20) to obtain the
wavelet based mode decoupling. (4) For each mode perform the identification procedure:
obtain the ridge following the algorithm given in the Appendix; compute the instantaneous
frequency and envelope from the ridge of the wavelet transform using equations (11) and
(30), respectively; obtain the backbone function from the instantaneous characteristics; fit
the well-known decay envelope and backbone functions [39] to the characteristics obtained
from the wavelet transform; obtain the values of non-linear parameters from the fitted
curves.

The method of identification based on the complex envelope and Hilbert transform [7, 8]
can offer a similar procedure. However, the main interest of the wavelet transform based
analysis is in the context of filtering, which in the case of classical methods is performed
in the time or frequency domain, and in the case of the wavelet transform analysis is
realized in the combined time–scale domain. This allows one to use the method for a
combination of asymptotic signals which in practice represent non-linear and time-variant
behaviour of the system. Thus, the wavelet based identification procedure is more suitable
for MDOF systems.

5. EXAMPLES OF IDENTIFICATION PROCEDURE

The identification procedures based on the ridges and skeletons of the wavelet transform
are illustrated in this section using simulated and experimental data. The algorithms
presented before were coded in C and implemented on a SUN workstation. The wavelet
transform was calculated in the frequency domain as a bank of filters based on the Morlet
analyzing wavelet. The details of this implementation can be found in reference [40].

5.1.         -

The first example analyzed involves a simple SDOF system with Coulomb friction and
cubic stiffness non-linearities given by,

mẍ+ c sgn (ẋ)+ k1x+ k3x3 =0, (32)

where m=1, c=0·0013, k=0·16p2 and k3 =100·0. The system was simulated using a
fourth order Runge–Kutta procedure with non-zero initial displacement condition
x(0)=1·0. The simulated impulse response is given in Figure 1(a). The simulated response
was additionally corrupted by white Gaussian noise with three different levels: 5, 10 and
20% of the maximum amplitude of the data. Thus, four different sets of data were used
in further analysis. Wavelet analysis was based on 512 data samples and involved the
following parameters: data sampling frequency fs =1·92 Hz, wavelet sampling frequency
fw =1·68 Hz and minimum dilation amin =0·25. An example of the wavelet transform of
the response is presented in Figure 2. The wavelet transform is given in the form of contour
plots of its amplitude and phase. The decaying nature of the impulse response can be
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observed in the amplitude of the transform. The values of the phase change from 0 to 2p.
When the phase reaches 2p, it is wrapped around to the value 0. The vertical stripes
represent lines of constant phase. The phase of the wavelet transform is shown here as an
example and is not used in further analysis.

The amplitude based algorithm with combinatorial optimization, given in the Appendix,
was applied to obtain the ridges and skeletons of the wavelet transform. Here the values
of l and m in equation (34) were chosen to be 6×10−3 and 3×10−3, respectively. The
initial temperature C was chosen to be 3×10−4. The number of iterations used was equal
to 50 000. Figure 3 shows an example of the graph of the fitness function. It can be seen
that the procedure reached the minimum after about 35 000 iterations. That needed about
30–40 s of computation. An example of the ridge and skeleton of the transform is given
in Figure 4. Figure 5 shows the envelope and instantaneous frequency characteristics
obtained from the wavelet ridge and skeleton. Small disturbances can be observed only
at both ends of the instantaneous frequency. Figure 6 shows the backbone curve and
decaying amplitude. Here the characteristics obtained from the wavelet transform, given
by a solid line, show very good agreement with the theoretical characteristics given by a
dashed line. The results clearly display cubic stiffness and dry friction non-linearities. The
parameter identification procedure was performed on the basis of the backbone curve and
decaying envelope. Simply the characteristics obtained from the wavelet transform were
curve-fitted to the theoretical characteristics. This resulted in the values of damping and
stiffness parameters equal to c=0·001296, k1 =1·586 and k2 =97·0. The percentage errors
for these parameters are equal to 0·3, 1·8 and 3·0%. The same procedure was used to
analyze the noisy data. The data was corrupted by 5, 10 and 20% of the noise. An example
of the impulse response corrupted by the 20% noise is presented in Figure 7. Figure 8
shows the amplitude of the wavelet transform and the ridge obtained using the
combinatorial optimization procedure. Table 1 summarizes the results of parameter
identification. It can be seen that only the 20% level of noise significantly effects the values
of damping (4·8% error) and non-linear stiffness (6·7% error) parameters. This results
from the poor estimation of the backbone curve and decaying amplitude, as shown in
Figure 9. Simply, the ridge extraction procedure, based on the wavelet amplitude and
simulating annealing algorithm, gets ‘‘trapped’’ in the noise, as shown in reference [37].
In many applications, the procedure based on smoothing and subsampling can be used
to improve the results [37]. However, this requires some a priori knowledge about the noise
statistics.

It has to be mentioned that the parameter identification procedure was performed on
the basis of the theoretical backbone curve and decaying envelope. The a priori knowledge
of these characteristics was possible in the simple example studied in the paper. In general,
an alternative approach could be an application of stiffness and damping forces,
constructed from the instantaneous characteristics, followed by any well-known curve
fitting procedure [7].

5.2.      -

For simplicity, the two-degree-of-freedom (2-DOF) system with cubic stiffness
non-linearity was used as the second example. However, it is assumed that the procedure
can be used for general MDOF systems. The differential equations governing the system
were,

m1ẍ1 + c1ẋ1 + k1x1 − k3x3
1 + k2(x1 − x2)=0, (33)

m2ẍ2 + c2ẋ2 + k1x2 − k2(x1 − x2)=0,
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with m1 =m2 =1, c1 =0·08, c2 =0·01, k1 =1·0, k2 =1·2, k3 =80·0 and non-zero initial
displacement condition x1(0)=1·0.

The system was simulated using a fourth order Runge–Kutta procedure. Figure 10
shows the impulse responses of the system. The wavelet transform was applied to x1(t)
impulse response. The analysis involved the same wavelet parameters as used previously
in section 5.1. The amplitude of the wavelet transform is given in Figure 11(a). Two
vibration modes can be observed. The frequencies were estimated as 0·16 Hz and 0·30 Hz.
The ridge detection procedure was applied twice, separately for each mode. The simulating
annealing procedure used the parameters from the previous section. The wavelet ridges can
be observed in Figure 11(b). In practice the data can be decoupled before the ridge
extraction procedure is performed. Since the wavelet transform is computed in the
frequency domain, the decoupling procedure makes the use of equation (20) using the
values of dilation obtained from equation (8) for a given value of frequency equal to
0·16 Hz. The frequency bandwidth was estimated from equation (9). Figure 12 shows the
wavelet transform and its ridge for the first vibration mode. The values of wavelet sampling
frequency fw and minimum dilation amin were equal to 1·4 and 0·6 Hz, respectively. More
examples of wavelet based decoupling procedure, involving very close modes, can be found
in reference [19]. Finally, Figure 13 shows the backbone curve and exponentially decaying
amplitude for the first mode of vibration. The backbone curve in Figure 13 clearly shows
the cubic stiffness non-linearity.

6. CONCLUSIONS

The method of identification of MDOF non-linear systems has been presented. The
method is based on wavelet analysis of the system impulse response. The continuous
wavelet transform is used for system mode decoupling. The mathematical framework of
the decoupling procedure has been provided. The ridges and skeletons of the wavelet
transform are used to obtain the instantaneous envelope and frequency characteristics.
These characteristics are employed to obtain backbone curves and decay envelopes of the
system which in turn are used for system identification. The method has been applied to
simulated SDOF and MDOF systems giving satisfactory identification results. The results
are not significantly effected by the presence of the noise in the data, apart from the very
high level (20%) of the noise.

More studies involving simulated and experimental non-linear systems are required to
fully establish the method. Further work should especially involve the analysis of MDOF
systems with close modes and a comparative study with the Hilbert transform and other
time–frequency based procedures.
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APPENDIX: A RIDGE EXTRACTION PROCEDURE

The algorithm of ridge extraction is briefly described below. For more details and
extraction examples the reader is referred to reference [37].

The problem of ridge extraction can be considered as one of optimization. For all
possible functions a= r(b) over a finite set R one looks for a function which concentrates
most of the energy in the time–scale domain, or in other words which follows the local
maxima of the wavelet transform. This in practice leads to the optimization problem of
the functional [37]

F(r)=−g =(Wcx)(b, ri (b)=2 db+g [lṙ(b)+ mr̈(b)]2 db, (34)

where l and m are the parameters chosen according to the value of variance of the analyzed
data. The estimate of the ridge is now the function a= r(b), which minimizes the functional
F(r). The first term in equation (34) represents the energy of the wavelet transform
restricted to the ridge. The second term in this equation is the energy of the ridge based
on the local maxima representation. It is required to control the smoothness of the ridge.
Carmona et al. [37] gives the Bayesian interpretation of the ridge extraction procedure
based on the optimization scheme.
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To avoid the problem of the existence of many local minima of F(r) in the presence of
the noise, combinatorial optimization can be used. In this paper the algorithm of simulated
annealing was applied. The method is based on an analogy to thermodynamics, namely
a process of annealing and the Boltzman theorem of thermal equilibrium. More details
can be found in reference [41].

The simulated annealing procedure used for the minimization of F(r) can be summarized
in the following steps [37]:

(1) Discretization—represent the ridge a= r(b) in the form of a finite sequence r= r(0),
r(1), . . . , r(m), . . . , r(n−2), r(n−1), where m=0, 1, . . . , n−1.

(2) Neighbourhood ridge—define the neighbourhood ridge as a finite sequence
rn = r(0), r(1), . . . , r(m)3 1, . . . , r(n−2), r(n−1), where m=0, 1, . . . , n−1.

(3) Initialization—start the annealing procedure with the initial ridge r0 for a
temperature T0 =C/ln(2); compute the value of the penalty function F(r0).

(4) Step k:
update the temperature according to Tk =C/ln(1+ k);
for randomly selected integer p$�0, n−1� and a number u=31 take the ridge
rc

k = rc
k (0), rc

k (1), . . . , rc
k (p)+ u, . . . , rc

k (n−2), rc
k (n−1);

compute the value of the penalty function F(rc
k ) and compare it with F(rk−1);

if F(rc
k )EF(rk−1) update the ridge, i.e., rk = rc

k ;
if F(rc

k )qF(rk−1) take the random number s(s$�0, 1�);
if sE exp− [F(rk )−F(rk−1)]/Tk update the ridge, i.e., rk = rc

k otherwise keep the
same ridge, i.e., rk = rk−1.

This iteration procedure can be stopped after a fixed number of steps when the ridge
does not change. A number of examples of ridge extraction procedure based on the phase
and amplitude of the wavelet transform can be found in references [27, 28, 37].


