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Three-dimensional small-amplitude free and forced vibration problems of an inclined sag
cable equipped with discrete oil dampers are formulated in this paper using a hybrid
method. The hybrid method can readily consider cable sag, cable inclination, cable internal
damping, damper direction, damper stiffness and others. Multi-pairs of oil dampers with
either symmetric or unsymmetric arrangement can also be dealt with. From complex
vibration analyses, the damping ratios of a cable, attributed to the installed oil dampers,
in both in-plane and out-of-plane modes of vibration can be estimated. The dynamic
in-plane and out-of-plane responses of the cable under harmonic excitation can also be
determined in the frequency domain. The application of the derived formulae to sag cables
in a real cable-stayed bridge is presented in part II of this paper with extensive parametric
studies.
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1. INTRODUCTION

In the past few decades, cable-stayed bridges have found wide application throughout the
world. The main span of the bridges has reached a level of 900 m, leading to very long
stayed cables. These long stayed cables with very low internal structural damping are prone
to wind-induced vibration, wind-rain-induced vibration, or vibration due to parametric
excitation caused by the motion of either bridge deck or towers [1, 2]. To overcome cable
vibration problems, oil dampers have been used to connect the cable to the bridge deck,
as done in the Brotonne bridge in France, the Sunshine Skyway bridge in U.S.A., and the
Aratus bridge in Japan.

To obtain maximum vibration energy dissipation and to facilitate the design of oil
dampers, some research has been carried out on the achievable maximum modal damping
ratios in the cable and the optimum parameters for the oil damper [3–7]. In these previous
studies, an inclined cable with an oil damper was modelled as a horizontal taut string with
the damper normal to the string near its support. Complex eigenvalue analysis through
the Galerkin method was used to find solutions. Cable sag, cable inclination, and others
could not be considered. Consequently, the predicted maximum modal damping ratios
were found to be larger than the measured results [5, 8] and the computation effort was
tremendous.

Recently, the writers developed an analytical/numerical hybrid method for studying
mitigation of in-plane vibration of sag cables in cable-stayed bridges using oil dampers
[9, 10]. This method is able to take account of cable sag, cable inclination, cable internal
damping, damper stiffness, damper direction and others, and requires reasonable
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computation effort. The results obtained reveal that the cable sag, damper stiffness and
damper direction may affect the performance of oil damper in reducing cable vibration.
In particular, when the cable sag parameter l2 (the ratio of the elastic-to-catenary stiffness)
falls in a certain range around one of the frequency avoidances of inclined cables, the oil
damper installed near the cable support will not be able to provide sufficient damping ratio
for the corresponding mode of vibration.

In this paper, the hybrid method is further developed to study three-dimensional free
and forced vibration of sag cables in cable-stayed bridges with multiple pairs of oil
dampers. This is because for most cable-stayed bridges, oil dampers are installed in pairs
to stay cables to keep damper systems stable and to reduce both in-plane and out-of-plane
cable vibrations. It is, however, unknown as to how to determine the achievable maximum
modal damping ratios in both in-plane and out-of-plane vibrational modes of a stayed
cable and the optimum parameters for oil dampers. It is also unclear when the results from
in-plane vibration studies can be applied to three-dimensional vibration problems. The
formulation of the three-dimensional problem concerned is thus presented in part I of this
paper. The application and the design-concerned matters are introduced in part II of this
paper.

2. BASIC EQUATIONS

2.1.   

This study concerns three-dimensional vibration of an inclined sag cable with multi-pairs
of oil dampers installed near the cable support (see Figure 1). The uniform cable is assumed
to have small amplitude vibration with respect to its static equilibrium position. By setting
the x- and y-co-ordinates in the static profile plane of the cable and taking the left support
of the cable as the origin of the Cartesian co-ordinate system, the motion of the cable with
oil dampers can be expressed by the three partial differential equations:
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where T is the static cable tension; t is the dynamic cable tension; u, w and v are the cable
dynamic displacement components in the x-, y- and z-directions, respectively, measured
from the position of static equilibrium of the cable; s is the Lagrangian co-ordinate in the
unstrained cable profile; Fx , Fy and Fz are external dynamic loading per unit length in the
x-, y- and z- directions, respectively; fx, j , fy, j and fz, j are the forces exerted by the jth pair
of oil dampers on the cable at the location of sc, j in the x-, y- and z-directions, respectively;
sc, j is the Lagrangian co-ordinate of the jth pair of dampers measured from the left support
of the cable; M is the total number of pair of oil dampers; d is the Dirac’s delta function;
m is the mass of the cable per unit length; t is the time; c1 and c2 are the in-plane and
out-of-plane internal damping coefficients of the cable, respectively; and g is the
acceleration due to gravity.
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Figure 1. Schematic diagram of an inclined sag cable with oil dampers.

Introducing the following transformations
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and considering the equations of static equilibrium of the cable, equations (1)–(3) can be
rewritten as
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where H is the horizontal component of the static cable tension in the x–y plane; h is the
horizontal component of the dynamic cable tension; yx is the first derivative of y with
respect to x; xc, j is the co-ordinate of the jth pair of dampers measured from the right
support of the cable; and L is the horizontal length between two cable end-supports in
the x–y plane.

The relationship between the dynamic cable tension and dynamic cable displacement in
the Lagrangian co-ordinate can be expressed as

t=EA
ds̄2 − ds2

2ds2 (10)

where E is the cable modulus of elasticity; A is the cross-sectional area of the cable; ds̄
and ds are the arc-lengths of the deformed and undeformed cable segments, referring to
the static cable profile and dynamic cable profile, respectively, through the relations

ds2 = dx2 + dy2 (11)

ds̄2 = (dx+ 1u)2 + (dy+ 1w)2 + 1v2. (12)

As a result, the horizontal dynamic cable tension h can be expressed as

h=
EA

(1+ y2
x )3/2 61u

1x
+ yx

1w
1x

+
1
2 $01u

1x1
2

+01w
1x1

2

+01v
1x1

2

%7. (13)

Since small-amplitude vibration is concerned in this study, the horizontal dynamic cable
tension h is reduced to its first order, leading to
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Substituting equation (14) into equations (7)–(9) and discarding the differentials of high
orders result in
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The boundary conditions of the cable considered here are

u(0, t)= u(L, t)=w(0, t)=w(L, t)= v(0, t)= v(L, t)=0. (18)
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2.2.  

Let us consider the forces fx, j , fy, j and fz, j generated by the jth pair of oil dampers on
the cable in the x-, y- and z-directions, respectively. Assume that the pair of oil dampers
have the same stiffness k and damping coefficient c. The direction of each damper from
the deck to the cable is defined as the positive direction. The direction cosines of damper
1 in the jth pair are denoted by cos a1, j , cos b1, j and cos g1, j , respectively; the direction
cosines of damper 2 are cos a2, j , cos b2, j and cos g2, j , respectively. The forces fx, j , fy, j and
fz, j , which depend on the displacement and velocity of the cable at the location xc, j of the
jth pair of dampers, can then be determined by the following equation:
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If the jth pair of dampers are installed symmetric to the static equilibrium position of the
cable, all the direction cosines can be expressed in terms of two independent variables aj

and gj as shown in Figure 1.
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Clearly, if all pairs of oil dampers are installed to the cable symmetrically, the in-plane
damper force components are independent of the out-of-plane damper force components.
This is because the in-plane damper force components from the pair of oil dampers caused
by the out-of-plane displacement component always cancel each other. The
three-dimensional vibration of the cable with oil dampers can thus be decomposed into
the mutual independent in-plane vibration and the out-of-plane vibrations according to
equations (15)–(17).

2.3.   

The static profile of an inclined cable considering elastic extension can be expressed
as [11]:
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whre L0 is the unstrained arc length of the cable; V is the vertical component of the static
tension of the cable at the left support in the x–y plane. The first derivative of the static
cable displacement y with respect to x is therefore calculated by

yx =
dy/ds
dx/ds

=
dy
dx

. (26)

Equations (24) and (25) must satisfy the two boundary conditions

x(L0)=L (27)

y(L0)=R (28)

where R is the vertical distance between two supports of the cable in the x–y plane, as
shown in Figure 1.

By using an iteration procedure incorporating Newton’s method and the dimensionless
technique [12] and the two boundary conditions, dy/dx can be determined with a quick
convergence and a little computational effect.

3. HYBRID METHOD

The hybrid method developed by the writers for both free and forced in-plane vibrations
of an inclined sag cable with an oil damper [10] are now extended to the three-dimensional
free and forced vibrations of an inclined sag cable with multiple oil dampers. There are
three major steps involved in the hybrid method. The first step is to discretize the sag cable
into a series of small segments and let the dampers locate at some of the element nodes
so that the equations of motion of the cable without dampers can be applied to each
segment. The second step is to use an orthogonal transformation to decouple the equations
of in-plane motion of the cable and to find the local solutions for each segment. The last
step is to assemble these local solutions to form a system matrix by considering the
connective conditions between any two segments and using a transfer matrix procedure.
From the system matrix in conjunction with the boundary conditions of the cable, the
complex eigenvalue and dynamic response of the cable can be finally determined
numerically. The following is a summary of the formulae used for three-dimensional free
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and forced vibrations of an inclined sag cable subject to uniformly distributed harmonic
loads with multi-pairs of oil dampers.

3.1.    

Divide the inclined sag cable into N segments and let the dampers be located at some
of the segment nodes (see Figure 2). By assuming yx to be a constant for each small
segment, equations (15)–(17) for the ith segment can be rewritten as
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Figure 2. Discretization of cable-damper system.
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k	 i =
EA
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In the above equations, the subscript i indicates the ith segment except for the
x-co-ordinate in which the subscript i indicates the ith node. xi and xi+1 are the
x-co-ordinates of the left and right side nodes (i.e. the ith and i+1th nodes) of the ith
segment. For free vibration the external loads F	 x,i , F	 y,i and F	 z,i should be dropped.

The solutions ui (x, t), wi (x, t) and vi (x, t) in equations (29)–(31) should satisfy the
connective conditions at each node between two segments. The connective conditions are
regarded as the continuity of displacement and the equilibrium of force. They are expressed
differently according to whether the node is supported by the dampers or not.

If the ith node is not the node where the dampers are installed, the connective conditions
are

ui−1 (xi , t)= ui (xi , t) (37)

wi−1 (xi , t)=wi (xi , t) (38)

vi−1 (x, t)= vi (xi , t) (39)

0H+
k	 i−1

1+ y2
i−1,x1ui−1,x (xi , t)+

k	 i−1 yi−1,x

1+ y2
i−1,x

wi−1,x (xi , t)

=0H+
k	 i

1+ y2
i,x1ui,x (xi , t)+

k	 i yi,x

1+ y2
i,x

wi,x (xi , t) (40)

0H+
k	 i−1 y2

i−1,x

1+ y2
i−1,x1wi−1,x (xi , t)+

k	 i−1 yi−1,x

1+ y2
i−1,x

ui−1,x (xi , t)

=0H+
k	 i y2

i,x

1+ y2
i,x1wi,x (xi , t)+

k	 i yi,x

1+ y2
i,x

ui,x (xi , t) (41)
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If the nth node is the node where the jth pair of dampers are installed, the continuity
conditions of displacement remain the same as those expressed by equations (37)–(39). The
equilibrium conditions of force at the nth node, however, should be changed to
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Hvn−1,x (xn , t)− fz, j =Hvn,x (xn , t). (45)

Correspondingly, the boundary conditions can be rewritten as

u1 (x1, t)= uN (xN+1, t)=w1 (x1, t)=wN (xN+1, t)= v1 (x1, t)= vN (xN+1, t)=0. (46)

3.2.     

In the case of forced vibration, only uniformly distributed harmonic loads along the
cable in x-, y- and z-directions are considered.

&Fx

Fy

Fz'= &F*x
F*y
F*z ' eVt (47)

in which F*x , F*y , F*z are the amplitudes of the harmonic load per length in the x-, y- and
z-directions, respectively; and V is equal to Iv, in which I is equal to z−1 and v is the
frequency of the harmonic load. To be consistent with equations (29)–(31), the external
harmonic load is rewritten as

&F	 x,i

F	 y,i

F	 z,i'=z1+ y2
i,x &F*x

F*y
F*z ' eVt = &F	 *x,i

F	 *y,i

F	 *z,i' eVt. (48)

To determine the dynamic response or the modal damping ratio of the cable with discrete
oil dampers, a complex eigenvalue analysis should be carried out. By using the method
of separation of variables, the solutions of equations (29)–(31) can be written as

&ui (x, t)
wi (x, t)
vi (x, t)'= &fi (x)

8i (x)
ci (x)' eVt (49)

where fi (x), 8i (x) and ci (x) are the complex eigenfunction components of the ith
segment in the x-, y- and z-directions. If free vibration is concerned, V in equation (49)
is taken as the complex eigenvalue given in terms of the modal damping ratio j and the
pseudo-undamped natural frequency v of the cable-damper system, that is

V=Vr + IVI =v(−j2 Iz1− j2) (50)

where Vr and VI are the real part and imaginary part of the eigenvalues V. Substituting
equations (48) and (49) into equations (29)–(31) and introducing the following orthogonal
coordinate transformation

&fi (x)
8i (x)
ci (x)'= & 1

yi,x

0

yi,x

−1
0

0
0
1'&f	 i (x)

8̃i (x)
c̃i (x)' (51)



.   . . 668

a set of uncoupled equations of motion for the ith cable segment can be obtained
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The local solutions for these equations then are
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F*x + yi,x F*y
1+ y2

i,x
(55)

8̃i (x)=D3i e(r3i + Ir4i )x +D4i e−(r3i + Ir4i )x +
1

mV2 +Vc1

yi,x F*x −F*y
1+ y2

i,x
(56)

c̃i (x)=D5i e(r5i + Ir6i )x +D6i e−(r5i + Ir6i )x +
F*z

mV2 +Vc2
. (57)

For the free vibration, Dji (j=1, 2, 3, 4, 5, 6; i=1, 2, . . . , N) are the unknown complex
constants associated with the ith cable segment. Expressions for the parameters rji

(j=1, 2, 3, 4, 5, 6; i=1, 2, . . . , N) are as follows:

when (2mVr + c1)e 0

r1i =X−l1ir +zl2
1ir + l2

1iI

2
, r2i =Xl1ir +zl2

1ir + l2
1iI

2
, (58)

r3i =X−l2ir +zl2
2ir + l2

2iI

2
, r4i =Xl2ir +zl2

2ir + l2
2iI

2
, (59)

when (2mVr + c1)Q 0

r1i =X−l1ir +zl2
1ir + l2

1iI

2
, r2i =−Xl1ir +zl2

1ir + l2
1iI

2
, (60)

r3i =X−l2ir +zl2
2ir + l2

2iI

2
, r4i =−Xl2ir +zl2

2ir + l2
2iI

2
, (61)

and, when (2mVr + c2)e 0

r5i =X−l3ir +zl2
3ir + l2

3iI

2
, r6i =Xl3ir +zl2

3ir + l2
3iI

2
, (62)

when (2mVr + c2)Q 0

r5i =X−l3ir +zl2
3ir + l2

3iI

2
, r6i =Xl3ir +zl2

3ir + l2
3iI

2
. (63)
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In the above equations,

l1ir =
m̃i (V2

1 −V2
r )− c̃1,i Vr

H+ k	 i
, l1iI =

2m̃i Vr + c̃1,i

H+ k	 i
VI (64)

l2ir =
m̃i (V2

I −V2
r )− c̃1,i Vr

H
, l2iI =

2m̃i Vr + c̃1,i

H
VI (65)

l3ir =
m̃i (V2

I −V2
r )− c̃2,i Vr

H
, l3iI =

2m̃i Vr + c̃2,i

H
VI . (66)

For forced vibration, the above equations are still valid if Vr is set zero.

3.3.     

By substituting the local solutions, equations (55)–(57), into the orthogonal
transformation equation (51), and then into the connective conditions, equations (37)–(45),
the relationship of the six complex constants between the two neighbouring segments can
be established in a matrix form.

D1i D1i−1

D2i D2i−1

D3i D3i−1G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

D4i
=[T]i6×6 (xi ) D4i−1

. (67)

D5i D5i−1

D6i D6i−1

The matrix [T]i6×6 (xi ) is called the ith transfer matrix which transfers the six complex
constants of the i-1th segment to those of the ith segment. It is a 6×6 matrix in the
three-dimensional cable vibration problem, expressed as

[T]i6×6 (xi )= [R�]i6×6 (xi ) [R]i−1
6×6 (xi ) (68)

where [R�]i6×6 (xi ) is the inverse matrix of [R]i6×6 (xi ); [R]i6×6 (xi ) and [R]i−1
6×6 (xi ) are the 6×6

complex matrices for the i−1th and ith segments at node i, respectively, of which the
elements are given in the Appendix.

Repeated use of equation (67) for all elements results in

D1N D11

D2N D21

D3N D31

G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

K

k

G
G

G

G

G

L

l

[R]N6×6 (xN+1) D4N
=[B]6×6 D41

(69)

D5N D41

D6N D61

where

[B]6×6 = [R]N6×6 (xN+1) [T]N6×6 (xN ) · · · [T]k6×6 (xk ) [T]k−1
6×6 (xk−1) · · · [T]26)6 (x2). (70)
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Satisfaction of the displacement boundary conditions at the nodes 1 and N+1 gives the
following characteristic equations for eigenvalue problem

1 1 0 0 0 0

0 0 1 1 0 0

B11 B12 B13 B14 B15 B16

detG
G

G

G

G

K

k

B21 B22 B23 B24 B25 B26

G
G

G

G

G

L

l

=0 (71)

0 0 0 0 1 1

B31 B32 B33 B34 B35 B36

and the following equation for the forced vibration of the cable

K L K L K L1 1 0 0 0 0 D11
F*x

mv2 − Ivc1H H H H H H
H H H H H H

0 0 1 1 0 0 D21
F*y

mv2 − Ivc1H H H H H H
H H H H H H

B11 B12 B13 B14 B15 B16 D31
F*x

mv2 − Ivc1
H H H H H H
H H H H H H

B21 B22 B23 B24 B25 B26 D41

=
F*y

mv2 − Ivc1

(72)
H H H H H H
H H H H H H
H H H H H H0 0 0 0 1 1 D51

F*z
mv2 − Ivc2H H H H H H

H H H H H H
B31 B32 B33 B34 B35 B36 D61

F*z
mv2 − Ivc2k l k l k l

in which Bij (i=1, 2, 3; j=1, 2, 3, 4, 5, 6) are the elements of matrix [B]6×6.
If the pairs of oil dampers are symmetrically installed to the cable with respect to the

static equilibrium position of the cable, the in-plane vibration of the cable-damper system
is independent of the out-of-plane vibration, as indicated by equations (15)–(17) and
equation (23). Therefore, there exist

B15 =B16 =B25 =B26 =B31 =B32 =B33 =B34 =0. (73)

The in-plane and out-of-plane dynamic responses and modal damping ratios can be
determined separately. For instance, two complex equations can be extracted from
equation (71).

R1 (Vr , VI )+ I · Im1 (Vr , VI )=0 (74)

R2 (Vr , VI )+ I · Im2 (Vr , VI )=0. (75)

Equation (74) corresponds to the in-plane vibration while equation (75) corresponds to
the out-of-plane vibration. Rj , Imj ( j=1, 2) are the real part and imaginary part,
respectively. From either equation (74) or equation (75), the real part Vr and imaginary
part V1 of the eigenvalue V can be determined for either the in-plane vibration or the
out-of-plane vibration. The use of equation (50) then gives the corresponding modal
damping ratios and pseudo-undamped natural frequencies of the system. The complex
eigenfunction components for the ith element can be obtained in terms of the back
substitution of the eigenvalues, and the complex eigenfunction components for the whole
cable can then be assembled from all elements.

For the forced vibration, once the first six complex constants at the first node are
determined from equation (72), all the other complex constants can be determined using
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equation (67). Finally, the dynamic response of the cable with oil dampers is determined
through equations (55)–(57), equation (51) and then equation (49).

If the pairs of oil dampers are unsymmetrically installed to the cable with respect to the
static equilibrium position of the cable, the in-plane vibration of the cable-damper system
is coupled with the out-of-plane vibration due to the pairs of oil dampers. The modal
damping ratio or the dynamic response of the system can be obtained using equation (71)
or equation (72) as a whole.

4. CONCLUSIONS

A formulation for determining both dynamic response due to harmonic loading and
modal damping ratio of three-dimensional vibration of an inclined sag cable with
multi-pairs of oil dampers have been presented in this paper in terms of a hybrid method.
The hybrid method consists of three major steps: cable discretization; orthogonal
transformation for local solution; and transfer matrix procedure for global solution. This
method can naturally consider cable sag, cable inclination, cable internal damping, damper
direction, damper stiffness, and others. Multi-pairs of oil dampers with either symmetric
or unsymmetric arrangement can also be dealt with. As seen from the derived formulae,
three-dimensional small-amplitude vibration of the cable-damper system can be
decomposed into mutual-independent in-plane and out-of-plane vibrations if multi-pairs
of oil dampers are symmetrically installed to the cable with respect to its static equilibrium
position. Otherwise, the in-plane and out-of-plane vibrations of the cable-damper system
are coupled due to the oil dampers installed unsymmetrically. The application of the
derived formulae to sag cables in a real cable-stayed bridge will be presented in part II
of this paper together with extensive parametric studies. The formulation for determining
dynamic response of three dimensional inclined sag cables with oil dampers installed and
under real wind excitations, in particular under wind–rain excitation, represents a difficult
task and needs further investigation.
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APPENDIX: ELEMENTS OF MATRIXES [R]i−1
6×6 (xi ) and [R]i6×6 (xi )

If the ith node is not supported by oil dampers, the element Rij (i=1, 2, 3, 4, 5, 6;
j=1, 2, 3, 4, 5, 6) in the matrix [R]i−1

6×6 (xi ) are as follows:

R11 = e(r1i−1 + Ir2i+1)xi , R12 = e−(r1i−1 + Ir2i−1)xi , R13 = yi−1,x e(r3i−1 + Ir4i−1)xi ,

R14 = yi−1,x e−(r3i−1 + Ir4i−1)xi , R15 =0, R16 =0;

R21 = yi−1,x e(r1i−1 + Ir2i−1)xi , R22 = yi−1,x e−(r1i−1 + Ir2i−1)xi , R23 =−e(r3i−1 + Ir4i−1)xi ,

R24 =−e−(r3i−1 + Ir4i−1)xi , R25 =0, R26 =0;

R31 =R32 =R33 =R34 =0, R35 = e(r5i−1 + Ir6i−1)xi , R36 = e−(r5i−1 + I6i−1)i;

R41 = (H+ k	 i−1) (r1i−1 + Ir2i−1) e(r1i−1 + Ir2i−1)xi ,

R42 =−(H+ k	 i−1) (r1i−1 + Ir2i−1) e−(r1i−1 + Ir2i−1)xi ,

R43 =Hyi−1,x (r3i−1 + Ir4i−1) e(r3i−1 + Ir4i−1)xi ,

R44 =−Hyi−1,x (r3i−1 + Ir4i−1) e−(r3i−1 + Ir4i−1)xi , R45 =0, R46 =0;

R51 = (H+ k	 i−1)yi−1,x (r1i−1 + Ir2i−1) e(r1i−1i + Ir2i−1)xi ,

R52 =−(H+ k	 i−1)yi−1,x (r1i−1 + Ir2i−1) e−(r1i−1 + Ir2i−1)xi ,

R53 =−H(r3i−1 + Ir4i−1) e(r3i−1 + Ir4i−1)xi , R54 =H(r3i−1 + Ir4i−1) e−(r3i−1 + Ir4i−1)xi ,

R55 =0, R56 =0;

R61 =R62 =R63 =R64 =0, R65 =H(r5i−1 + Ir6i−1) e(r5i−1 + Ir6i−1)xi ,

R66 =−H(r5i−1 + Ir6i−1) e−(r5i−1 + Ir6i−1)xi .

Replacing r1i−1, r2i−1, r3i−1, r4i−1, r5i−1, r6i−1 by r1i , r2i , r3i , r4i , r5i , r6i and k	 i−1, yi−1,x by k	 i ,
yi,x in the above elements gives the corresponding elements in the matrix [R]i6×6 (xi ).

If the ith node is equal to the nth node where the jth pair of dampers are installed, some
elements in the matrix [R]i−1

6×6 (xi ) should be changed whereas all elements in the [R]i6×6 (xi )
remain the same.

The elements R41, R42, R43, R44, R45, R46, R51, R52, R53, R54, R55, R56, R61, R62, R63, R64,
R65 and R66 in the matrix [R]i−1

6×6 (xi ) now should be

R41 = (H+ k	 n−1) (r1n−1 + Ir2n−1) e(r1n−1 + Ir2n−1)xn +(k+Vc) e(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos a1, j +(cos a2, j + yn−1,x cos b2, j ) cos a2, j ],
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R42 =−(H+ k	 n−1) (r1n−1 + Ir2n−1) e−(r1n−1 + Ir2n−1)xn +(k+Vc) e−(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos a1, j +(cos a2, j + yn−1,x cos b2, j ) cos a2, j ],

R43 =Hyn−1,x (r3n−1 + Ir4n−1) e(r3n−1 + Ir4n−1)xn +(k+Vc)e(r3n−1 + Ir4n−1)xn

×[(yn−1,x cos a1, j −cos b1, j ) cos a1, j +(yn−1,x cos a2, j −cos b2, j ) cos a2, j ],

R44 =−Hyn−1,x (r3n−1 + Ir4n−1) e−(r3n−1 + Ir4n−1)xn +(k+Vc) e−(r3n−1 + Ir4n−1)xn

×[yn−1,x cos a1, j −cos b1, j ) cos a1, j + yn−1,x cos a2, j −cos b2, j ) cos a2, j ],

R45 = (k+Vc) e(r5n−1 + Ir6n−1)xn [cos g1, j cos a1, j +cos g2, j cos a2, j ],

R46 = (k+Vc) e−(r5n−1 + Ir6n−1)xn [cos g1, j cos a1, j +cos g2, j cos a2, j ];

R51 = (H+ k	 n−1)yn−1,x (r1n−1 + Ir2n−1) e(r1n−1 + Ir2n−1)xn +(k+Vc) e(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos b1, j +(cos a2, j + yn−1,x cos b2, j ) cos b2, j ],

R52 =−(H+ k	 n−1)yn−1,x (r1n−1 + Ir2n−1) e−(r1n−1 + Ir2n−1)xn +(k+Vc) e−(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos b1, j +(cos a2, j + yn−1,x cos b2, j ) cos b2, j ],

R53 =−H(r3n−1 + Ir4n−1) e(r3n−1 + Ir4n−1)xn +(k+Vc) e(r3n−1 + Ir4n−1)xn

×[(yn−1,x cos a1, j −cos b1, j ) cos b1, j +(yn−1,x cos a2, j −cos b2, j ) cos b2, j ],

R54 =H(r3n−1 + Ir4n−1) e−(r3n−1 + Ir4n−1)xn +(k+Vc) e−(r3n−1 + Ir4n−1)xn

×[(yn−1,x cos a1, j −cos b1, j ) cos b1, j +(yn−1,x cos a2, j −cos b2, j ) cos b2, j ],

R55 = (k+Vc) e(r5n−1 + Ir6n−1)[cos g1, j cos b1, j +cos g2, j cos b2, j ],

R56 = (k+Vc) e−(r5n−1 + Ir6n−1)[cos g1, j cos b1, j +cos g2, j cos b2, j ];

R61 = (k+Vc) e(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos g1, j +(cos a2, j + yn−1,x cos b2, j ) cos g2, j ],

R62 = (k+Vc) e−(r1n−1 + Ir2n−1)xn

×[(cos a1, j + yn−1,x cos b1, j ) cos g1, j +(cos a2, j + yn−1,x cos b2, j ) cos g2, j ],

R63 = (k+Vc) e(r3n−1 + Ir4n−1)xn

×[(yn−1,x cos a1, j −cos b1, j ) cos g1, j +(yn−1,x cos a2, j −cos b2, j ) cos g2, j ],

R64 = (k+Vc) e−(r3n−1 + Ir4n−1)xn

×[(yn−1,x cos a1, j −cos b1, j ) cos g1, j +(yn−1,x cos a2, j −cos b2, j ) cos g2, j ],

R65 =H(r5n−1 + Ir6n−1) e(r5n−1 + Ir6n−1)xn +(k+Vc) e(r5n−1 + Ir5n−1)[cos2 g1, j +cos2 g2, j ],

R66 =−H(r5n−1 + Ir6n−1) e−(r5n−1 + Ir6n−1)xn +(k+Vc) e−(r5n−1+Ir5n−1)[cos2 g1, j+cos2 g2, j ].


