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This work presents the formulation of governing equations for a curved frame. An
analytic method is also presented to examine the vibration of the curved frame. The
orthogonality of any two distinct sets of mode shape functions of the frame is also derived.
The forced vibration of the frame owing to a moving concentrated force is examined. The
strain energy characteristics of the frame induced by the moving force are investigated as
well.
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1. INTRODUCTION

An elevated guideway can be simulated as a frame structure. Beams and columns of the
frame are normally organized in a straight type. Owing to the restriction of space and
environment, beams of the frame are sometimes arranged into a curved type. The geometry
of a curved frame completely differs from that of a straight frame. The equations of motion
of a straight frame structure can be easily described via the Bernoulli–Euler beam theory
or the Timoshenko beam theory under the conditions of displacements continuity and of
force balance at the junction of one column with two adjacent beams. However, the
equations of motion for a curved frame have never been set. The initial curvature of a
curved frame causes a torque to exist in the structure. The torsional vibration of a curved
frame owing to a moving vehicle causes the passengers to feel uncomfortable. The initial
curvature of a curved frame and the velocity of loads are, therefore, two important factors
of governing the responses of the structure caused by the moving loads. The responses of
a straight frame due to an external load can be obtained either by the method of finite
element method [1] or by the method of modal analysis [2]. However, the method of modal
analysis for examining the responses of a curved frame has never been found till now.

The out-of-plane deflection of a curved beam due to a static load has been examined
for over two decades [3–5]. The vehicles traversing on the structure are more rapid than
before. The responses of a structure due to a moving load in general exceed those of the
structure by the load in a static situation. Experimental results indicate that the dynamic
impact on the frame owing to moving loads should be included for designing the structure.
By neglecting the warping effect of a compact solid, the free vibration for out-of-plane
motion of a curved beam has also been investigated for the past two decades [6–8].
However, the study for the forced vibration of a curved beam has never been mentioned.
Wang and Sang [9] set the displacement fields to derive the equations for out-of-plane
motion of a multi-span curved beam. Furthermore, they presented an analytical method
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to examine the forced vibration of the multi-span curved beam due to moving loads.
The axial inertia is normally neglected in studying the vibration of a curved beam. A
T-type straight frame is a special type of the curved frame. The displacement fields
of a T-type straight frame contain a bending slope, a transverse displacement and a
longitudinal displacement. Further, the effects of longitudinal inertia, transverse inertia,
rotatory inertia, longitudinal force, transverse shear force and bending moment of each
branch of the T-type straight frame should be included simultaneously for examining the
vibration of the structure. However, the geometry of a T-type curved frame causes the
displacement fields of the structure to be more complex than those of a T-type straight
frame. Two bending slopes, a twist angle, two transverse displacements and a longitudinal
displacement are needed to describe the displacement fields of a T-type curved frame.
Furthermore, the corresponding bending moments, torque, transverse shear forces and
axial force should be included simultaneously for deriving the equations of motion of the
frame.

This study presents the displacement fields of a T-type curved frame. The frame has a
continuous curved beam resting on a column. The frame is considered to be compact,
homogeneous and isotropic with Young’s modulus E, shear modulus G, Poisson’s ratio
m and mass density r. The continuous curved beam has a rectangular cross-section. The
column has a circular cross-section. The strains are derived to obtain the stress resultants
and stress-couple resultants in the frame. Via the Hamilton’s principle, the equations of
motion of the entire structure are set. An analytical method is presented to obtain the
modal frequencies and their corresponding sets of mode shape functions of the frame. The
orthogonality of any two distinct sets of mode shape functions is derived to show the
feasibility of the method of modal analysis. The forced vibration of the curved frame due
to a moving force is then examined by the method. Usually, the damage of the structure
is governed by its strain energy density. Therefore, the strain energy density and the strain
energy of the frame induced by the moving force are investigated to understand the general
feature of the responses of the structure. The effects of the velocity of the force and the
column height of the frame on the characteristics of strain energy are also examined.

2. GOVERNING EQUATIONS

A distributed load f(u, t) acting on a frame is depicted in Figure 1. All ends of the frame
are fixed. The radius of the curved beam is R. The angle measured from one
fixed end to the junction of two adjacent beams and the column is a. The column has the
height h.

Figure 1. A distributed load f(u, t) on the curved frame.
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Figure 2. Displacements, stress resultants and stress couple resultants for (a) a typical curved beam and (b)
the column of the frame.

2.1.       

The Cartesian co-ordinates x, y and z system and the cylindrical co-ordinates r, u and
z system are depicted in Figure 2(a). The x and z axes coincide with the principal centroidal
axes of the beam, while the y-axis is tangent to the curved axis of the beam. The
co-ordinates r, u and z are taken at the centre of the beam. The beam has width a, thickness
b, uniform cross-sectional area A, polar moment J about the y-axis, shear coefficient k1,
second moments of area Ix and Iz about the x-axis and z-axis, respectively. Further, the
width a is assumed to be less than the radius R of the curved beam. The displacement
components along these principal axes are denoted as ux , uy and uz , respectively.
Furthermore, fx , fy and fz are the respective rotation angles of the cross-section along
these principal axes.
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By neglecting the warping effect of the cross-section, the displacement fields of the
curved beam along these principal axes in the Cartesian co-ordinates are expressed as

u*x (x, y, z, t)= ux (y, t)+ zfy (y, t),

u*y (x, y, z, t)= uy (y, t)− zfx (y, t)− xfz (y, t),

u*z (x, y, z, t)= uz (y, t)− xfy (y, t), (1a)

or in the cylindrical co-ordinates as

u*r = u*x , u*u = u*y , u*z = u*z , fu =fy , uu = uy , (1b)

The strain components in the cylindrical co-ordinates are

orr =
1u*r
1r

, ouu =
1
r

1u*u
1u

+
u*r
r

, ozz =
1u*z
1z

,

gru =
1u*u
1r

+
1
r

1u*r
1u

−
u*u
r

, grz =
1u*r
1z

+
1u*z
1r

, guz =
1u*u
1z

+
1
r

1u*z
1u

, (2)

By using the geometric relations y=Ru and r=R+ x, the strains in the Cartesian
co-ordinates are obtained as

oxx =0, ozz =0, gzx =0, oyy =
R
r $1uy

1y
+

ux

R
+ z0fy

R
−

1fx

1y 1− x
1fz

1y %,

gxy =
R
r $0−fz +

1ux

1y
−

uy

R1+ z01fy

1y
+

fx

R1%, gyz =
R
r 0−rfx

R
+

1uz

1y
− x

1fy

1y 1. (3)

Employing the relation

R
r

=
R

R+ x
=

1

1+
x
R

=1−0x
R1+0x

R1
2

+ · · ·

into equation (3) and neglecting the terms O(x/R) yields

oxx =0, ozz =0, gzx =0, oyy =
1uy

1y
+

ux

R
+ z0fy

R
−

1fx

1y 1− x
1fz

1y
,

gxy =−fz +
1ux

1y
−

uy

R
+ z01fy

1y
+

fx

R1, gxy =−fx +
1uz

1y
− x01fy

1y
+

fx

R1. (4)



-   147

The stress resultants qx , qy (=qu ) and qz , and stress-couple resultants mx , my (=mu ) and
mz of the curved beam about these principal axes are (Figure 2(a))

qx = k1GA01
R

1ux

1u
−fz −

uu

R1, qu = qy =EA01
R

1uu

1u
+

ux

R1, (5a, b)

qz = k1GA01
R

1uz

1u
−fx1, mx =

EIx

R 0fu −
1fx

1u 1, (5c, d)

mu =my =
C
R 0fx +

1fu

1u 1, mz =−
EIz

R
1fz

1u
, (5e, f)

where C (=k3Gab3) denotes the torsional rigidity and k3 represents the torsion coefficient
[10].

The strain energy Sb (t) of the curved beam is

Sb (t)=
1
2 g

2a

0 6 q2
u

EA
+

q2
x

k1GA
+

q2
z

k1GA
+

m2
x

EIx
+

m2
u

C
+

m2
z

EIz7R du. (6)

The kinetic energy K(t) of the curved beam is

K(t)=
1
2 g

2a

0 6rA$01ux

1t 1
2

+01uu

1t 1
2

+01uz

1t 1
2

+ rJ01fu

1t 1
2

%
+ rIx01fx

1t 1
2

+ rIz01fz

1t 1
2

7R du. (7)

The energy Ef put into this frame by the distributed load f(u, t) is

Ef (t)=g
2a

0

f(u, t)uzR du. (8)

Performing Hamilton’s principle yields the following six equations of motion of the curved
beam

qu

R
−

1
R

1qx

1u
+ rA

12ux

1t2 =0, −
qx

R
−

1
R

1qu

1u
+ rA

12uu

1t2 =0, (9a, b)

−
1
R

1qz

1u
+ rA

12uz

1t2 = f(u, t), −qz +
1
R

1mx

1u
+

mu

R
+ rIx

12fx

1t2 =0, (9c, d)

−
1
R

1mu

1u
+

mx

R
+ rJ

12fu

1t2 =0, −qx +
1
R

1mz

1u
+ rIz

12fz

1t2 =0. (9e, f)

The displacements, rotations, stress resultants and stress-couple resultants of the ith span
of the entire beam are expressed as

(uxi uui uzi fxi fui fzi )(u, t)= (ux uu uz fx fu fz )[u+(i−1)a, t], (10a)

(qxi qui qzi mxi mui mzi )(u, t)= (qx qu qz mx mu mz )[u+(i−1)a, t]. (10b)
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Furthermore, the sign conventions for displacements, rotations, stress resultants and
stress-couple resultants at two ends of the ith span of the entire beam are denoted as

{dr}i (t)= {uxi uui uzi fxi fui −fzi}T(0, t), (11a)

{fr}i (t)= {−qxi −qui −qzi mxi −mui −mzi}T(0, t), (11b)

{dl}i (t)= {uxi uui uzi fxi fui −fzi}T(a, t), (11c)

{fl}i (t)= {qxi qui qzi −mxi mui mzi}T(a, t). (11d)

2.2.     

The Cartesian co-ordinates x, y and z system of the cylindrical column are depicted in
Figure 2(b). The x and y axes coincide with the principal centroidal axes of the column,
while the z-axis denotes the longitudinal axis of the column. The column has a uniform
cross-sectional area A*, polar moment J* around the z-axis, shear coefficient k2, second
moment of area I* around the x-axis (or y-axis). ux , uy , and uz are the respective
displacement components along these principal axes. Furthermore, fx , fy , and fz are the
rotation angles of the cross-section along the principal axes, respectively. The displacement
fields of the column along these principal axes in the Cartesian co-ordinates are

ux
*(x, y, z, t)= ux (z, t)− yfz (z, t), uy

*(x, y, z, t)= uy (z, t)+ xfz (z, t),

uz
*(x, y, z, t)= uz (z, t)− xfy (z, t)− yfx (z, t). (12a, b, c)

The stress resultants qx , qy and qz , and stress-couple resultants mx , my and mz of the beam
about these principal axes are (Figure 2(b))

qx = k2GA*01ux

1z
−fy1, qy = k2GA*01uy

1z
−fx1, qz =EA*

1uz

1z
, (13a, b, c)

mx =−EI*
1fx

1z
, my =−EI*

1fy

1z
, mz =GJ*

1fz

1z
. (13d, e, f)

Similarly, the following six equations of motion of this column are

−
1qx

1z
+ rA*

12ux

1t2 =0, −
1qy

1z
+ rA*

12uy

1t2 =0, (14a, b)

−
1qz

1z
+ rA*

12uz

1t2 =0, −qy +
1mx

1z
+ rI*

12fx

1t2 =0, (14c, d)

−qx +
1my

1z
+ rI*

12fy

1t2 =0, −
1mz

1z
+ rJ*

12fz

1t2 =0. (14e, f)

The sign conventions for displacements, rotations, stress resultants and the stress-couple
resultants at the top end of the column are

{dl}(t)= {ux uy uz −fx fy fz}T(h, t), (15a)

{fl}(t)= {qx qy qz mx −my mz}T(h, t). (15b)

2.3.  

The boundary conditions at all fixed ends of the frame are

{dr}1 = {dl}2 = {dr}= {0 0 0 0 0 0}T,

(ux , uy , uz , fx , fy , fz )(0, t)= (0 0 0 0 0 0), (16a, b)
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in which subscript 1 (or 2) implies the first span (or the second span). The displacements
continuity, forces balance and moments balance at the junction of two adjacent spans and
the column are

{dl}1 = {dr}2 = {dl}, {fl}1 + {fr}2 + {fl}= {0 0 0 0 0 0}T. (17a, b)

3. MODAL FREQUENCIES

3.1.  

To calculate the modal frequencies of the structure, the displacements, rotation angles
and their corresponding stress resultants and stress-couple resultants of the ith span of
curved beam are denoted as

{uxi uui uzi fxi fui fzi}(u, t)= {Uxi Uui Uzi Fxi Fui Fzi}(u) sin (vt), (18a)

{qxi qui qzi mxi mui mzi}(u, t)= {Qxi Qui Qzi Mxi Mui Mzi}(u) sin (vt), (18b)

where

Qxi =
k1GA

R 0dUxi

du
−RFzi −Uui1, Qui =

EA
R 0dUui

du
+Uxi1, (19a, b)

Qzi = k1GA01
R

dUzi

du
−Fxi1, Mxi =

EIx

R 0Fui −
dFxi

du 1, (19c, d)

Mui =
C
R 0Fxi +

dFui

du 1, Mzi =−
EIz

R
dFzi

du
, (19e, f)

in which v denotes the circular frequency. Further, the distributed load f(u, t) is set at zero.
Under these circumstances, equations (9a)–(9f) become

Qui −
dQxi

du
= rARv2Uxi , −Qxi −

dQui

du
= rAv2RUui , (20a, b)

−
dQzi

du
= rAv2RUzi , −RQzi +

dMxi

du
+Mui = rIxv

2RFxi , (20c, d)

−
dMui

du
+Mxi = rJv2RFui , −RQxi +

dMzi

du
= rIzv

2RFzi . (20e, f)

Substituting Qxi of equation (19a) and Qui of equation (19b) into equation (20b) and solving
Fxi in terms of Uxi and Uui yields the form

Fzi =
k1G+E
k1GR

dUxi

du
+

1
k1GR 0rv2R2 − k1G+E

d2

du21Uui . (21)

Substituting Qxi of equation (19a) and Qui of equation (19b) into equation (20a) and
employing Fzi of equation (21) into the result yields

L1(Uxi )+L2(Uui )=0, (22)
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where

L1(Uxi )=0 d2

du2 +1−
rv2R2

E 1Uxi , L2(Uui )=0 d2

du2 +1+
rv2R2

E 1 dUui

du
.

Further, substituting Qxi of equation (19a) and Mzi of equation (19f) into equation (20f)
and employing Fzi of equation (21) into the result yields

L3(Uxi )+L4(Uui )=0, (23)

where

L3(Uxi )=601+
k1G
E 1 d2

du2 −
k1GAR2

EIz
+01+

k1G
E 1 rv2R2

E 7 dUxi

du
,

L4(Uui )=6 d4

du4 +$02rv2R2 − k1G
E 1−

k1GAR2

EIz % d2

du2

+
rv2R2

E 0rv2R2 − k1G
E

−
k1GAR2

EIz 17Uui .

Combining equations (22) and (23) yields

0 d6

du6 + c1
d4

du4 + c2
d2

du2 + c37(Uui , Uxi )= (0, 0), (24a, b)

where

c1 =
rv2R2

E 02+
E

k1G1+2,

c2 =0rv2R2

E 1
2

01+
2E
k1G1+

rv2R2

E 01−
E

k1G
−

AR2

Iz 1+1,

c3 =0rv2R2

E 1
3 E
k1G

−0rv2R2

E 1
2

01+
E

k1G
+

AR2

Iz 1+
rv2R2

E 01+
AR2

Iz 1.
The frequency response of Uui is

Uui = s
6

j=1

ajigj (u), (25)

where a1i − a6i are constants, the functions g1(u)0 g6(u) are listed in Appendix A.
Substituting Uui of equation (25) into equation (22) and solving for Uxi yields

Uxi = s
6

j=1

ajipj (u), (26)
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where the functions p1(u)− p6(u) are obtained by solving the differential equation

L1(pj )+L2(gj )=0, j=1–6. (27)

Substituting Uxi of equation (26) and Uui of equation (25) into equation (21) yields

Fzi = s
6

j=1

ajip*j (u), (28)

where

p*j (u)=
k1G+E
k1GR

dpj

du
+

1
k1GR 0rv2R2 − k1G+E

d2

du21gj .

Employing these values Uxi of equation (26), Uui of equation (25) and Fzi of equation (28)
into equations (19a), (19b) and (19f) yields

(Qxi , Qui , Mzi )(u)= s
6

j=1

aji (hj , bj , zj )(u), (29)

where

hj (u)=
k1GA

R 0dpj

du
−Rp*j − gj1, bj (u)=

EA
R 0dgj

du
+ pj1, zj (u)=

EIz

R
dp*j
du

.

The solutions for Uzi , Fxi and Fui of the ith span to satisfy equations (20c)–(20e) are [9]

(Uz Fx Fu )i (u)= s
12

j=7

aji (gj pj p*j )(u), (30)

where a7i − a12i are constant, the functions g7(u)0 g12(u) are listed in Appendix B and

pj (u)=
1

k1GR 0rv2R2 g gj du+ k1G
dgj

du1,
p*j (u)=

1
EIx +C $k1GARgj −(k1GAR2 +C− rv2R2Ix ) g pj du+EIx

dpj

du%
for j=7–12. The corresponding stress resultants and stress-couple resultants are

(Qz , Mx , Mu )i (u)= s
12

j=7

aji (hj , bj , zj )(u), (31)

where

hj (u)= k1GA01
R

dgj

du
− pj1, bj (u)=

EIx

R 0p*j −
dpj

du1, zj (u)=
C
R 0pj +

dp*j
du 1

for j=7–12.
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Combining equations (25), (26) and (28)–(31) yields the frequency responses of the ith
span into a vector form

{Uxi Uui Uzi Fxi Fui Fzi Qxi Qui Qzi Mxi Mui Mzi}T(u)= [A1(u)]xi , (32)

where

xi = {a1i a2i a3i a4i a5i a6i a7i a8i a9i a10i a11i a12i}T

Substituting equation (32) into equations (18a) and (18b) and then using the results in
equations (11a)–(11d) yields the response vectors at two ends of the ith span as two
symbolic forms

6Dr

Fr7=[Br ]ixi , 6Dl

Fl7i

=[Bl ]ixi , (33a, b)

where the displacement vectors {Dr}i , {Dl}i , the force vectors {Fr}i and {Fl}i are

{Dr}i = {Uxi Uui Uzi Fxi Fui −Fzi}T(0), (34a)

{Fr}i = {−Qxi −Qui −Qzi Mxi −Mui −Mzi}T(0), (34b)

{Dl}i = {Uxi Uui Uzi Fxi Fui −Fzi}T(a), (34c)

{Fl}i = {Qxi Qui Qzi −Mxi Mui Mzi}T(a). (34d)

Solving the vector xi from equation (33a) and substituting the result into equation (33b)
yields the responses relation at both ends of the span as the form

6Dl

Fl7i

=[C]i6Dr

Fr7i

, (35)

where the matrix [C]i is

[C]i =[Bl ]i [Br ]−1
i .

3.2. 

The displacements, rotation angles and their corresponding stress resultants and
stress-couple resultants of the column are expressed as

{ux uy uz fx fy fz}(z, t)= {Ux Uy Uz Fx Fy Fz}(z) sin (vt), (36a)

{qx qy qz mx my mz}(z, t)= {Qx Qy Qz Mx My Mz}(z) sin (vt), (36b)

where

Qx = k2GA*0dUx

dz
−Fy1, Qy = k2GA*0dUy

dz
−Fx1, Qz =EA*

dUz

dz
,

(37a, b, c)

Mx =−EI*
dFx

dz
, Mz =GJ*

dFz

dz
, My =−EI*

dFy

dz
.

(37d, e, f)
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Moreover, equations (14a)–(14f) become

−
dQx

dz
= rA*v2Ux , −

dQy

dz
= rA*v2Uy , −

dQz

dz
= rA*v2Uz , (38a, b, c)

−Qy +
dMx

dz
= rI*v2Fx , −Qx +

dMy

dz
= rI*v2Fy , −

dMz

dz
= rJ*v2Fz .

(38d, e, f)

Substituting Qx of equation (37a) into equation (38a) and solving Fy in terms of Ux yields

dFy

dz
=

d2Ux

dz2 +
rv2

k2G
Ux . (39a)

Further, uncoupling equations (38a) and (38e) in terms of Ux or Fy yields

6 d4

dz4 +
rv2

E 01+
E

k2G1 d2

dz2 +
rv2

E 0rv2

k2G
−

A*
I*17(Ux , Fy )= (0, 0), (39b, c)

which are the equations of the Timoshenko beam. Similarly, the following three equations
are obtained

dFx

dz
=

d2Uy

dz2 +
rv2

k2G
Uy , (40a)

6 d4

dz4 +
rv2

E 01+
E

k2G1 d2

dz2 +
rv2

E 0rv2

k2G
−

A*
I*17(Uy , Fx )= (0, 0). (40b, c)

The frequency responses of the column to satisfy the boundary conditions at the fixed end
z=0 are

Ux (z)= b3f3(z)+ b4f4(z), Uy (z)= b5f3(z)+ b6f4(z), Uz (z)= b1f1(z),

Fx (z)= b5f5(z)+ b6f6(z), Fy (z)= b3f5(z)+ b4f6(z), Fz (z)= b2f2(z),

Qx (z)= b3f9(z)+ b4f10(z), Qy (z)= b5f9(z)+ b6f10(z), Qz (z)= b1f7(z),

Mx (z)= b5f11(z)+ b6f12(z), My (z)= b3f11(z)+ b4f12(z), Mz (z)= b2f8(z), (41)

where b1–b6 denote constants and these functions are

f1(z)= sin 0Xr

E
vz1, f2(z)= sin 0Xr

G
vz1, f7(z)=EA*

df1

dz
, f8(z)=GJ*

df2

dz
,

f9(z)= k2GA*0df3

dz
− f51, f10(z)= k2GA*0df4

dz
− f61, f11(z)=−EI*

df5

dz
,

f12(z)=−EI*
df6

dz
,

These functions f3–f6 are listed in Appendix C. Equation (41) constitutes the frequency
responses of the column. Substituting equation (41) into equations (36a) and (36b) and
then incorporating the results into equations (15a) and (15b) yields the response vectors
at the top of the column as the symbolic forms

{Dl}=[G1]j, {Fl}=[G2]j, (42a, b)



z
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–

–
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where [G1] and[G2] denote two matrices of order 6 by 6 and the constant vector j, the
displacement vector {Dl} and the force vector {Fl} are

j= {b1 b2 b3 b4 b5 b6}T, (43)

{Dl}= {Ux Uy Uz Fx −Fy Fz}T(h), (44a)

{Fl}= {Qx Qy Qz Mx −My Mz}T(h). (44b)

3.3.  

The displacements continuity, forces balance and moments balance at the junction of
two adjacent spans and the column of the frame (see Figure 3) are

{Dl}1 = {Dr}2 = {Dl}, {Fl}1 + {Fr}2 + {Fl}= {0 0 0 0 0 0}T (45a, b)

Substituting equation (45a) into equation (42a) and solving the constant vector j yields

j=[G1]−1{Dl}1. (46)

Equation (42b) will become the form

{Fl}=[G2][G1]−1{Dl}1. (47)

Substituting equation (47) into equation (45b) and combining the result with equation
(45a) yields the following relation in the vector form

6Dr

Fr72

= [Z]6Dl

Fl71

(48)

where

[Z]=$ I6×6

−[G2][G1]−1

O6×6

−I6×6%,

Figure 3. Applied end forces and displacements at the conjunction of two curved beams and one column.
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where I6×6 is an identity matrix and O6×6 is a zero matrix. The responses relation at both
ends of the entire curved beam is

6Dl

Fl72

=$T11 T12

T21 T22%6Dr

Fr71

, (49)

where

$T11 T12

T21 T22%=[C]2[Z][C]1.

The boundary conditions at both fixed ends imply

[T12] {Fl}1 = {0 0 0 0 0 0}T (50)

to indicate that the ith modal frequency vi satisfies one eigenvalue of [T12] being zero. The
corresponding set of displacements Ui

x , Ui
u , Ui

z , rotation angles Fi
x , Fi

u , Fi
z , stress resultants

Qi
x , Qi

u , Qi
z and stress-couple resultants Mi

x , Mi
u , Mi

z of the entire curved beam and those
of Ui

x , Ui
y , Ui

z , Fi
x , Fi

y , Fi
z , Qi

x , Qi
y , Qi

z , Mi
x , Mi

y , and Mi
z of the column can be obtained

by doing similar calculations to those described by Wang and Lin [2].

4. ORTHOGONALITY

By performing similar procedures to those described by Wang and Lin [2], the following
two equations are obtained:

g
h

0

r{A*(Ui
x Uj

x +Ui
y Uj

y +Ui
z Uj

z )+ I*(Fi
x Fj

x +Fi
y Fj

y )+ J*Fi
z F

j
z} dz

+g
2a

0

r{A(Ui
xUj

x +Ui
uUj

u +Ui
zUj

z )+ IxF
i
xF

j
x + IzF

i
zF

j
z + JFi

uF
j
u}R du=0, (51)

g
2a

0 6Uj
x0Qi

u −
dQi

x

du 1+Uj
u0−Qi

x −
dQi

u

du 1+Uj
z0−dQi

z

du 17 du

+g
2a

0 6Fj
x0−RQi

z +
dMi

x

du
+Mi

u1+Fj
u0Mi

x −
dMi

u

du 1+Fj
z0−RQi

x +
dMi

z

du 17 du

+g
h

0 6Uj
x0−dQi

x

dz 1+Uj
y0−dQi

y

dz 1+Uj
z0−dQi

z

dz 17 dz

+g
h

0 6Fj
x0Qi

y −
dMi

x

dz 1+Fj
y0−Qi

x +
dMi

y

dz 1+Fj
z0−dMi

z

dz 17 dz=0, (52)

for i$ j. Equations (51) and (52) indicate that the corresponding sets of mode shape
functions of any two distinct modal frequencies are orthogonal to each other.
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Figure 4. A concentrated load of magnitude F0 traversing on the curved frame at a constant velocity v.

5. FORCED VIBRATION

While examining the forced vibration, the responses of the frame can be expressed by
the mode superposition in the following forms:

(ux uu uz fx fu fz )(u, t)= s
j=1

ej (t)(Uj
x Uj

u Uj
z Fj

x Fj
u Fj

z )(u), (53a)

(qx qu qz mx mu mz )(u, t)= s
j=1

ej (t)(Qj
x Qj

u Qj
z Mj

x Mj
u Mj

z )(u), (53b)

for the curved beam and

(ux uy uz fx fy fz )(z, t)= s
j=1

ej (t)(Uj
x Uj

y Uj
z Fj

x Fj
y Fj

z )(z), (53c)

(qx qy qz mx my mz )(z, t)= s
j=1

ej (t)(Qj
x Qj

y Qj
z Mj

x Mj
y Mj

z )(z), (53d)

for the column ej (t) is the jth modal amplitude of the frame. Performing similar procedures
to those described by Wang and Lin [2] and employing the orthogonality of any two
distinct sets of mode shape functions into the result yields

Vi
d2ei

dt2 +v2
i Viei =Wi (t), (54)

in which the ith modal mass Vi and excitation Wi (t) are

Vi =g
2a

0

r{A(Ui2
x +Ui2

u +Ui2
z )+ IxF

i2
x + IzF

i2
z + JFi2

u }R du

+g
h

0

r{A*(Ui2
x +Ui2

y +Ui2
z )+ I*Fi2

x + I*Fi2
y + J*Fi2

z } dz, (55a)

Wi (t)=g
2a

0

f(u, t)Ui
z (u) Rdu. (55b)
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T 1

The effect of a on the comparison of the lowest three modal frequencies
(rad/s) of the curved frame (R=150 m, r=0·5 m, a=1 m,

b=0·5 m)

a (degrees) v1 v2 v3

8 24·375 26·058 26·440
10 15·823 16·948 23·779
12 11·088 11·775 17·541

Equation (54) can be expressed as

d2ei

dt2 +v2
i ei =wi (t), (56)

in which the ith modal excitation per unit mass wi (t) is

wi (t)=Wi (t)/Vi . (57)

A concentrated load of magnitude of F0 moving at a constant velocity v on the curved
beam of the frame is displayed in Figure 4. The form of the load is

f(u, t)=6F0d(u− vt/R)
0

0E tE 2T
2TE t

, (58)

where d is the impulse function and T(=Ra/v) is the duration of load traversing on one
span. The respective histories of the ith modal excitation per unit mass wi (t), amplitude
ei (t) of the curved frame can be obtained by performing similar procedures to those
described by Wang [11].

6. EXAMPLES AND DISCUSSION

In this section, the constants E=30 GPa, r=2300 kg/m3, m=0·2, k1 =0·833, a=1 m,
b=0·5 m, k2 =0·878, r=0·5 m, k3 =0·229 and R=150 m of the frame are considered.
The magnitude of the moving force is F0 =50 kN. The initial conditions of the frame are
set at zero. Both length and mass of the curved beam of the frame increase as a increases.
Therefore, in Table 1 it is shown that the fundamental three modal frequencies of the frame
(h=10 m) decrease as a increases. A taller column causes the frame to have a heavier mass.
Consequently, the longer a column is, the lower the modal frequencies of the frame
(a=10°) are, as indicated in Table 2. The lowest three modal frequencies and their
corresponding mode shapes of the frame (a=10°) are displayed in Figures 5(a)–(c).

T 2

The effect of column height on the comparison of the lowest three
modal frequencies (rad/s) of the curved frame (a=10°, R=150 m,

r=0·5 m, a=1 m, b=0·5 m)

h (m) v1 v2 v3

8 15·991 16·950 25·319
10 15·823 16·948 23·779
12 15·658 16·945 21·702



(a)

(b)

(c)
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Figure 5. The lowest three modal frequencies and their corresponding mode shapes of the frame (a=10°,
h=10 m): (a) the first mode, v1 =15·8232 rad/s; (b) the second mode, v2 =16·9475 rad/s; and (c) the third mode,
v3 =23·7793 rad/s.

Figures 5(a) and (b) illustrate the first and the second bending modes of the frame along
the radial direction. Figure 5(c) depicts the bending mode of the frame along the z
direction.

Results obtained by the method of modal analysis converge rather fast. The lowest three
modes of the frame dominate the vibration of the structure. Therefore, it is sufficient to
employ the lowest six modal frequencies and their corresponding sets of mode shape
functions of the frame in the method of modal analysis in the numerical computation. The
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velocity range considered in this section is 0 m/sE vE 50 m/s. The following parameters
are defined to illustrate the numerical results: strain energy for the cross-section of the
mid-span of the first beam during the motion of force, S�b (J/m); strain energy for the
cross-section of the mid-span of the column during the motion of force, S�c (J/m); strain
energy of the entire beam during the motion of force, Sb (J); strain energy of the column
during the motion of force, Sc (J); strain energy of the frame during the motion of force,
S(J); maximum strain energy of the cross-section of the entire beam during the motion
of force, S�bmax (J/m); maximum strain energy of the cross-section of the column during the
motion of force, S�cmax (J/m); maximum strain energy of the entire beam during the motion
of force, Sbmax (J); maximum strain energy of the column during the motion of force, Scmax

(J); maximum strain energy of the frame during the motion of force, Smax (J).
The comparisons of two different v effects on both histories of S�b and S�c of the frame

(a=10°, h=10 m) are displayed in Figures 6(a) and (b), respectively. In Figure 6(a) it
is shown that the peak of S�b always occurs while the force is crossing the mid-point of
the first span. The results in Figure 6(b) reveal that two peaks of S�c always occur while
the force crosses the mid-point of either the first span or the second span of the frame.
Moreover, the magnitude of the second peak exceeds that of the first. A rapidly moving
force can excite more modes of the frame than a slowly moving force can. Consequently,
both S�b and S�c caused by a rapidly moving force exceed those by a slowly moving force.

Figure 6. Comparison of two v effects of the moving load on: (a) S�b history and (b) S�c history of the frame
(a=10°, h=10 m). ——, v=30 m/s; ——, v=40 m/s.
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Figure 7. Comparisons of two v effects of the moving load on: (a) Sb history and (b) Sc history and (c) S history
of the frame (a=10°, h=10 m). ——, v=30 m/s; ——, v=40 m/s.

The frame is in the state of free vibration after the force has left the structure. Therefore,
both S�b and S�c are in a steady state of oscillation after the force has left the frame.

The comparisons of two different v effects on (a) the Sb history, (b) the Sc history and
(c) the S history of the frame (a=10°, h=10 m) are displayed in Figures 7(a)–(c),
respectively. These results point to two peaks in each figure. Furthermore, these peaks
always occur while the force is crossing the mid-span of either the first span or the second
span of the frame. Moreover, the results in each figure also reveal that the magnitude of
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the second peak exceeds that of the first peak. A faster moving force induces the larger
Sb , Sc and S of the frame.

The comparisons of two different h effects on the S�bmax − v distribution and the S�cmax − v
distribution of the frame (a=10°) are displayed in Figures 8(a) and (b), respectively. A
short column causes a small deflection of the frame. Consequently, in Figure 8(b) it is
indicated that a short column has a small S�cmax . A short column causes large reaction forces
and moments on the curved beam. Consequently, a short column causes the entire beam
to have a large S�bmax . All ends of the frame are fixed. Therefore, S�bmax usually appears near
one fixed end of the curved beam. Moreover, S�cmax always occurs near the bottom of the
column.

The comparisons of two different h effects on the Sbmax − v distribution, the Sc,max − v
distribution and the Smax–V distribution of the frame (a=10°) are displayed in Figures
9(a)–(c), respectively. In Figures 9(a)–(c) it is indicated that Sbmax , and Scmax and Smax of
the frame increase as the velocity of the force increases. Further, in Figure 9(b) it is also
indicated that a short column has a small Scmax . The length of one span beam exceeds that
of the column. Therefore, two different column heights do not produce any significant
deviation on these Sbmax − v distributions and these Smax − v distributions, as indicated in
Figures 9(a) and (c).

Figure 8. Comparisons of two h effects of the column on: (a) S�bmax–v and (b) S�cmax–v distributions of the frame
(a=10°). ——, h=8 m; –––, h=12 m.
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Figure 9. Comparisons of two h effects of the column on (a) Sbmax–v (b) Scmax–v and (c) Smax–v distributions
of the frame (a=10°). ——, h=8 m; · · · · ·, h=12 m.

7. CONCLUSIONS

This study formulates the equations of motion of a T-type curved frame. The first mode
of the frame is a bending mode. The problems of a moving load on the curved frame are
also examined analytically. A taller column of the frame causes less maximum strain energy
per unit length in the curved beam; however, more maximum strain energy occurs in the
column. The maximum strain energy per unit length always appears near one fixed end
of the frame.
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APPENDIX A: LIST OF FUNCTIONS g1(u)0 g6(u)

These functions g1(u)0 g6(u) depend on the roots li (i=1, 2, 3) of the equation

l6
i + c1l

4
i + c2l

2
i + c3 =0. (A1)

There are six kinds of g1(u)0 g6(u)
(1) For l1 Q l2 Q l3 Q 0

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cos (a1u) sin (a1u) cos (a2u) sin (a2u) cos (a3u) sin (a3u)}, (A2)

where ai =z=li =, i0 3.
(2) For l1 Q l2 Q 0Q l3

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cos (a1u) sin (a1u) cos (a2u) sin (a2u) cosh (a3u) sinh (a3u)}. (A3)

(3) For l1 Q 0Q l2 Q l3

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cos (a1u) sin (a1u) cosh (a2u) sinh (a2u) cosh (a3u) sinh (a3u)}, (A4)

where ai =z=li =, i=10 3.
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(4) For 0Q l2 Q l3 Q l1

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cosh (a1u) sinh (a1u) cosh (a2u) sinh (a2u) cosh (a3u) sinh (a3u)}. (A5)

(5) For l1 Q 0, two conjugate l2 and l2

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cos (a1u) sin (a1u) cos (su) cosh (xu) cos (su) sinh (xu)

sin (su) cosh (xu) sin (su) sinh (xu)}, (A6)

where s= =l2=1/2 cos (0·5 arg (l2)) and x= =l2=1/2 sin (0·5 arg (l2)).
(6) For l1 q 0, two conjugate l2 and l2

{g1(u) g2(u) g3(u) g4(u) g5(u) g6(u)}

= {cosh (a1u) sinh (a1u) cos (su) cosh (xu) cos (su) sinh (xu)

sin (su) cosh (xu) sin (su) sinh (xu)}. (A7)

APPENDIX B: LIST OF THE FUNCTIONS g7(u)0 g12(u)

These functions g7(u)0 g12(u) depend on the roots li (i=1, 2, 3) of the equation

l6
i + c4l

4
i + c5l

2
i + c6 =0, (B1)

where

c4 =2+ rR2v20J
C

+
1
E

+
1

k1G1,
c5 =1− rR2v20 I

C
+

J
EI

−
2

k1G
+

AR2

EI 1+ r2R2v40 J
k1GC

+
J

CE
+

1
k1GE1,

c6 = rR2v20 I
k1G

+
AR2

C 1− r2R4v40 I
k1GC

+
J

k1GEI
+

AR2J
CEI 1+

r3R6v6J
k1GEC

There are six kinds of g7(u)0 g12(u):
(1) For l1 Q l2 Q l3 Q 0

{g7(u) g9(u) g9(u) g10(u) g11(u) g12(u)}

= {cos (a1u) sin (a1u) cos (a2u) sin (a2u) cos (a3u) sin (a3u)}, (B2)

where ai =z=li =, i=10 3.
(2) For l1 Q l2 Q 0Q l3

{g7(u) g8(u) g9(u) g10(u) g11(u) g12(u)}

= {cos (a1u) sin (a1u) cos (a2u) sin (a2u) cosh (a3u) sinh (a3u)}. (B3)

(3) For l1 Q 0Q l2 Q l3

{g7(u) g8(u) g9(u) g10(u) g11(u) g12(u)}

= {cos (a1u) sin (a1u) cosh (a2u) sinh (a2u) cosh (a3u) sinh (a3u)}, (B4)

where ai =z=li =, i=10 3.
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(4) For 0Q l2 Q l3 Q l1

{g7(u) g8(u) g9(u) g10(u) g11(u) g12(u)}
= {cosh (a1u) sinh (a1u) cosh (a2u) sinh (a2u) cosh (a3u) sinh (a3u)}. (B5)

(5) For l1 Q 0, two conjugate l2 and l2

{g7(u) g8(u) g9(u) g10(u) g11(u) g12(u)}
= {cos (a1u) sin (a1u) cos (su) cosh (xu) cos (su) sinh (xu)

sin (su) cosh (xu) sin (su) sinh (xu)}, (B6)

where s= =l2=1/2 cos (0·5 arg (l2)) and x= =l2=1/2 sin (0·5 arg (l2)).

(6) For l1 q 0, two conjugate l2 and l2

{g7(u) g8(u) g9(u) g10(u) g11(u) g12(u)}
= {cosh (a1u) sinh (a1u) cos (su) cosh (xu) cos (su) sinh (xu)

sin (su) cosh (xu) sin (su) sinh (xu)}. (B7)

APPENDIX C: LIST OF FUNCTIONS f3(z)0 f6(z)

(1) For rv2/k2GQA*/I*

f3(z)= sinh (l1z)+
r1

r2
sin (l2z), f4(z)= cosh (l1z)− cos s(l2z), (C1, 2)

f5(z)= r1(cosh (l1z)− cos s(l2z)), f6(z)= r1 sinh (l1z)− r2 sin (l2z), (C3, 4)

where

l2
1 =−

rv2

2E 01+
E

k2G1+
1
2X0rv2

E 1
2

01−
E

k2G1
2

+
4rv2A*

EI*
,

l2
2 =

rv2

2E 01+
E

k2G1+
1
2X0rv2

E 1
2

01−
E

k2G1
2

+
4rv2A*

EI*
,

r1 = l1 +
rv2

l1k2G
, r2 =−l2 +

rv2

l2k2G
.

(2) For rv2/k2GqA*/I*

f3(z)= sin (l1z)−
s1

s2
sin (l2z), f4(z)= cos (l1z)− cos s(l2z), (C5, 6)

f5(z)= s1(cos (l1z)− cos s(l2z)), f6(z)=−s1 sinh (l1z)+ s2 sin (l2z), (C7, 8)

where

l2
1 =

rv2

2E 01+
E

k2G1−
1
2X0rv2

E 1
2

01−
E

k2G1
2

+
4rv2A*

EI*
,

l2
2 =

rv2

2E 01+
E

k2G1+
1
2X0rv2

E 1
2

01−
E

k2G1
2

+
4rv2A*

EI*
,

s1 = l1 −
rv2

l1k2G
, s2 = l2 −

rv2

l2k2G
.


