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1. INTRODUCTION

Nayak [1] applied the Fokker—Planck equation [2] to the Hertzian contact problem by
considering the excitation to be white noise. Approximate closed form expressions for
the standard deviations of displacement and velocity were derived. This procedure was
later refined by Hess e al. [3]. By approximating the Hertzian non-linearity, and utilising
the stationary solution to the Fokker—Planck equation, a stationary probability density
function for the displacement was derived. It was shown numerically that dynamic
excitation resulted in a decrease of the mean normal contact compression. By assuming
that the adhesion theory of friction is valid, the mean value of the friction force was also
found to decrease. The computed results were shown to be in good agreement with
measured friction forces at a sliding contact.

The approximations introduced in [3] are in fact not necessary. Utilising exactly the same
model as in [3], but without approximating the Hertzian contact stiffness, a new stationary
displacement probability density function is derived. By assuming the external and internal
excitation to be statistically uncorrelated, a single probability density function represents
the combined effect of these dynamic excitations.

Using the results derived herein, the effect of the approximation introduced in [3] is
investigated. Furthermore, the results may be used for the evaluation of alternative
methods. The accuracy of a perturbation method [4] applied to the Hertzian contact
problem is evaluated.

2. THE MODEL

The contact is modelled as shown in Figure 1. The surface roughness is represented by
the spatially dependent co-ordinate y;. Except for the contact region, the rider is modelled
as a rigid mass m. The compression in the contact region is represented by the non-linear
stiffness with coefficient k. Using Hertzian contact theory, the relation between an applied
static load P, and the resulting compression ¢ can be derived [5] as seen in equation (1).
For the case of a hemispherical rider sliding over a nominally flat surface, R in (1) is the
hemispherical radius. E is the equivalent elastic modulus, which can be derived under the
condition that the pressure acting on the first body is equal to the pressure acting on the
second.

Py = k&, k= (4/3)\/RE" (1)

Furthermore, the stiffness is zero if the rider loses contact with the rough surface. In
Figure 1, loss of contact corresponds to the inequality y > y;.
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Figure 1. Model of contact between hemispherical rider and rough surface.

It should be noted that, as in [3], the damping ¢ is assumed to be constant at all times,
thus unaffected by loss of contact. The governing equation of motion for the rider is then
achieved as:

mj}‘:c()’}i—y)—"—k(yi—y)yz—n’lg_F, ySJ/[y
mj=c(—y)—mg—F,  y>y. (2a, b)

The effects of external dynamic excitation and internal surface roughness excitation are
separated in [3]. By assuming that they are statistically uncorrelated, their combined effect
may be accounted for by using a single excitation function. Furthermore, the Hertzian
non-linear stiffness will not be approximated in this letter. The reason for introducing this
approximation in [3] was to remove the static excitation terms. It is noted herein that these
static terms may be considered to be part of the non-linear stiffness function. The final
equation of motion is thus achieved in a form suitable for application of the stationary
solution to the Fokker—Planck equation [2].

The derivation will be discussed briefly. The external force term F'is considered to consist
of a static and a time-varying term F = P, + P(¢). Also introduce variable substitutions.
First the displacement y will be referred relative to the static compression y,.

Y=y —=Yo  yo=((Po+ mg)k)". 3)

Furthermore, introduce a change of variables to the dimensionless variables ¢, ¢; and u,
where

q=Yalyo,  @=yily; u=Qu—y)Yo=q—q. (4.5)
Loss of contact now corresponds to the inequality u > 1.
Equations (2a, b) may be grouped into one equation using the Heaviside step function
H, which is defined as:
H(x < 0) =0, H(x>0)=1. (6)

By introducing the substitutions (3-5), the force F = P, + P(t), and the Heaviside function
(6) in the equations of motion (2a, b) the following is achieved.

i —1—51;[ + {_k[l — 1;;1(1/{ - 1)] y(‘)fz(l _ u)}x‘z + mLyO(PO + mg)} — _M _ ql = F3(l).

n myo

(M



LETTERS TO THE EDITOR 781

It should be noted that in order to apply the stationary solution of the Fokker—Planck
equation to this problem, the static terms P, and mg have here been moved to left side
of equation (7). They are thus considered as being a part of the non-linear stiffness. As
seen in the right side of equation (7) there are two dynamic excitation terms. The first term
includes P(¢), which is a white noise external excitation with zero mean value level and
a constant one-sided spectral density W,. The one-sided spectral density for the term
P(1)/my, is thus Z, = W,/m?*y;. The second term is the second time derivative of the
non-dimensionalised surface roughness ¢;. The same statistical properties as in [3] are
assumed. Thus the term §; is a white noise process with zero mean value and a constant
one-sided spectral density Z, = 4LV7/yj. L is a constant to be fitted to surface roughness
measurements, and V' is the horizontal velocity of the rider.

By assuming that the external excitation and the internal surface roughness excitation
are statistically uncorrelated, the statistical properties of F;(¢) in equation (7) can be
derived trivially. F;(z) is simply a white noise process with zero mean value level and a
constant one-sided spectral density Z;, given by equation (8).

3. THE STATIONARY SOLUTION

The Fokker—Planck equation [2] is an expression for the evolution in time of the second
order probability density function for Markoff processes. If the conditional probability
tends to a limiting stationary probability density function, the stationary form of the
Fokker—Planck equation is achieved. By applying the stationary form of the Fokker—
Planck equation to the single-degree-of-freedom system equation (9), with the non-linear
stiffness g(u), it is possible to show [2] that the stationary probability density function p,(u)
for the displacement is achieved as equation (10). This is for the case in which the excitation
F5(¢) is a white noise signal with a constant one-sided spectral density Z;.

i B+ g) = B, pu) = C exp{—‘;’f J " g(w) du } 9, 10)

From the probability density function (10), statistical moments of the stationary level of
displacement can be computed through integration. The equation of motion (7) is now
identified with equation (9). By performing the integration (10) and using the statistical
properties (8) of the dynamic excitation, a closed form for the displacement probability
density function is achieved as (11).

Py =€ eXp{_(Wo +4Z)I}4042LV3) [2/{?6’ [(1 = H@u— 1)1 —u)? = 1] + (P + mg) ;ﬂ}

(11)

As previously mentioned, the derived probability density function differs from the one
derived in [3] in the sense that no approximation has been introduced for the Hertzian
non-linearity. Furthermore, by assuming that the external excitation and the surface
roughness are statistically uncorrelated, a single probability density function incorporates
the combined effect of these two sources of vibration. The cases of sole external- or sole
surface roughness excitation are achieved by letting either L or W, be zero.
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TABLE 1
Base set of parameters

L (m™) V (m/s) m (kg) { R (m) Py (N)
05 0-1 05 0-01 0-01 5

4. NUMERICAL RESULTS

By utilising the derived probability density function (11), mean value levels of the
dimensionless relative displacement « can be computed through numerical integration. The
computed results will be compared with the results in [3]. As those results were derived
by approximating the Hertzian non-linear stiffness, they will be denoted as {u ).
Furthermore, a comparison will be made to results which were derived by using a
perturbation method [4]. Those results which will be denoted as <{u),.us». The same
parameters as used in [3] and [4] will be used for easy comparison. The case of sole surface
roughness excitation will be investigated, with the base set of parameters given in Table 1.
The result of the parameter study is presented in Table 2.

It should be noted that the damping in Table 1 is given by the dimensionless damping
ratio {, which is defined by

2w = c/m. (12)

The factor w, is the small amplitude natural frequency, which is derived by linearising
equation (7) under the assumption that u<« 1. A relation between the viscous damping ¢
and the damping ratio { is thus achieved.

¢ = {/6mky;*. (13)

TABLE 2
Mean value levels under internal surface roughness excitation
Parameters Kudappr — <up)[<uy (KD pernar — <up)/<up
Case <u > <u >c//)pr <u >pz’)‘/llr") 0/0 %
1 Basef 0-0573 0-0584 0-0507 19 —11-5
2 m(kg) 1-0 0-0871 0-0889 0-0703 2-1 —193
3 0-8 0-0233 0-0245 0-0235 52 09
4 4 0-0075 0-0853 0-0871 0-0692 2-1 —189
5 0-0200 0-0243 0-0255 0-0244 49 0-4
6 R (m) 0-0500 0-0830 0-0847 0-0677 21 —18-4
7 0-0001 0-0223 0-0235 0-0226 54 1-4
8 Py, (N) 35 0-0870 0-0888 0-0702 2-1 —193
9 10-0 0-0228 0-0240 0-0230 53 09
10 L@m") 065 0-0823 0-0840 0-0673 2-1 —18:2
11 0-25 0-0243 0-0255 0-0244 49 0-4
12 V (m/s) 011 0-0851 0-0869 0-0691 21 —18-8
13 0-08 0-0249 0-0261 0-0250 4-8 0-4

T Base refers to Table 1.
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5. SUMMARY AND CONCLUSIONS

By applying the stationary solution of the Fokker—Planck equation to the Hertzian
contact problem, the resulting stationary probability density function for the relative
displacement has been derived. The exact Hertzian stiffness is used in this letter. For the
derivation presented here, it was furthermore assumed that the external random excitation
and the internal surface roughness excitation are statistically uncorrelated. Under this
assumption a single probability density function sufficiently represents the combined effects
of the two excitation mechanisms. Computed statistical moments, using the exact Hertzian
non-linear contact stiffness, have been compared with the previous approximate
Fokker—Planck solution [3]. The approximation introduced in [3] tends to overestimate the
mean relative displacement, but the error is usually less than about five percent. On the
other hand, the perturbation method [4] tends to underestimate the mean relative
displacement, and the error can reach up to about twenty percent.

For further reference, the results presented herein should provide updated numerical
values for resulting statistical moments of the mean vibratory separation.
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