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Thin walled box sections are used as load bearing members in various industries, aircraft
structures and marine vessels. To avoid undesirable effects of the surrounding vibration
environment, the structure can be designed to have natural frequency removed from the
range of exciting frequency or by introducing damping. In the present study the vibration
and damping behaviour of layered composite box beams is analysed using the finite element
method. The finite element formulation is based on first order shear deformation theory,
which takes shear deformation of the beam into consideration. The effect of the number
of layers, end conditions and fiber angle on frequency and loss factor is studied for two
materials, namely, graphite–epoxy and glass–epoxy.
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1. INTRODUCTION

Thin walled box sections are used as load bearing members in various industries, as
structural part of vehicles (marine, aircraft and underwater vessels etc.), and other
applications. When used in a vibratory environment, the structures can receive transmitted
vibratory energy which can cause high vibratory stresses and environmental fatigue of the
materials. This will cause undesirable effects on the structure. To avoid this, the structure
can be designed to have natural frequencies removed from the range of exciting frequency
or by introducing damping.

A significant amount of research has been conducted on the dynamic analysis of plates,
beams and columns. Classical plate theory is used in some of the earlier works on the
laminated composites. Wittrick [1] and Wittrick and Williams [2] have presented an exact
analysis of plate structures. A VIPASA computer program by Wittrick and Williams [2]
provides an efficient way of calculating exact buckling and natural frequencies of flat plate
prismatic structures, but has some limitations concerning the material properties in that
the the coupling between extensional and bending stresses cannot be included in the
analysis. Shear deformation effects are of critical importance in the analysis of laminated
plates [3]. Dawe and Peshkam [4] used shear deformable plate theory with finite strip
method to find the natural frequency of the plate structure.

Theoretical analysis of flexural vibration of multi-layered beams, plates and shells
employing various arrangements of elastic and viscoelastic layers have been reviewed by
Nakra [5, 6]. Damped vibration analysis of fiber reinforced composite plates was carried
out by Malhotra et al. [7], and Alam and Asnani [8]. Malhotra et al. [7] used the
Rayleigh–Ritz method to analyze the plate having linear variation in thickness. Alam and
Asnani [8] analyzed the simply supported plate using variational methods by including the
shear deformation and rotary inertia into account. In the present study, shear deformable
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plate theory is used with the finite element method to find the natural frequencies and loss
factor for composite box beam. For damping analysis, the moduli are considered in
complex forms. The effect of the number of layers, end conditions and laminate angle on
the dynamic behaviour of composite box beams is studied.

2. FINITE ELEMENT MODEL

Figure 1 shows the four noded plate element in the local x-y plane with five degrees of
freedom per node namely, u0, v0, w0, mid-plane translations in the x, y, z, directions and
ux , uy , the rotations of the normal, from the undeformed mid-plane, in the yz- and xz-plane
respectively. These normals are not necessarily normal to the mid-plane after deformation
and consequently, shear deformation is permitted.

The displacements in the laminate can be written as

u= u0 + zux , v= v0 − zuy , w=w0. (1)

The displacement field, {d}e , of the element can be expressed as the polynomial shape
function, [Ni ], and nodal displacement, {ai}e , associated with node i is given by

{d}e =[Ni ]{ai}e . (2)

The internal strain energy of the element can be determined by integrating the product
of the inplane stress resultant, [Nm ], and the extensional strain, {om}, moment resultants,
[M], and bending curvature, {k}, and shear stress resultants, [Ns ], and shear strain, {os},
as given by

U= 1
2 6g[Nm ]T{om} da+g [M]T{k} da+g [Ns ]T{os} da7. (3)

The internal strain energy can be written in the form of stiffness and nodal displacement
as

U= 1
2 {ai}e [Ke ]{ai}e . (4)

To avoid the numerical overstiffness effect or locking caused by shear terms as the
thickness of the plate is reduced, the Gaussian quadrature formula adopting selective
integral [9] is used in deriving the element stiffness matrix.

For damping analysis, the complex stiffness matrix K�e =[Ke +jHe ], (where He is the
imaginary part of the complex stiffness matrix) is obtained by replacing the elasticity
moduli EL , ET , GLT by complex moduli ELC , ETC , GLTC when deriving the stiffness matrix.

Figure 1. Globally inclined plate element (the element lies in the local xy-plane).
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The complex moduli are given in the following form ELC =EL (1+ jhL ),
ETC =ET (1+ jhT ), GLTC =GLT (1+ jhLT ), where hL , hT , hLT are the loss factors for EL , ET ,
GLT . The value of loss factor, h, is computed from corresponding specific damping
capacity, c, divided by 2p. The material loss factor for fiber material, in general, is very
small in comparison with that of matrix materials. The material loss factor for a matrix
material is different for different materials and its value depends upon frequency,
temperature and strain. For the present study, the value of material loss factor, h, is taken
from Lin et al. [10] for glass–epoxy and graphite–epoxy.

The kinetic energy of the vibrating plate is given by

T= 1
2 g r[u,t ]2 + [v,t ]2 + [w,t ]2 dv, (5)

where r is the material density, which is uniform throughout the volume and the subscript
,t indicates the derivative with respect to time. Using equation (1) and integrating through
the thickness, the kinetic energy becomes:

T= 1
2 rh gA

{(u0,t )2 + (v0,t )2 + (w0,t )2 + h2/12((ux,t )2 + (uy,t )2)} dA. (6)

The same shape function as described in the displacement variation is used in the
consistent mass matrix for the constant thickness element is expressed by

Me
i j =Ci j �h, h, h, h3/12, h3/12�, (7)

where �h, h, h, h3/12, h3/12� are the diagonal elements of the consistent mass matrix, the
remaining elements of the 5×5 element mass matrices are zero, and Ci j are the mass
matrix coefficients.

The assembly of different stiffness matrices for each element must be made in a global
co-ordinate system. This can be done by using the transformation matrix [T], which relates
displacement in local and global systems as follows:

{ā}e =[T]{a}e . (8)

Stiffness and mass matrices in the global system are given by

[K]= [T] [K�e ] [T]T, [M]= [T] [Me ] [T]T. (9)

The governing equation for the vibration in the matrix form is

[[K]− lc [M]]{ā}=0. (10)

where [K] is the global complex stiffness matrix and [M] is the global mass matrix, lc is
the complex eigenvalue, and {ā} is the eigenvector. The above equation is solved by using
a simultaneous iteration technique.

3. NUMERICAL EXAMPLES

The finite element formulation described in the earlier section has been used to study
the effect of materials and fiber orientation angle on the non-dimensional fundamental
frequency and loss factor of composite box beams. In order to validate the above finite
element method, the fundamental frequency of isotropic plates, composite plates, and
beams are compared.



.   . . 204

T 1

Non-dimensional vibration frequencies for an isotropic plate

Simply supported Clamped
Aspect ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV
ratio Leissa [11] Present Leissa [11] Present

1 19·74 19·70 35·99 35·91
2 49·35 49·25 98·59 98·30

T 2

Fundamental vibration frequencies for square antisymmetric angle ply laminate

Number of layers
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

2 4 6
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

Angle Jones et al. [13] Present Jones et al. [13] Present Jones et al. [13] Present

0° 18·81 18·73 18·81 18·73 18·81 18·73
30° 14·20 14·15 22·18 22·10 23·34 23·32
45° 14·64 14·60 23·53 23·43 24·83 24·70

T 3

Non-dimensional fundamental frequencies for square antisymmetric cross-ply laminate

BC
ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

ssss sscc
Number of ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

layers b/h Reddy and Khdeir [14] Present Reddy and Khdeir [14] Present

2 5 8·83 8·78 10·90 10·69
10 5 11·64 11·32 12·92 12·53
10 10 15·78 15·24 20·47 20·26

BC Boundary conditions; s, simply supported; c, clamped.

T 4

Dynamic analysis of the simply supported plate lR ×108

Ply angle (deg.) 0 15 30 45 60 75 90
Alam and Asnani [8] 0·108 0·132 0·180 0·204 0·180 0·132 0·108
Present 0·110 0·133 0·182 0·206 0·182 0·133 0·110

3.1.  

The non-dimensional vibration frequencies for an isotropic plate having an aspect ratio
of one, two with simply supported and clamped edges are presented in Table 1. The present
finite element method results have been compared with those of Leissa [11] and are in good
agreement.



-   205

T 5

Natural frequencies of a cantilever box beam

Mode no. Analytical [15] FEM. [15] Present

1 2·912 2·961 3·105
2 17·565 17·868 17·950
3 46·558 47·077 47·252

3.2. -   

The fundamental vibration frequencies for a square anti-symmetric angle ply laminate
are presented in Table 2. The material properties are EL /ET =40, GLT /ET =0·5,
nLT =0·25. The parameters considered are fiber orientation angle and the number of layers.
The values obtained for the laminate with S3 (as described by Jones [12]) boundary
conditions are compared with those of Jones et al. [13] and found to be in good agreement.

3.3. - - 

The non-dimensional fundamental frequencies for a square anti-symmetric cross ply
laminate are presented in Table 3. The effect of side to thickness ratio and number of layers
are studied. The boundary condition and material properties used for the analysis are the
same as those used by Reddy and Khdeir [14]. All the layers are assumed to have the same
thickness. The shear correction factors are taken as 5/6. The results are compared with
analytical results presented by Reddy and Khdeir. Good agreement between results in the
literature and present results is found.

3.4.      

The variation of the non-dimensional fundamental frequency, lR , for the simply
supported crisscross-ply laminated plate having four layers is analyzed. The results are
compared with those of Alam and Asnani [8]. The results shown in Table 4 are in good
agreement with results in the literature.

3.5.   

The natural frequencies of a slender box beam, with the following configurations, are
shown in Table 5. The span of the beam is 20 m, its width and height is 1 m. Material
properties used are the same as used by Petyt [15]. The natural frequencies are compared
with the analytical and finite element results of Petyt and good agreement is observed.

3.6.   

The vibration behaviour of two equal cell orthotropic tubes of square cross-section is
analysed. The depth of the beam is B, its span is five times its depth (i.e., 5B) with
diaphragm ends, and all the sides of the tube are of the same thickness, h. Two different

T 6

Fundamental frequency parameter of a two cell box beam

Thick tube h/B=0·1 Thin tube h/B=0·01
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

No. Dawe and Peshkam [4] Present Dawe and Peshkam [4] Present

1 16·999 16·5 177·0 176·0
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thickness values are considered, namely h/B=0·1 and h/B=0·01. For the present
example, a [0/90/0/90/0] lay-up sequence is considered. The thickness of each of the 0° plies
is h/6 and that of each of the 90° plies is h/4. The material properties are taken from Dawe
and Peshkam [4]. The frequency parameter {(V= fB2/h(r/0·517745EL )1/2) where f is the
frequency, r is the mass density, EL is the longitudinal modulus} is shown in Table 6. The
results show good agreement with those of Dawe and Peshkam.

Figure 2. Free vibration analysis of simply supported box beam with symmetrical lay-up: (a) graphite–epoxy;
(b) glass–epoxy. Key: —q—, 16 layers; —R—, 8 layers; —e—, 4 layers.

Figure 3. Free vibration of analysis simply supported box beam with antisymmetrical lay-up: (a)
graphite–epoxy; (b) glass–epoxy. Key : —q—, 8 layers; —r—; 6 layers; —w—, 4 layers; —P—, 2 layers.

Figure 4. Free vibration analysis of fixed box beam with symmetrical lay-up: (a) graphite–epoxy; (b)
glass–epoxy. Key as for Figure 2.
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4. RESULTS AND DISCUSSIONS

4.1.    

The results of the natural frequency of single cell laminated composite thin walled box
beams made of glass–epoxy and graphite–epoxy are presented. The material properties are:
graphite–epoxy EL /ET =40·0, GL /ET =0·6, GT /ET =0·5, nLT =0·25; glass–eopxy
EL /ET =4·70, GL /ET =GT /ET =0·5, nLT =0·26. Configuration of the box beam is,
a/bf =12·0, bw /bf =1·0, tw /tf =1·0 (where a is the span of the beam, bw , bf are the web
and flange width respectively, tw , tf are the thickness of the web and flange respectively).
Symmetric and antisymmetric angle ply laminates with simply supported and fixed end
conditions are analysed in the present study. In this analysis, the imaginary part in the
complex stiffness matrix is zero. Figures 2–5 show the variation of frequency parameter
with ply angle for a single cell box beam. The non-dimensional frequency parameter for
free vibration without damping is given by ( fb2(r/t2ET )1/2), where f is the fundamental
frequency, r is the mass density, ET is the transverse modulus, and b and t are the width
and thickness of the flange.

4.1.1. Simply supported box beam
Figures 2 and 3 show the variation of frequency parameter with ply angle, for

symmetric and anti-symmetric angle ply composite laminated box beams. It is
observed from the figures that, as the number of layers increases, the natural
frequency increases. This is due to the fact that inplane–shear coupling (A16 and A26)
and bending–twisting coupling (D16 and D26) decreases as the number of layers
increases for symmetric lay-up, and for anti-symmetric lay-up the inplane–twisting
coupling (B16 and B26) effect decreases as the number of layers is increased, keeping
the total thickness constant.

Figure 5. Free vibration analysis of fixed box beam with antisymmetrical lay-up: (a) graphite–epoxy; (b)
glass–epoxy. Key as for Figure 3.

T 7

Material properties of unidirectional composite for 0·5 volume fraction [10]

Specific
Material EL (Gpa) ET (Gpa) GLT (Gpa) cL cT cLT gLT gravity

Glass–DX-210 37·78 10·9 4·91 0·0087 0·0505 0·0691 0·3 1·87
(Glass–epoxy)
HMS–DX-210 172·7 7·2 3·76 0·0045 0·0422 0·0705 0·3 1·55
(Graphite–epoxy)
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For graphite–epoxy the natural frequency increases from 0° to 20° ply angle and then
starts decreasing. Unlike graphite–epoxy, the natural frequency steadily decreases from 0°
to 90° for glass–epoxy (0° angle orientation coincides with axial direction of the beam).

Figure 6. Free vibration analysis (with damping) of simply supported box beam with symmetrical lay-up: (a)
graphite–epoxy; (b) glass–epoxy. Key as for Figure 2.

Figure 7. Free vibration analysis (with damping) of simply supported box beam with antisymmetrical lay-up:
(a) graphite–epoxy; (b) glass–epoxy. Key as for Figure 3.

Figure 8. Free vibration analysis (with damping) of fixed box beam with symmetrical lay-up: (a)
graphite–epoxy; (b) glass–epoxy. Key as for Figure 2.
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4.1.2. Fixed box beam
Variation of the frequency parameter with respect to fiber angle is shown in Figures 4

and 5. Similar to the simply supported cases, the inplane–shear coupling and
bending–twisting coupling decreases for the symmetric lay-up sequence. For antisymmetric
laminate along with inplane–shear and bending–twisting coupling, the inplane twisting
coupling effect decreases as the number of layers increases, while keeping the total
thickness of the laminate as constant. Due to this reduction in coupling effect, the natural
frequency increases. The maximum natural frequency occurs between 0° and 20° for all
the cases.

4.2.    

The variation of the non-dimensional fundamental frequency, l, and loss factor with
fiber angle orientation for graphite–epoxy and glass–epoxy materials are shown in
Figures 6–9. The same box beam configuration as before is taken for this analysis.
Symmetric and anti-symmetric laminates with simply supported and fixed end conditions
are presented in this study. The material properties are taken from Lin et al. [10] and it
is shown in Table 7. Non-dimensional fundamental frequency for free vibration with
damping is given by l= frt/EL , where f is the frequency corresponding to the real part
of the complex eigenvalue, r is the mass density, EL is the longitudinal modulus and t is
the thickness. The loss factor is given by the ratio of imaginary part to real part of the
complex eigenvalue.

4.2.1. Simply supported box beam
The non-dimensional fundamental frequency (l) increases slightly with fiber angle up

to 15° and then starts decreasing (as shown in Figures 6 and 7) for symmetric and
antisymmetric lay-up sequences for the graphite–epoxy material, whilst glass–epoxy
laminate shows a steady decrease in non-dimensional fundamental frequency (l) from 0°
to 90°. As the number of layers increases, by keeping the total thickness of the laminate
as constant, the natural frequency increases. This is due to the coupling effect as explained
earlier but this effect is smaller compared with the free vibration without damping. The
loss factor follows an inverse pattern of variation with fiber angle. As the number of layers
increases, by keeping the total thickness constant, the loss factor decreases.

Figure 9. Free–vibration analysis (with damping) of fixed box beam with antisymmetrical lay-up: (a)
graphite–epoxy; (b) glass–epoxy. Key as for Figure 3.
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4.2.2. Fixed box beam
Figures 8 and 9 show the variation of non-dimensional fundamental frequency (l) with

fiber angle, for symmetric and anti-symmetric angle ply composite laminated box beams.
The non-dimensional fundamental frequency increases up to 30° fiber angle and then starts
decreasing for glass–epoxy, whereas graphite–epoxy shows almost constant frequency
parameter for fiber angle up to 15° and then starts decreasing. The coupling effects are
small compared to the vibration without damping. The loss factor follows an inverse
pattern of variation with the fiber angle i.e., the loss factor decreases as the number of
layers increases.

5. CONCLUSIONS

The vibration and damping behaviour of layered composite box beams have been
presented. The effect of end conditions, number of layers, and fiber angle on frequencies
and loss factor have been studied for the glass–epoxy and graphite–epoxy systems.
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