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We investigate non-linear saturation control, non-linear internal resonance control, and
linear position-feedback control of steady-state and transient vibrations of a cantilever
beam by using PZT (lead zirconate titanate) patches as actuators and sensors. The
saturation control method uses the saturation phenomenon to suppress steady-state
vibrations of a dynamical system with quadratic nonlinearities and 2:1 internal resonances.
The internal resonance control method uses the energy exchange phenomenon due to
internal resonances and added dampings to suppress transient vibrations. To test these
control techniques in an efficient and systematic way, we built a digital control system that
consists of SIMULINK modelling software and a dSPACE DS1102 controller in a pentium
computer. Both numerical and experimental results show that the saturation control
method is robust and efficient in suppression steady-state resonant vibrations. The linear
position-feedback control is more robust, efficient, and convenient than the internal
resonance control in suppressing transient vibrations, but it is not as robust as the
saturation control in suppressing steady-state vibrations. A hybrid controller consisting of
a saturation controller and a position-feedback controller is shown to be robust and
efficient in controlling both transient and steady-state vibrations.
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1. INTRODUCTION

In weakly nonlinear systems, internal resonances may occur if the linear natural
frequencies are commensurate or nearly commensurate, and internal resonances provide
coupling and energy exchange among the vibration modes [1, 2]. If two natural frequencies
of a system with quadratic nonlinearities are in the ratio 2:1, there exists a saturation
phenomenon [1]. When the system is excited at a frequency near the higher natural
frequency, the structure responds at the frequency of the excitation and the amplitude of
the response increases linearly with the amplitude of the excitation. However, when the
high-frequency modal amplitude reaches a critical value, this mode saturates and all
additional energy added to the system by increasing the excitation amplitude overflows into
the low-frequency mode.

Recently the use of internal resonance and saturation phenomena in nonlinear control
has been extensively studied [3–6]. This method is based on an approach originally
introduced by Golnaraghi [3] and thoroughly investigated in reference [5]. To control
transient vibrations, reference [3] used a second-order controller coupled to a vibration
system via quadratic or cubic terms. References [4, 5] used the saturation phenomenon to
successfully control the motion of a d.c. motor with a rigid beam attached. These control
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techniques exploit modal interaction and saturation phenomena to transfer energy from
a vibrating system to one or more electronic circuits. The control strategy is to use a linear
second-order controller coupled to the vibration system via quadratic nonlinear terms (or
other higher-order terms). The nonlinear terms act as an energy bridge to establish a state
of exchange of energy between the system and the controller, resulting in a beating
phenomenon in the response of the combined system. For controlling transient vibrations,
the beating phenomenon is used to channel energy from the system to the controller and
then the energy is dissipated by adding dampings before it has the opportunity to revert
back to the system (called internal resonance control). For controlling steady vibrations,
the controller is used as a continuous vibration absorber (called saturation control).

Aerospace structures are required to be light in weight and hence composite structures
are increasingly used. Moreover, aerospace composite structures (e.g. helicopter rotor
blades) are often designed with built-in elastic bending–torsion couplings to improve
aerodynamic efficiency. To actively control such structures without too much added
weight, PZT actuators and sensors are attractive because of their mechanical simplicity,
small volume, light weight, large useful bandwidth, efficient conversion of electrical to
mechanical energy, ability to perform shape control, and ability to be easily integrated with
the structure. However, the integrated PZT actuators need to induce twisting moments as
well as bending moments in order to control coupled bending–torsion vibrations (e.g.
flutter) of structures, especially structures with elastic bending–torsion couplings.
PZT-induced bending vibrations and controls have been widely studied, but there are only
a few studies about PZT-induced twisting vibrations and controls [7].

A beam can be twisted by integrated PZT patches arranged in different patterns to
induce bi-moments. Reference [7] investigated the twisting of a beam with PZT actuators
attached at 45° to the longitudinal axis of the beam to induce two bending moments
(bi-moments) that are perpendicular to each other (90° bi-moments). Reference [8] studied
the twisting of a beam with PZT actuators attached parallel to the longitudinal axis of
the beam and at the root of the cantilever beam to induce two bending moments that are
parallel but opposite to each other (180° bi-moments). For a specific aluminum beam
example, reference [8] reported that the twisted angle induced by a 180° bi-moment is about
2·7 times more than that induced by a 90° bi-moment by using the same amount of PZT
material. When a PZT actuator is integrated with a structure, the induced moments and
forces represent a self-equilibrated stress state of the integrated structure. It follows from
St Venant’s principle that a system of loads having zero resultant forces and moments (i.e.
a self-equilibrated stress state) produces a strain field that is negligible at a point far away
from the loading end [9]. But, for highly anisotropic and heterogeneous materials, such
a self-equilibrated stress state can result in nontrivial strains with long decay lengths, which
are the so-called boundary-layer solutions, or extremity solutions, or eigensolutions, or
transitional solutions [9, 10]. The torsional deformation in reference [8] is partly due to the
restraint warping effect that increases torsional deformations by increasing the decay
lengths of torsional boundary-layer solutions.

Because the saturation control method does not require decision making as some linear
control methods do, it can be built using simple commercial electronic circuits [5].
Moreover, some experimental results [11] show that this nonlinear control method works
even when the structure undergoes large-amplitude vibrations and the structural system
becomes nonlinear. This work is to study in detail the use of PZT patches as actuators
and sensors in controlling the steady-state and transient vibrations of cantilever beams
using the nonlinear control methods and to compare them with some linear control
methods.
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2. THEORETICAL BACKGROUND

To show the use of internal resonance and saturation phenomena for vibration control,
we consider the two ordinary differential equations

ü1 +2z1v1u̇1 +v2
1u1 = g12u1u2,

ü2 +2z2v2u̇2 +v2
2u2 = g11u2

1 +F cos (Vt), (1)

where u1 denotes the response of a second-order controller, v1 is the natural angular
frequency of the controller, z1 is the damping ratio of the controller, u2 represents the sensor
response to a single-mode vibration of the observed structure, v2 is the modal frequency
of the structure, z2 is the modal damping ratio, g11 and g12 are positive gain constants, F
is the amplitude of the external excitation force and is assumed to be positive, V is the
external excitation frequency, t is time, and (·)0 d( )/dt.

We follow Nayfeh and Mook [1] and use the method of multiple scales to obtain a
first-order approximate solution of equation (1) as

u1 = a1 cos 0Vt
2

−
f1 +f2

2 1 , u2 = a2 cos (Vt−f2). (2)

The modulation equations that govern the amplitudes ai and phase angles fi are

ȧ1 =−v1z1a1 +
g12

4v1
a1a2 sin f1, (3)

ȧ2 =−v2z2a2 −
g11

4v2
a2

1 sin f1 +
1

2v2
F sin f2, (4)

1
2(f� 1 +f� 2)a1 =

s1 − s2

2
a1 +

g12

4v1
a1a2 cos f1, (5)

f� 2a2 = s1a2 +
g11

4v2
a2

1 cos f1 +
1

2v2
F cos f2. (6)

where s1 and s2 are detuning parameters defined as

s1 =V−v2, s2 =2v1 −v2. (7)

The amplitudes a1 and a2 are assumed to be positive here.

2.1. - 

The steady-state solutions (i.e. fixed-point solutions) correspond to constant ai and fi ,
i.e. ȧi =f� i =0 and hence

0=−v1z1a1 +
g12

4v1
a1a2 sin f1, (8)

0=−v2z2a2 −
g11

4v2
a2

1 sin f1 +
1

2v2
F sin f2, (9)

0=
s1 − s2

2
a1 +

g12

4v1
a1a2 cos f1, (10)

0= s1a2 +
g11

4v2
a2

1 cos f1 +
1

2v2
F cos f2. (11)
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When a1 =0, it follows from equations (9) and (11) that

a2 =
F

2v2zs2
1 +v2

2z
2
2

. (12)

It is the linear forced response. When a1 $ 0, it follows from equations (8) and (10) and
equations (9) and (11) that

a1 =z−b2zb2 − c, a2 =
4v1

g12
z(v1z1)2 + 1

4(s2 − s1)2, (13)

where

b=
8v1v2

g11g12
[2z1z2v1v2 + s1(s2 − s1)],

c=4 08v1v2

g11g12 1
2

(s2
1 +v2

2z
2
2 )$v2

1z
2
1 +

1
4

(s2 − s1)2%−4
F2

g2
11

. (14)

If b2 − ce 0, it follows from equation (14) that

FeF1 0 b8v1v2

g12 0s1v1z1 −
s2 − s1

2
v2z21b . (15)

Also equation (14) shows that ce 0 corresponds to

FEF2 0XF2
1 +

g2
11

4
b2 . (16)

When bQ 0, the controller u1 responds differently to three different excitation levels. They
are (1) a1 =z−b+zb2 − c if FqF2 (i.e. cQ 0), (2) a1 =z−b2zb2 − c if
F1 QFQF2, and (3) a1 =0 if FQF1. Hence, the threshhold value of F is F1 when bQ 0.
When be 0, (1) a1 =0 if FQF2 (i.e. cq 0), and (2) a1 =z−b+zb2 − c if FqF2 (i.e.
cQ 0). Hence, the theshhold value of F is F2 when be 0.

Equation (13) shows that (1) a2 =0 if z1 =0 and s2 − s1 =0 (i.e. 2v1 −V=0), (2) a2

is proportional to 1/g12, (3) a2 is proportional to V−2v1 if z1 =0, and (4) a2 is independent
of F (the so-called saturation phenomenon). Case (1) indicates that, even if the excitation
is not at resonance (i.e. s1 $ 0), a2 can also be controlled to be zero if V=2v1 and z1 =0.
Since the natural frequency v1 of the controller can be easily adjusted, theoretically this
control method should also work for non-resonant excitations.

Equations (13) and (14) show that, if z1 =0 and V=2v1, a1 =z2F/g11 and hence a1

is proportional to 1/zg11.
It follows from equations (8) and (10) that, when a1 $ 0 and z1 =0, f1 =0° or f1 =180°.

If f1 =0°, it follows from equation (2) that

u2
1 =

a2
1

2
+

a2
1

2
cos (Vt−f2), u1u2 =

a1a2

2
cos

1
2

(Vt−f2)+
a1a2

2
cos

3
2

(Vt−f2).

(17)

If f1 =180°, we have

u2
1 =

a2
1

2
−

a2
1

2
cos (Vt−f2), u1u2 = −

a1a2

2
sin

1
2

(Vt−f2)+
a1a2

2
sin

3
2

(Vt−f2). (18)
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Moreover, equations (9) and (11) show that, when a1 $ 0 and z1 =0, f2 is very close to
180° (if f1 =0°) or 0° (if f1 =180°) because the modal damping ratio z2 is usually very
small. Substituting f2 =180° in equation (17) yields

u2
1 =

a2
1

2
−

a2
1

2
cos (Vt), u1u2 =

a1a2

2
sin

1
2

(Vt)−
a1a2

2
sin

3
2

(Vt). (19a)

Substituting f2 =0° in equation (18) yields

u2
1 =

a2
1

2
−

a2
1

2
cos (Vt), u1u2 =−

a1a2

2
sin

1
2

(Vt)+
a1a2

2
sin

3
2

(Vt). (19b)

It explains why g11u2
1 can be used to provide an actuation force against the external

excitation force F cos (Vt) and why g12u1u2 can be used to excite u1(v1 2V/2) and make
u1 absorb the energy from u2. Moreover, we will show that the constant excitation a2

1 /2
is important for the success of this nonlinear control method.

Since equation (13) shows that setting z1 =0 reduces a2, the following system equations
will be considered in simulating the saturation control of steady-state vibrations:

ü1 +v2
1u1 = g12u1u2U(t− t0),

ü2 +2z2v2u̇2 +v2
2u2 = g11u2

1U(t− t0)+F cos (Vt), (20)

where U(t− t0) is a unit-step function and t0 is the time that the controller is activated.

Figure 1. The cantilever beam under study and a digital saturation controller for controlling single-mode
steady-state vibrations.
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Figure 2. A digital internal resonance controller for controlling single-mode transient vibrations.

To simulate the internal resonance control of transient vibrations, the following system
equation will be considered:

ü1 +2z1v1U(t− t1)u̇1 +v2
1u1 = g12u1u2, ü2 +2z2v2u̇2 +v2

2u2 = g11u2
1 , (21)

where U(t− t1) is a unit-step function and t1 is the time that the damping of the controller
is turned on.

2.2.  

To determine the stability of linear and nonlinear fixed-point solutions of equations
(3)–(6), we need to introduce the Cartesian coordinates pj and qj as

p1 = a1 cos 0f1 +f2

2 1 , q1 = a1 sin 0f1 +f2

2 1 , p2 = a2 cos (f2),

q2 = a2 sin (f2). (22)

Using equation (22) we reform equations (3)–(6) into

ṗ1 =−v1z1p1 −
s1 − s2

2
q1 +

g12

4v1
(q1p2 − p1q2), (23)

q̇1 =−v1z1q1 +
s1 − s2

2
p1 +

g12

4v1
( p1p2 + q1q2), (24)
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ṗ2 = −v2z2p2 − s1q2 −
g11

2v2
p1q1, (25)

q̇2 =−v2z2q2 + s1p2 +
g11

4v2
( p2

1 − q2
1 )+

F
2v2

. (26)

Because these are first-order autonomous ordinary-differential equations, the stability of
a particular fixed point with respect to an infinitesimal disturbance proportional to elt is
determined by the eigenvalues of the Jacobian matrix of the right-hand sides of equations
(23)–(26). A given fixed point is stable if and only if the real parts of all eigenvalues are
less than or equal to zero. If there is a pair of complex conjugate values having positive
real parts, amplitude and phase-modulated motions are expected.

3. EXPERIMENTAL SET-UP

To test these control methods, we built a digital control system that consists of
SIMULINK modelling software [12] and a dSPACE DS1102 controller [13] in a pentium
computer. The SIMULINK software is used to build the control block diagrams, and then
the dSPACE Real-Time Workshop is used to generate a C-code model from the
SIMULINK model. The C-code model is then connected by the dSPACE Real-Time
Interface to the dSPACE real-time hardware system for hardware-in-the-loop simulation.

Figure 3. Theoretical saturation control of the first-mode vibration: (a) sensor response u2 and (b) controller
response u1.
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Figure 4. Theoretical internal resonance control of the first-mode transient vibration: (a) uncoupled and
uncontrolled transient response u2, (b) coupled but uncontrolled (z1 =0) transient response u2, (c) coupled but
undamped controller response u1, and (d) controlled transient response u2.
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Figure 1 shows a 16·530×2·50×0·05020 stainless steel beam under study and the
controller designed for the saturation control of the first-mode steady-state vibrations.
When the variable gain ‘‘0/1’’ is set to zero, u1 is disconnected from u2. To turn on the
controller, set ‘‘0/1’’ to one. The initial condition for ‘‘v1’’ (i.e. u̇1) is set to zero and the
initial condition for ‘‘u1’’ (i.e. u1) is set to a non-zero value. The filter is a Butterworth
IIR low-pass filter [14] chosen from the SIMULINK library. The two pairs of PZT patches
attached close to the beam root are configured to be able to control bending and torsion.
This arrangement of PZT patches can be used to induce a 0° bi-moment to control bending
vibrations and/or an 180° bi-moment to control torsional vibrations. However, here we
only report results on the control of bending vibrations. The actuators are QP10N
QuickPack PZT actuators purchased from ACX [15]. The QuickPack actuator packages
piezoceramics in a protective skin (a polyimide coating) with pre-attached electrical leads.
It makes fragile piezoceramics much easier to work with and easier to integrate into the
structure. The actuator size is 20×10×0·0150. The piezo wafer size is
1·810×0·810×0·010. Two of the PZT patches are used as actuators for control, one is
used as a sensor, and one is used to provide the assumed external excitation, as shown
in Figure 1. The first three natural frequencies of the beam with the four PZT patches are
experimentally obtained to be 5·85 Hz, 35·22 Hz, and 97·36 Hz. The measured density is

Figure 5. Experimental saturation control of the first-mode steady-state vibration: (a) time–u2 curve, and (b)
time–u1 curve.
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Figure 6. Experimental saturation control of steady-state modal responses u2: (a) first-mode response, (b)
second-mode response, and (c) third-mode response.

0·286 lb/in3 and the Young’s modulus is derived to be 2·8×107 psi by matching the
measured first natural frequency with the theoretical one.

The beam vibration is assumed to be linear according to equation (1); but when it is
coupled with the controller it becomes part of a larger nonlinear system. The controller
is responsible for the desirable nonlinear characteristics of the larger system. Hence
nonlinear tailoring of the system is relatively straightforward and easy.

Figure 2 shows the beam with the controller designed for the internal resonance control
of the first-mode transient vibrations. To couple the controller u1 with u2, set the gain ‘‘0/1’’
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to 1. To turn on the damping in u1, set the gain ‘‘00/1’’ to 1. The initial condition for
‘‘v1’’ (i.e. u̇1) is set to zero and the initial condition for ‘‘u1’’ (i.e. u1) is set to a non-zero
value.

4. SYSTEM MODELLING AND NUMERICAL RESULTS

When a PZT actuator is not adhered to a structure, it can induce a maximum blocking
stress s11b given by

s11b =E11L1, L1 = d31
V3

t3
, (27)

where d31 is a piezoelectric strain coefficient, L1 is the induced strain if the patch is free
to expand, V3 is the voltage applied across the thickness t3, and E11 is the Young’s modulus

Figure 7. Theoretical saturation control of the first-mode steady-state response u2 with non-linearities: (a)
a2 = a3 =0, (b) a2 = a3 =−1000, and (c) a2 = a3 =1000.
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Figure 8. Experimental saturation control of the first-mode steady-state vibration using only one PZT patch
for control.

of the PZT patch. When a PZT patch is used as a sensor, the induced voltage V3 due to
an applied stress s11 is

V3 = g31s11t3 =
d31

K3o0
s11t3, (28)

where g31(=d31/K3o0) is a piezoelectric voltage coefficient, K3 is a relative dielectric constant,
and o0 is the dielectric constant of vacuum space.

Unfortunately, the actual PZT-induced strains, forces, and bending moments depend on
the structural material, the thickness and material properties of the adhesive layer that
integrates the PZT patch with the structure, wiring, and even boundary and loading
conditions. Moreover, the piezoelectric strain and voltage coefficients may not be constant
under large voltages, and hysteresis and creeping under a large d.c. voltage have been
reported. Hence, it requires detailed three-dimensional analysis of the coupled dynamic
electrical-mechanical problem in order to have accurate results. Furthermore,
manufacturers of PZT patches may not provide all the coefficients needed in using
equations (27) and (28).

Figure 9. Controlled steady-state first-mode response u2: g12 =400 when 0Q tQ 100 s, g12 =200 when
100Q tQ 200 s, g12 =100 when 200Q tQ 300 s, and g12 =50 when 300Q tQ 400 s.
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Figure 10. Controller response u1 in controlling the steady-state first-mode vibration: g11 =50 when
0Q tQ 60 s and g11 =200 when 60Q tQ 200 s.

In Figure 1, ‘‘u2’’ (i.e. u2) represents the voltage from the PZT sensor and ‘‘u1’’ (i.e. u1)
represents the controller voltage. Hence ‘‘G12*u1*u2’’ is a direct excitation voltage to
‘‘u1’’. In other words, g12 in equation (1) is exactly the same as the gain constant ‘‘G12’’
in the DS1102 controller. On the other hand, ‘‘F
 (cos (Vt)’’ and ‘‘G11*u1*u1*40’’ are
indirect excitation voltages to ‘‘u2’’, and they are due to the actuation of the external
excitation PZT actuator and the two controlling PZT actuators, respectively. The actuating
forces are created by the three PZT actuators, transferred to the structure, and then
received by the PZT sensor. It it is a single-mode vibration, the coefficients F and g11 in
equation (1) can be obtained from ‘‘F
 ’’, ‘‘G11’’, and one single measured point on the
frequency response curve, as explained below (see Appendix for the derivation). When u2

is not coupled with u1 (i.e. g11 = g12 =0), if a voltage F
 cos Vt is applied to the external
excitation actuator and the response amplitude of u2 is measured to be a2, it follows from
the linear vibration theory that the direct excitation voltage F to the PZT sensor is

F= a2v
2
2 X01−

V2

v2
21

2

+02z2
V

v21
2

, (29)

where the modal damping ratio z2 needs to be obtained experimentally. Then g11 can be
obtained as

g11 =G11×10×40×2=800×G11, (30)

where the 40 accounts for the use of a power amplifier, and the 2 accounts for the use
of two PZT actuators for control. All dSPACE functions which write data to output
devices expect their input values lying within the range −1 · · · +1, and they multiply an
input signal (voltage) by 10 before it is sent out. Hence, the 10 in equation (30) accounts
for this fact.

For the first mode of the beam, v2 and z2 are obtained using modal testing to be
v2 =5·85 Hz and z2 =0·0025, and the output voltage amplitude of the sensor PZT patch
is measured to be a2 =0·1×47·7=4·77 V when F
 =20 V and V=5·85 Hz. All dSPACE
functions which read data from input devices automatically scale their output data to
floating-point values lying within the range −1 · · · +1. For the specific case, the scaling
factor is 47·7. Then, we obtain from equation (29) that F=32·22 V/s2 and F/F
 =1·611
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1/s2. Hence, it follows from Figure 1 that the system equations for the control of the
first-mode steady-state vibration are

ü1 +v2
1u1 =G12× u1u2,

47·7(ü2 +0·1838u̇2 +1351u2)=
F
F


[G11×800u2
1 +F
 cos (Vt)]. (31)

u1 is the controller voltage inside the DS1102 controller, u2 is the sensor voltage inside the
DS1102, and 47·7u2 is the actual sensor voltage. In equation (31) we use the fact that the
PZT patch for external excitation and the two PZT patches for control are located at the
same position on the x-axis and hence they have the same F/F
 . The physical meaning of
F/F
 is explained in the Appendix.

A direct numerical integration of equation (31) with initial conditions u̇1(0)=0 and
u1(0)=0·02 has been performed. Figure 3 shows the numerical solution of the first-mode

Figure 11. Controlled steady-state first-mode response u2: (a) V=5·85 Hz and 2v1 =5·85 Hz when
0Q tQ 20 s, V=5·9 Hz and 2v1 =5·85 Hz when 20Q tQ 80 s, and V=5·9 Hz and 2v1 =5·9 Hz when
80Q tQ 200 s; and (b) V=5·85 Hz and 2v1 =5·85 Hz when 0Q tQ 20 s, V=5·8 Hz and 2v1 =5·85 Hz, when
20Q tQ 80 s, and V=5·8 Hz and 2v1 =5·8 Hz when 80Q tQ 200 s.
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Figure 12. Experimental internal resonance control of the first-mode transient vibration: (a) uncoupled and
uncontrolled transient response u2, (b) coupled but uncontrolled (z1 =0) transient response u2, (c) coupled but
undamped controller response u1, and (d) controlled transient response u2.

steady-state vibration before and after the controller is activated at t=50 s. Figure 4
shows the numerical solution of the internal resonance control of the first-mode transient
vibration.
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Figure 13. A digital linear position-feedback controller for controlling steady-state and transient vibrations.

5. EXPERIMENTAL RESULTS

5.1. -  

Figure 5 shows the sensor and controller responses in controlling the first-mode
steady-state vibration where 150 m0 0·150. Because the buffer size of the DS1102
controller is limited, only one out of every three consecutive data points is downloaded
for plotting. The experimental result in Figure 5 agrees closely with the numerical result
in Figure 3. Figure 6 shows the first-mode, second-mode, and third-mode steady-state
responses before and after control action. In Figure 6(a), the controller was activated at
t=10 s. At t=100 s, the controller was deactivated allowing the response to develop, and
then the controller was activated again at t=120 s. The results show that the beam
vibration is always successfully suppressed after the controller is activated.

Figure 14. Linear position-feedback control of the steady-state first-mode response u2 (the controller is on
when 5Q tQ 20 s and 28Q tQ 40 s).
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Figure 15. Linear position-feedback control of the first-mode transient response u2.

The overshooting of the beam response u2 [see Figures 6(b, c)] at the activation of the
controller can be harmful to the structure because it may cause sudden large deformations
and hence damage. It is difficult to prevent the overshooting because it is determined by
the initial conditions u1(0) and u̇1(0), the relative phase between u2 and u2

1 when the
controller is activated, and the value of g11.

Figure 16. A hybrid controller.
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Figure 17. Control of the first-mode steady-state response u2: (a) using a saturation controller, and (b) using
a hybrid controller.

For the first-mode vibration, the uncontrolled tip vibration amplitude is about 0·150,
which is 3 times of the beam thickness. Hence the vibration is not really linear, but this
control method still works although the beam is assumed to be linear in the theoretical
derivation. To confirm this point, we add geometric non-linearities to equation (31) and
consider that

ü1 +v2
1u1 =G12× u1u2,

47·7(ü2 +0·1838u̇2 +1351u2 + a2u2
2 + a3u3

2 )=
F
F


[G11×800u2
1 +F
 cos (Vt)]. (32)

The numerical results in Figure 7 confirm that this saturation control method also works
for large-amplitude vibrations.

Figure 8 shows that the controlled steady-state amplitude a2 remains the same if only
one PZT control actuator is used instead of using two control actuators. It confirms that
a2 is not a function of the actuation force F. However, one can see by comparing Figures
6(a) and 8 that, when F is small, the transient time required to reach the controlled
steady-state vibration increases.
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Figure 9 shows the controlled steady-state response u2 corresponding to different values
of g12. It confirms that a2 is proportional to 1/g12. Figure 10 shows the controller response
u1 corresponding to different values of g11. It confirms that a1 is proportional to 1/zg11.

Figure 11 shows that, when V−2v1(s1 − s2) deviates from zero, a2 increases. If V=2v1

but V is away from v2, a2 stays about the same as that when V=2v1 =v2, which agrees
with the perturbation solution. However, the transient time required to reach the steady
state increases, and, when V is far away from v2, a2 is large because the transient time
becomes infinity.

Since equation (19) shows that g11u2
1 contains a d.c. term that may cause static beam

deflection, we tried the use of a band-pass filter to filter out this d.c. component as well
as high-frequency components. Results show that the efficiency of the modified controller
becomes more dependent on the initial conditions and the relative phase between u2 and
u2

1 when the controller is activated; and the controller becomes unstable in some cases.
Hence, the d.c. component in g11u2

1 actually plays a positive role in this control method.

5.2.   

The free, coupled but uncontrolled, and controlled transient first-mode responses are
shown in Figure 12. Figure 12(a) shows the uncontrolled free first-mode vibation.
Figure 12(b, c) show that the vibation energy is transferred back and forth between the

Figure 18. Control of the first-mode steady-state response u2 with a sudden impact disturbance applied at
t=20 s: (a) using a saturation controller, and (b) using a hybrid controller.
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Figure 19. Bi-moment induced twisting of a cantilever truss: (a) a 180° bi-moment on the first bay, and (b)
a non-parallel twisting bi-moment on the second bay.

beam and the controller when they are quadratically coupled but the damping of the
controller is not on. Figure 12(d) shows the controlled beam response when the beam and
the controller are coupled and the damping of the controller is activated at t=5 s.

The numerical results in Figure 4 agree closely with the experimental results in Figure
12. Numerical and experimental results show that this control method is efficient only if
the damping in the controller can be activated at the instant when the amplitude of the
beam vibration reaches a local minimum. However, it is difficult to predict when the local
minimum will happen because it depends on initial conditions. Moreover, if there is a
second transient disturbance to the beam, the controller needs to be re-set to a non-zero
initial condition in order to work. Hence it is inconvenient.

5.3.  - 

The saturation and internal resonance control methods can be used to control several
modes at the same time by using several such controllers with each controller being
designed to control one structural mode. However, since extensive computations are
involved in these nonlinear digital controllers, if many such controllers need to be used,
the computation speed of the control system may not be able to perform real-time control.
Since a linear position-feedback control method is simple in computation, we tried it in
controlling the same structure. Figure 13 shows the linear position-feedback controller
designed for controlling both transient and steady-state vibrations.

Figure 14 shows the control of the steady-state first-mode vibration. It appears that the
transient time required to reach the steady state is very short. However, since the control
force directly comes from the beam vibration itself, the controlled vibration amplitude a2

can never approach zero. Although a2 can be reduced by using a larger feedback gain, the
system becomes unstable when the gain is beyond a certain value (6 for controlling the
first mode of this specific system with the chosen filter).
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Figure 15 shows the linear position-feedback control of the first-mode transient vibration,
where roughly the same amount of initial tip displacement disturbance is given at t=0, 10,
18, 24, and 33 s. Comparing Figure 15 with Figure 12, we found that this controller is much
more efficient and robust than the internal resonance controller. However, because filters
are always needed in a digital control system and filters always distort and change the phase
of the feedback signal in some degree, a linear position-feedback controller is easier to
become unstable, especially when a large feedback gain is used. On the other hand, equation
(1) shows that the phase of the control force g11u2

1 of the nonlinear controller is not directly
affected by the feedback signal u2. Moreover, the overshooting problem in the linear
position-feedback control method seems more serious than that in the internal resonance
control method.

5.4.  

Since a saturation controller is efficient in controlling steady-state vibrations and a linear
position-feedback controller is efficient in controlling transient vibrations, a hybrid
controller is designed consisting of one saturation controller to control the major
steady-state vibration mode and one linear position-feedback controller to control
transient vibrations and other minor steady-state vibration modes, as shown in Figure 16.

Figure 17 shows that the hybrid controller [Figure 17(b)] requires a much less transient
time for reaching the controlled steady state than the saturation controller [Figure 17(a)].
Figure 18 shows that the hybrid controller is efficient in controlling steady-state vibrations
with sudden disturbances. The experimental results show that the hybrid controller does
behave much better than the other controllers.

5.5. 

The first torsional frequency of the cantilever beam is estimated to be 115·8 Hz. A 180°
bi-moment was tried to excite the first torsional mode, but it was not successful because
the thickness is too thin and hence the induced bi-moment is not strong enough to excite
the first torsional mode. We used a cantilever truss (see Figure 19) to study the efficiency
of 180° bi-moments and non-parallel twisting bi-moments. All the members of this truss
have the same cross-section and Young’s modulus.

Figure 19(a) shows the twisting of the truss when an induced strain [L1 in equation (27)]
of 20·15 is applied to the four longitudinal members of the first bay. Figure 19(b) shows
the twisting of the truss when an induced strain of 20·03 is applied to the four diagonal
members on the top and bottom faces of the second bay. We note that the non-parallel
twisting bi-moment is more efficient than the 180° bi-moment. However, beams may not
behave exactly the same as trusses in torsion. To understand beam twisting vibrations due
to bi-moments, torsional warping deformations need to be analyzed using finite-element
methods or other methods. This problem requires more studies.

6. CONCLUDING REMARKS

The use of PZT patches, the nonlinear saturation phenomenon, and internal resonances
to control the steady-state and transient vibrations of a cantilever beam has been shown
by perturbation analysis, numerical simulation, and experiments. The theoretical and
experimental results show that the saturation control of steady-state vibrations is efficient
and robust. Although the internal resonance control method works in controlling transient
vibrations, it is inconvenient for use and is not as efficient as a simple linear
position-feedback control method. A hybrid controller consisting of a saturation controller
and a linear position-feedback controller is shown to be robust and efficient in controlling
steady-state and transient vibrations.
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APPENDIX: COEFFICIENTS OF EQUATIONS (1)

For a beam with an integrated PZT actuator between x1 and x2 (see Figure 1), the
equation of motion is given by [16].

mẅ+ cẇ+(EIw0)0=M� 0, (A1)

where w(x, t) is the transverse displacement, ( )'0 1( )/1x, m is the mass per unit length,
E is Young’s modulus, I is the area moment of inertia, c is the viscous damping coefficient,
and

M� =−kaV3(t)(U(x− x1)−U(x− x2)). (A2)

Here V3(t) is the voltage applied to the PZT actuator, U is a unit-step function, and ka

is a constant. ka is a function of piezoelectric constants, mechanical properties, and
dimensions of the PZT patch and the beam. To relate ka to these properties, we assume
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that the axial strain o11 distribution (due to the actuation of the PZT patch) of the beam
segment covered by the PZT patch is

o11 =−w0fa (z), (A3)

where fa (z) is a function that can be determined by using localized analytical or numerical
analyses, such as two-dimensional sectional finite-element analyses [10]. Hence

M� =−g s11z dA=g Ew0fa (z)z dA=EI
 w0, (A4)

where A is the beam cross section area and I
 0 f fa (z)z dA. The free expansion strain L1

of the PZT patch is reduced to k
 aL1(0Q k
 a Q 1) because of the straining of the attached
beam. Hence, it follows from equations (A3) and (27) that

−w0f
 a = k
 ad31
V3

t3
, (A5)

where f
 a 0 fa(h/2) and h is the thickness of the beam. Substituting the actuated curvature
w0 in equation (A5) into equation (A4) and then comparing with equation (A2) (without
considering the locating function), we obtain that

ka 0
EI
 k
 ad31

f
 at3

. (A6)

For a single-mode vibration, we assume that

w(x, t)=W(x)h(t), (A7)

where h(t) is one of the modal coordinates of a cantilever beam, and W(x) is one of the
eigenfunctions and is given by

W(x)= cosh bx−cos bx+
cos bl+cosh bl
sin bl+sinh bl

(sin bx−sinh bx). (A8)

Here l is the beam length, b is one of the solutions of the characteristic equation
cos bl cosh bl+1=0, and b4 =mv2/EI. For this specific eigenfunction, one can prove
that

g
l

0

W 2 dx= l. (A9)

Moreover, since U'(x− xn )= d(x− xn ) (d is the Kronecker delta function) and
U0(x− xn )= (d(x− xn )− d(x− xn −dx))/dx, we have

g
l

0

WU0(x− x1) dx=(W(x1)−W(x1 +dx))/dx

=(W(x1)−W(x1)−W'(x1) dx)/dx=−W'(x1). (A10)

Assuming that m, c, and EI are constant, substituting equations (A2) and (A7) into
equation (A1), multiplying equation (A1) with W(x), integrating through the whole beam
length, and using equation (A9), we obtain that

l(mḧ+ cḣ+mv2h)= kaV3(W'(x1)−W'(x2)). (A11)
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We assume that the axial strain o11 distribution (due to the attachment of the PZT sensor)
of the beam segment covered by the PZT sensor is

o11 =−w0fs (z), (A12)

where fs (z) is a function that can be determined by using localized analytical or numerical
analyses, such as two-dimensional sectional finite-element analyses [10]. For a PZT sensor
locating between x3 and x4, the actual sensed voltage û2 [i.e. 47·7u2 in equation (31)] is given
by

û2 = g31s11=z= h/2t3 =−g31EhW
 0f
 st3 =−ksh, (A13)

where W� 00 fx4
x3

W0 dx/(x4 − x3)= (W'(x4)−W'(x3))/(x4 − x3) is the averaged curvature,
f
 s 0 fs (h/2), and

ks 0 g31EW� 0f
 st3. (A14)

Substituting equation (A13) into equation (A11) yields

ux 2
..

+ 2zvux 2
.

+v2û2 =−
ks

lm
kaV3(W'(x1)−W'(x2)), (A15)

where c/m=2zv is assumed. In equation (A15), V3 represents g11u2
1 (the input voltage to

the PZT actuators for control). It follows from equations (A15) and (31) that the F and
F
 are related as

F
F


=
kaks

lm
(W'(x2)−W'(x1)). (A16)


