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1. 

The problem of transverse vibrations of a rectangular plate with two adjacent, free edges
is a rather difficult elastomechanics problem since the governing boundary conditions at
the free edges† (see Figure 1(a)),

Mx =x= a =Qx + 1Mxy /1y=x= a =0, My =y= b =Qy + 1Myx /1x=y= b =0, (1a, b)

are difficult to satisfy exactly if one looks for an analytical solution.

Figure 1. Rectangular plate with two adjacent, free edges: (a) governing boundary conditions at the free edges;
(b) plate of uniform thickness; (c) plate of discontinuously varying thickness considered in the present study
(a1/a= b1/b).

†Equations (1) are expressed in terms of stress resultants following well established notations e.g. Mx denotes the
bending moment acting in a plane parallel to the xz-plane, Qx: shear force acting in the same plane as Mx, and
Mxy is the twisting moment in a plane parallel to the y–z plane [1].
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A convenient approach followed in the literature consists in constructing co-ordinate
functions which satisfy the boundary conditions at the edges x=0 and y=0 and second
and third order derivatives with respect to x, equal to zero at x= a and, similarly, at y= b.
Very frequently these co-ordinate functions are the eigenfunctions of the Bernoulli–Euler
vibrating beam problem and they are usually called ‘‘beam functions’’. Very accurate
determinations of frequency coefficients are available in the case of isotropic plates [2].

On the other hand, very limited information is available in the case of orthotropic plates,
the problem being of considerable importance in view of the use of orthotropic materials
in a large variety of applications: from civil engineering to naval and ocean engineering
applications to electronic packages where printed circuit boards are one of their
fundamental elements.

The present study reports numerical experiments performed on the determination of the
fundamental frequency of transverse vibration of orthotropic plates of uniform thickness,
Figure 1(b); discontinuously varying thickness, Figure 1(c).

The frequency coefficients are determined using the optimized Rayleigh–Ritz method
and a ‘‘pseudo’’ Fourier expansion which contains optimization parameters in the
arguments of the sinusoidal terms [3, 4]. Once the determinantal equation is constructed,
the lower root is minimized with respect to the optimization parameters. The procedure,
essentially a non linear optimization process, constitutes an extension of the studies
previously reported and where a single free edge was considered [3, 4]. The distribution
of non-uniform thickness does not influence the formulation of the problem.

Good engineering agreement with accurate determinations of the fundamental frequency
obtained by means of the finite element method is shown to exist [5, 6].

2.   

The plate response is approximated using co-ordinate functions which satisfy the
essential and natural boundary conditions at x=0 and y=0,

W(x, y)2Wa (x, y)= s
j

AjXj (x)Yj (y). (2)

Furthermore, Xj and Yj contain optimization parameters which allow for the minimization
of the fundamental eigenvalue. Using Lekhnitskii’s standard notation [1] and substituting
in the governing functional

f(W)= (Maximum strain energy)− (Maximum kinetic energy)

J[W]= 1
2 g g $D1012W

1x2 1
2

+2D1n2
12W
1x2

12W
1y2 +D2012W

1y2 1
2

+4Dk0 12W
1x 1y1

2

% dx dy−
rv2

2 g g hW dx dy, (3)

one generates a homogeneous, linear system of equations in the Aj ’s, when equation (3)
is minimized with respect to the Aj ’s, j=1, 2. . . . The non-triviality condition yields a
secular determinant whose lowest root is the fundamental frequency coefficient.
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Figure 2. Different combinations of boundary conditions in the present study; (a) two adjacent edges simply
supported; (b) edge x=0 simply supported and y=0 clamped; (c) two adjacent edges clamped.

V1 =zrh/D1v1a2. The following co-ordinate functions are used in the present
investigation:

Edges: x=0 and y=0; simply supported (Figure 2(a)),

W2Wa = s
5

j=1,3

Aj sin
px
gja

sin
py

gj+1b
, g1, g2 q 1. (4)

Edge: x=0; simply supported and y=0 clamped (Figure 2(b)),

W2Wa = s
5

j=1,3

Aj sin
px
gja

sin2 py
gj+1b

, g1, g2 q 1. (5)

Edges: x=0 and y=0; clamped (Figure 2(c)),

W2Wa = s
5

j=1,3

Aj sin2 px
gja

sin2 py
gj+1b

, g1, g2 q 1. (6)

since

V1 =zrh/D1v1a2 =V1(g1, g2, . . . , g6) (7)

by requiring

1V1/1g1 = 1V1/1g2 = , . . . , 1V1/1g6 =0, (8)

one obtains an optimized value of V1. Admittedly, accomplishing this would require a
non-linear optimization procedure but the following previous studies have been performed
using a numerical searching process [3, 4].

3.   

The present study makes use of the orthotropic plate element developed in reference [6]
which is an extension of the well known isotropic plate element due to Bogner et al. [5].

4.  

Table 1 presents values of V1 =zrh/Dv1a2 for rectangular isotropic plates of uniform
thickness. The comparison with very accurate results obtained by Leissa [2] reveals that
the present approach yields excellent engineering accuracy (when two adjacent edges are
simply supported, the maximum difference occurs for a/b=1 and is of the order of 0·3%;
in the case of Figure 2(b) the maximum difference is approximately 1% and when the two
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adjacent edges are clamped the present approach yields a value of V1 which is about 4%
higher than the eigenvalue determined in reference [2] for a/b=5/2).

The convergence of the proposed approach is illustrated in Table 1 in the case of two
adjacent; simply supported edges. Admittedly: the accuracy obtained by means of the
present analytical procedure is always better in the case of this configuration. The
minimization approach has been performed numerically in all cases. Table 2 depicts a
comparison of values of V1 =zrh/D1v1a2 in the case of orthotropic plates of uniform
thickness, between the analytical predictions and the results obtained by means of the finite
element method. The maximum difference takes place in the case of Figure 2(c) for a/b=1
and is of the order of 1·6%. Table 3 presents fundamental eigenvalues in the case of
isotropic rectangular plates of discontinuously varying thickness. All calculations have
been performed for a1/a= b1/b=1/2, 3/4 and h1/h2 =2/3. The agreement between

T 1

Fundamental frequency coefficient V1† in the case of isotropic, rectangular plates of uniform
thickness with two adjacent free edges: comparison with values available in the literature

a/b
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Case 2/5 2/3 1 3/2 5/2

Fig. 2(a) Ref. [2] 1·3201 2·2339 3·3687 5·0263 8·2506
1 term 1·3301 2·2671 3·4283 5·1011 8·3133
2 terms 1·3240 2·2499 3·4041 5·0623 8·2755
3 terms 1·3229 2·2396 3·3803 5·0391 8·2633

Fig. 2(b) Ref. [2] 1·6160 3·0804 5·3639 9·9555 24·0887
3 terms 1·6271 3·1006 5·3832 9·9786 24·0990

Fig. 2(c) Ref. [2] 3·9857 4·9848 6·9421 11·2160 24·2564
3 terms 4·0410 5·1100 6·9984 11·5381 25·2564

† Values of V1 =zrh/Dv1a2 (m=0·30)

T 2

Fundamental frequency coefficient V1† in the case of orthotropic, rectangular plate of uniform
thickness with two adjacent, free edges: comparison with values obtained by means of the

finite element (F.E.) method (D2/D1 =1/2; Dk /D1 =1/3; n2 =0·30)

a/b
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Figure 2/5 2/3 1 3/2 5/2

Fig. 2(a) 3 terms 1·2789 2·1667 3·2721 4·9032 8·0609
F.E. 1·2752 2·1525 3·2546 4·8784 8·0376

(1425)‡ (1025) (625) (1025) (1425)

Fig. 2(b) 3 terms 1·4911 2·7600 4·6245 8·1107 18·2694
F.E. 1·4758 2·7301 4·5842 8·0504 18·1661

(1400) (1000) (600) (984) (1368)

Fig. 2(c) 3 terms 3·9301 4·7602 6·3602 9·6154 19·4125
F.E. 3·8927 4·7005 6·2653 9·4825 19·1855

(1344) (960) (576) (960) (1344)

† Values of V1 =zrh/D1v1a2

‡ Number of degrees of freedom of the particular model.
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T 3

Fundamental frequency coefficient V1† in the case of isotropic rectangular plates
of discontinuously varying thickness, with two adjacent free edges (m=0·30)

a/b
ZXXXXXXXCXXXXXXXV

a1/a= b1b Figure Method 1 2/3 2/5

0·50 2(a) 3 terms 2·9283 1·9524 1·1729
F.E. 2·9156 1·9438 1·1650

2(b) 3 terms 4·1996 2·4566 1·3365
F.E. 4·1408 2·4198 1·3186

2(c) 3 terms 5·1101 3·6785 2·9191
F.E. 5·0212 3·6151 2·8819

0·75 2(a) 3 terms 3·4079 2·2699 1·3554
F.E. 3·3957 2·2606 1·3506

2(b) 3 terms 5·1252 2·9824 1·6066
F.E. 5·0868 2·9559 1·5927

2(c) 3 terms 6·3317 4·5563 3·6144
F.E. 6·2622 4·5109 3·5817

† Values of V1 =zrh1/Dv1a2.

T 4

Fundamental frequency coefficient V1† in the case of orthotropic rectangular
plates of discontinuously varying thickness, with two adjacent free edges

(D2 =1/2D1, Dk =1/3 D1, m2 =0·30)

a/b
ZXXXXXXXCXXXXXXXV

a1/a= b1b Figure Method 1 2/3 2/5

0·50 2(a) 3 terms 2·8533 1·9028 1·1432
F.E. 2·8388 1·8915 1·1320

2(b) 3 terms 3·6649 2·2447 1·2719
F.E. 3·6063 2·2000 1·2350

2(c) 3 terms 4·6994 3·5310 2·8791
F.E. 4·5965 3·4602 2·8307

0·75 2(a) 3 terms 3·3174 2·2095 1·3180
F.E. 3·3030 2·1972 1·3135

2(b) 3 terms 4·4582 2·7053 1·5087
F.E. 4·4153 2·6727 1·4815

2(c) 3 terms 5·8251 4·3863 3·5695
F.E. 5·7462 4·3330 3·5263

† Values of V1 =zrh1/D1v1a2.

the analytical predictions and the results obtained using the finite element method is very
good from an engineering viewpoint, the maximum difference takes place for the
configuration shown in Figure 2(c) and is of the order of 2% for a/b=2/3.

Table 4 shows values of V1 for orthotropic rectangular plates of discontinuously varying
thickness and for the same values of a1/a, b1/b and h2/h1 as were used for the isotropic
structure. The agreement between the analytical and the FE predictions is, again, quite
satisfactory.
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In conclusion, one may say that the proposed analytical approach is quite simple† and
allows for the determination of the fundamental frequency of transverse vibration of a
rather complicated structural element with sufficient accuracy.
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