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NON-LINEARLY COUPLED OSCILLATORS

A. M

Technical Institute ‘‘G. Cardano’’, P.za della Resistenza 1, 00015 Monterotondo RM, Italy

(Received 4 May 1997, and in final form 18 March 1998)

This paper presents a systematic analysis approach for the study of two non-linearly
coupled oscillators, with incommensurable fundamental frequencies. The asymptotic
perturbation method is used to analyze a bifurcation problem of codimension two. It is
found that the amplitude modulation equations are equal to normal forms equations
available in the literature. Approximate analytic solutions for generic quadratic and cubic
non-linearities can be constructed. The results obtained from a computer simulation based
on a fifth order Runge–Kutta–Fehlberg scheme confirm the validity of the asymptotic
perturbation method. The method is illustrated by applying it to a two-rod system subjected
to aerodynamic excitation.
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1. INTRODUCTION

The study of non-linear oscillations has occupied researchers for quite a long period of
time. Various perturbation methods such as averaging, harmonic balance, Lindstedt–Poin-
caré and multiple scales have been used to construct approximate solutions for weakly
non-linear oscillations. The method of averaging has been for a long time an important
method of analysis of non-linear systems [1–3]. One must stress that such analysis is usually
carried out only to the first order approximation since a second order calculation does not
change the qualitative behavior of the solution. However, there are situations in which
second order averaging is necessary to obtain correct qualitative information [4].

The multiple scales method was introduced by Nayfeh and has been applied to
non-linear oscillations with subharmonic and superharmonic resonances and to modal
interactions [5–8]. This method has proved to be a powerful tool in determining small
amplitude periodic solutions and their stability.

The harmonic balance method has also been widely used to study the stable and unstable
periodic solutions of non-linear oscillators. A satisfying expression for the periodic
solution is obtained by using a sufficiently large number of harmonics which often leads
to messy algebraic manipulations [9–11]. This problem has been resolved by the use of
computer symbolic programs to construct the resulting non-linear algebraic equations [12].

The Lindstedt–Poincaré method can be used in order to find steady-state bifurcating
solutions, but stability analysis is usually more complex [8, 13].

Perturbation methods can obtain approximate analytical solutions, and investigate the
existence, uniqueness, stability of the solutions and their dependence on parametric values.

On the other hand, local bifurcation theory can be used to reduce a multidimensional
dynamical system to a lower dimensional equivalent system and to determine the
qualitative behavior of the system. By carrying out center manifold reduction, one must
describe the manifold on which the steady-state dynamics takes place and the solution of
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a functional equation is required. In practice, the functional equation is solved only up
to a few terms of the Taylor series, sufficient to determine the dynamics. Subsequently,
a normal form theory is used that converts an ordinary differential equation to a simpler
equation by using a sequence of appropriate changes of variables. The method using
normal forms has been only recently extensively used in applied mathematics [4, 14, 15].

However, to obtain accurate quantitative information about the original system one
must calculate the explicit expressions of the coefficients of the reduced system in terms
of the coefficients of the original system, because these expressions are not available in
literature. A large computational effort is required (particularly in the case of high
codimension bifurcations), because the procedure must be repeated for each specific
problem.

Recently a new asymptotic perturbation (AP) method has been proposed [16–18]. It is
based on large temporal rescalings and balancing of harmonic terms with a simple
iteration. In a certain sense the AP method can be considered as an attempt to link the
most useful characteristics of harmonic balance and multiple scale methods.

In this paper the AP method is used to study a classical problem in non-linear mechanics,
i.e. the mutual interaction of two weakly dissipative oscillators. In particular, the
characteristics of a system formed by two unidimensional oscillators, which have different
fundamental frequencies and are coupled by means of non-linear terms are studied. The
relevant system of differential equations is

X� (t)+v2
1X(t)= a1X� (t)+F1(X(t), X� (t), Y(t), Y� (t)) (1a)

Y� (t)+v2
2Y(t)= b1Y� (t)+F2(X(t), X� (t), Y(t), Y� (t)) (1b)

where dot denotes differentiation with respect to the time, v1 and v2 are the uncoupled
natural frequencies, a1, b1 are small dissipative terms and the functions
F1(X(t), X� (t), Y(t), Y� (t)) and F2(X(t), X� (t), Y(t), Y� (t)) represent the non-linear coupling.
If one considers only small oscillations (X(t), Y(t)�1) and if F1 and F2 are analytic, they
can be expanded in power series retaining only quadratic and cubic terms to give

X� (t)+v2
1X(t)= a1X� (t)+ a2X2(t)+ a3X(t)X� (t)+ a4X� 2(t)

+ a5X(t)Y(t)+ a6X� (t)Y(t)+ a7Y2(t)+ a8Y(t)Y� (t)+ a9Y� 2(t)

+ a10X(t)Y� (t)+ a11X� (t)Y� (t)+ a12X3(t)+ a13X2(t)X� (t)

+ a14X(t)X� 2(t)+ a15X� 3(t)+ a16X(t)Y2(t)+ a17X� (t)Y2(t)

+ a18X(t)Y� 2(t)+ a19X� (t)Y� 2(t)+ a20X(t)Y(t)Y� (t), (2a)

Y� (t)+v2
2Y(t)= b1Y� (t)+ b2X2(t)+ b3X(t)X� (t)+ b4X� 2(t)

+ b5X(t)Y(t)+ b6X� (t)Y(t)+ b7Y2(t)+ b8Y(t)Y� (t)+ b9Y� 2(t)

+ b10X(t)Y� (t)+ b11X� (t)Y� (t)+ b12Y3(t)+ b13Y2(t)Y� (t)

+ b14Y(t)Y� 2(t)+ b15Y� 3(t)+ b16X2(t)Y(t)+ b17X2(t)Y� (t)

+ b18X� 2(t)Y(t)+ b19X� 2(t)Y� (t)+ b20Y(t)X(t)X� (t). (2b)

Some cubic terms and all the powers superior to the third have not been included, in the
expression of the non-linear coupling, because they would involve a negligible
contribution, at least in the first approximation, as we will demonstrate in the following.
Note that the coefficients ai , bi , with i=2, . . . , 20, are of order 1.

In section 2, it is demonstrated that the behavior of the very general system (2a)–(2b),
with 39 arbitrary parameters (by a suitable variable change we can set v1 = a2 = b7 =1),
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can be represented by a model and universal system, which contains only five arbitrary
parameters. These parameters can be expressed in closed form in terms of the coefficients
of the original system. Moreover, we do not need to identify the center manifold and to
express the Jacobian matrix at the critical state in Jordan form.

In section 3, an approximate solution is obtained, and the conditions for the existence
of stable oscillations derived. The model system obtained describes a bifurcation of
codimension two, i.e. a non-resonant double Hopf bifurcation.

The approximate solution is then compared with the numerical solution obtained by
means of the Runge–Kutta–Fehlberg method.

In section 4, the procedure is applied to a mechanical system composed of two rods
under aerodynamic excitation and determines its post-critical behavior.

In the last section, the most important results are summarized and some possible
extensions and generalizations indicated.

2. THE FIRST ORDER APPROXIMATE SOLUTION

The AP method derives from a similar method used for the partial differential equations
[19–21]. The following temporal rescaling is introduced

t= oqt, (3)

where q is a positive number, which will be fixed afterwards, because it establishes to what
extent one can push the temporal asymptotic limit, to permit the non-linear effects to
become consistent and not negligible. If t:a, then o:0, and t assumes a finite value.
The linear dissipative coefficients a1, b1 are supposed of order o2 and then the differential
equations (2a)–(2b) can be written as

X� (t)+v2
1X(t)= o2a1X� (t)+ a2X2(t)+ a3X(t)X� (t)+ a4X� 2(t)

+ a5X(t)Y(t)+ a6X� (t)Y(t)+ a7Y2(t)+ a8Y(t)Y� (t)+ a9Y� 2(t)

+ a10X(t)Y� (t)+ a11X� (t)Y� (t)+ a12X3(t)+ a13X2(t)X� (t)

+ a14X(t)X� 2(t)+ a15X� 3(t)+ a16X(t)Y2(t)+ a17X� (t)Y2(t)

+ a18X(t)Y� 2(t)+ a19X� (t)Y� 2(t)+ a20X(t)Y(t)Y� (t), (4a)

Y� (t)+v2
2Y(t)= o2b1Y� (t)+ b2X2(t)+ b3X(t)X� (t)+ b4X� 2(t)

+ b5X(t)Y(t)+ b6X� (t)Y(t)+ b7Y2(t)+ b8Y(t)Y� (t)+ b9Y� 2(t)

+ b10X(t)Y� (t)+ b11X� (t)Y� (t)+ b12Y3(t)+ b13Y2(t)Y� (t)

+ b14Y(t)Y� 2(t)+ b15Y� 3(t)+ b16X2(t)Y(t)+ b17X2(t)Y� (t)

+ b18X� 2(t)Y(t)+ b19X� 2(t)Y� (t)+ b20Y(t)X(t)X� (t). (4b)

The requested solution (X(t), Y(t)) can be expressed by means of a power series in the
expansion parameter o. One can formally write

X(t)= s
+a

n1,n2 =−a

ogn1n2cn1n2(t, o) exp(−i(n1v1 + n2v2)t), (5a)

Y(t)= s
+a

n1,n2 =−a

og̃n1n2fn1n2(t, o) exp(−i(n1v1 + n2v2)t), (5b)



. 316

with gn1n2 = =n1=+ =n2= for n1 $ 0 and (n1, n2)$ (0, 0) (and then n2 may be 0), g0n2 =2+ =n2=
for n2 $ 0, g̃n1n2 = =n1=+ =n2= for n2 $ 0 and for (n1, n2)$ (0, 0) (and then n1 may be 0),
g̃n10 =2+ =n1= for n1 $ 0, and g00 = g̃00 = r a non-negative number, which will be fixed later
on. Note that cn1n2(t, o)=c*−n1n2(t, o) and fn1n2(t, o)=f*−n1n2(t, o), because X(t) and Y(t)
are real. The functions cn1n2(t, o), fn1n2(t, o) depend on the parameter o and suppose that
their limit for o:0 exists and is finite and moreover they can be expanded in power series
of o, i.e.

cn1n2(t; o)= s
a

i=0

oic(i)
n1n2

(t), fn1n2(t; o)= s
a

i=0

oif(i)
n1n2

(t). (5c)

In the following for simplicity the abbreviations c(0)
n1n2

=cn1n2, f(0)
n1n2

=fn1n2 is used.
Note that the variable change (3) implies that

d
dt

(cn1n2 exp(−i(n1v1 + n2v2)t))

=0−i(n1v1 + n2v2)cn1n2 + oq dcn1n2

dt 1 exp(−i(n1v1 + n2v2)t). (5d)

The parameter o represents the expansion constant of the method and it can be considered
of arbitrary value, provided that it is sufficiently small. Its comparison in the temporal
rescaling (3) permits one to determine the asymptotic behavior of the solution, when the
non-linear effects can supply a non-negligible contribution.

The Fourier expansion (5a)–(5b) can be written more explicitly

X(t)= orc00 + (oc10 exp(−iv1t)+ o2c20 exp(−2iv1t)

+ o2c11 exp(−i(v1 +v2)t)+ o2c1−1 exp(−i(v1 −v2)t)+ c.c.)+ o(o3), (6a)

Y(t)= orf00 + (of01 exp(−iv2t)+ o2f02 exp(−2iv2t)

+ o2f11 exp(−i(v1 +v2)t)+ o2f−11 exp(i(v1 −v2)t)+ c.c.)+ o(o3). (6b)

The solution is then a Fourier expansion in which the coefficients are power series of a
small parameter (o) and vary slowly in time. The lowest order terms correspond to the
harmonic solution of the linear problem. Evolution equations for the amplitudes of the
harmonic terms are then derived by substituting the expression of the solution into the
original equations and projecting onto each Fourier component.

After inserting this expansion in the complete equation (4a)–(4b), one obtains some
equations, for every harmonic and for a fixed order of approximation, which are right for
the purpose to determine the amplitudes of the various harmonic terms.

Developing the calculations one finally arrives at the equations for the coefficients cn1n2,
fn1n2 or better for their limit when o:0, which exhibit a universal character, because they
are model equations for the very large class of equations (1a)–(1b).

Only c10 =C and f01 =F appear in our equations, because every cn1n2 and fn1n2 can be
expressed by means of them. Considering equation (4a) for n1 =1, n2 =0, gives

dc10

dt
o1+ q = o3 a1

2
c10 + i

a2

v1
(o2+ rc00c10 + o3c20c−10)+

a3

2
(o2+ rc00c10 + o3c20c−10)

+2iv1a4o
3c20c−10 +

i
2v1

a5o
2+ rf00c10 +

a6

2
o2+ rf00c10
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+
1

2v1
(ia5 −v2a10 + ia11v2(v2 +v1)+ a6(v1 +v2))o3c11f0−1

+
1

2v1
(ia5 +v2a10 + ia11v2(v2 −v1)+ a6(v1 −v2))o3c1−1f01

+
1

2v1
(2ia7 +v1a8 +2ia9v2(v2 +v1))o3f11f0−1

+
1

2v1
(2ia7 +v1a8 +2ia9v2(v2 −v1))o3f1−1f01

+
i

2v1
(3a12 − iv1a13 +v2

1a14 −3iv3
1a15)o3=c10=2c10

+
i

2v1
(2a16 −2iv1a17 +2v2

2a18 −2iv1v
2
2a19)o3=f10=2c10

+ o(o5, o1+2q, o4+ r). (7)

The presence in (4a)–(b) of the other cubic terms and of powers superior to the third is
irrelevant, because their contribution is of o5 and then negligible at the first order of
approximation. For n1 =0, n2 =0

orc00 = o2(A00=c10=2 +A	 00=810=2)+ o(o4), (8a)

A00 =20a2

v2
1
+ a41, A	 00 =

2
v2

1
(a7 + a9v

2
2). (8b)

A correct balance of linear and non-linear terms demands that r=2.
For n1 =2, n2 =0, we obtain

o2c20 = o2(A20 + iA	 20)c2
10 + o(o4), (9a)

A20 =
a4

3
−

a2

3v2
1
, A	 20 =

a3

3v1
, (9b)

for n1 =1, n2 =1

o2c11 = o2(A11 + iA	 11)c10f01 + o(o4), (10a)

A11 =
v1v2a11 − a5

v2(v2 +2v1)
, A	 11 =

v1a6 +v2a10

v2(v2 +2v1)
, (10b)

and finally for n1 =1, n2 =−1

o2c1−1 = o2(A1−1 + iA	 1−1)c10f0−1 + o(o4), (11a)

A1−1 =
a5 +v1v2a11

v2(2v1 −v2)
, A1−1 =

v2a10 −v1a6

v2(2v1 −v2)
. (11b)

A similar procedure can be obviously repeated for the equation (4b).
As a consequence of (7), the choice q=2 is necessary for the consistency of the

method, because in this way the various predominant terms become of the same magnitude
order.
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After inserting (8), (9), (10), (11) in (7) and an analogous treatment for the equation (4b),
one arrives at the system model

dC

dt
= a1C+(b1 + ib	 1)=C=2C+(g1 + ig̃1)=F=2C (12a)

dF

dt
= a2F+(b2 + ib	 2)=C=2F+(g2 + ig̃2)=F=2F (12b)

where

a1 =
a1

2
, a2 =

b1

2
, (13a)

b1 =
a6

2
B00 −2v1a4A	 20 +

a3

2
A00 +

a3

2
A20 −

a2

v1
A	 20 +

a13

2
+

3
2

v2
1a15, (13b)

g1 =
a3

2
A	 00 +

a6

2
B	 00

+
1

2v1
[((v1 +v2)a6 −v2a10)A11 − (v2(v1 +v2)a11 + a5)A	 11]

+
1

2v1
[((v1 −v2)a6 +v2a10)A1−1 − (v2(v2 −v1)a11 + a5)A	 1−1]

+
1

2v1
[v1a8B11 −2v2(v2 +v1)a9B	 11 −2a7B	 11]

+
1

2v1
[v1a8B1−1 −2v2(v2 −v1)a9B	 1−1 −2a7B	 1−1]

+ a17 +v2
2a19, (13c)

g̃1 =
a2

v1
A	 00 +

a5

2v1
B	 00

+
1

2v1
[((v1 +v2)a6 −v2a10)A	 11 + (v2(v1 +v2)a11 + a5)A11]

+
1

2v1
[((v1 −v2)a6 +v2a10)A	 1−1 + (v2(v2 −v1)a11 + a5)A1−1]

+
1

2v1
[v1a8B	 11 +2v2(v2 +v1)a9B11 +2a7B11]

+
1

2v1
[v1a8B	 1−1 +2v2(v2 −v1)a9B1−1 +2a7B1−1]

+
a16

v1
+

v2
2a18

v1
, (13d)
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b2 =
b8

2
B00 +

b10

2
A00

+
1

2v2
[((v1 +v2)b10 −v1b6)B11 − (v1(v1 +v2)b11 + b5)B	 11]

+
1

2v2
[((v2 −v1)b10 +v1b6)B1−1 + (v1(v1 −v2)b11 + b5)B	 1−1]

+
1

2v2
[v2b3A11 −2v1(v2 +v1)b4A	 11 −2b2A	 11]

+
1

2v2
[v2b3A1−1 +2v1(v1 −v2)b4A	 1−1 +2b2A	 1−1]

+ b17 +v2
1b19, (13e)

b	 1 =
a2

v1
A00 +

a2

v1
A20 +2v1a4A20 +

a3

2
A	 20 +

a5

2v1
B00 +

a14v1

2
+

3a12

2v1
, (13f)

b	 2 =
b7

v2
B00 +

b5

2v2
A00

+
1

2v2
[((v1 +v2)b10 −v1b6)B	 11 + (v1(v1 +v2)b11 + b5)B11]

+
1

2v2
[((v1 −v2)b10 −v1b6)B	 1−1 + (v1(v1 −v2)b11 + b5)B1−1]

+
1

2v2
[v2b3A	 11 +2v1(v2 +v1)b4A11 +2b2A11]

+
1

2v2
[−v2b3A	 1−1 +2v1(v1 −v2)b4A1−1 +2b2A1−1]

+
b16

v2
+

v2
1b18

v2
, (13g)

g2 =
b10

2
A	 00 −2v2b9B	 02 +

b8

2
B02 +

b8

2
B	 00 −

b7

v2
B	 02 +

b13

2
+

3v2
2b15

2
, (13h)

g̃2 =
b7

v2
B	 00 +

b7

v2
B02 +2v2b9B02 +

b8

2
B	 02 +

b5

2v2
A	 00 +

3b12

2v2
+

v2b14

2
, (13i)

with

B02 =
b9

3
−

b7

3v2
2
, B	 02 =

b8

3v2
(13j)

and B00, B	 00, B11, B	 11, B1−1, B	 1−1, can be obtained from the corresponding Aij , simply
exchanging aj with bj , and v1 with v2 only in the denominator. In the first approximation,
the behavior of the very general system (4a)–(4b) can be always reconnected to the
universal and model system (12a)–(12b), even if in the original system there are non-linear
terms with powers superior to the cubic terms, because their magnitude order is at least
of order o4 and then is negligible. The validity of the approximate solution should be
expected to be restricted on bounded intervals of the t-variable and on time-scale
t=O(1/o2). If one wishes to study solutions on intervals such that t=O(1/o) then the
higher terms will in general affect the solution and must be included.
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3. MULTIPLE BIFURCATIONS AND LIMIT CYCLES

With the substitution

C(t)= r(t) exp(iq(t)), F(t)= x(t) exp(i8(t)), (14)

one arrives at the model equations

dr

dt
= a1r+ b1r

3 + g1rx2, (15a)

dx

dt
= a2x+ b2xr2 + g2x

3, (15b)

dq

dt
= b	 1r2 + g̃1x

2, (15c)

d8

dt
= b	 2r2 + g̃2x

2. (15d)

The amplitude modulation equations (15a–b), are uncoupled from the phase modulation
equations (15c, d) and have three arbitrary parameters, because with a variable change we
can always suppose that a1 =21, b1 =21, g2 =21. The system (15c)–(15d) has only two
arbitrary parameters (we can always set b	 1 = b	 2 =1). Equations (15a, b) are the bifurcation
equations in standard normal form for a non-resonant double Hopf bifurcation. Their
complete classification can be found for instance in reference [4].

Four points of equilibrium must be considered (dr/dt=0, dx/dt=0):

P1 = (x1, r1)= (0, 0),

P2 = (x2, r2)=0X−
a2

g2
, 01,

P3 = (x3, r3)=00,X−
a1

b11, (16)

P4 = (x4, r4)=0Xa1b2 − a2b1

g2b1 − g1b2
,Xa2g1 − a1g2

g2b1 − g1b21.
These solutions correspond to one-frequency periodic motion or two-frequency
quasi-periodic motions of the original system (2a, b).

Obviously P2, P3, P4 are present only if the arguments of the square roots are
non-negative.

The first point is asymptotically stable for a1 Q 0 and a2 Q 0 (oscillations are
continuously damped and the oscillator stops), the second for a2 q 0, g2 Q 0 and
a1 Q (a2g1)/g2 (oscillation with frequency equal to v1 is damped and oscillation with
frequency v2 keeps a constant amplitude), the third point for a1 q 0, b1 Q 0 and
a2 Q (a1b2)b1 (oscillation with frequency equal to v2 is damped and oscillation with
frequency v1 keeps a constant amplitude). The fourth point is asymptotically stable for
a1g2 Q a2g1, a2b1 Q a1b2 and g2(a2b1 − a1b2)+ b1(a1g2 − a2g1)q 0 (both oscillations with
frequencies v1 and v2 keeps a constant amplitude).
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The approximate solution valid to order of o2 is

X(t)= o2(A00r
2(t)+A	 00x

2(t))+2or(t) cos (−v1t+ q(t))

+2o2A20r
2(t) cos (−2v1t+2q(t))−2o2A	 20r

2(t) sin (−2v1t+2q(t))

+2o2A11r(t)x(t) cos (−v1t−v2t+ q(t)+8(t))

−2o2A	 11r(t)x(t) sin (−v1t−v2t+ q(t)+8(t))

+2o2A1−1r(t)x(t) cos (−v1t+v2t− q(t)+8(t))

−2o2A	 1−1r(t)x(t) sin (−v1t+v2t− q(t)+8(t))+ o(o3), (17a)

Y(t)= o2(B00r
2(t)+B	 00x

2(t))+2ox(t) cos (−v2t+8(t))

+2o2B02x
2(t) cos (−2v2t+28(t))−2o2B	 02x

2(t) sin (−2v2t+28(t))

+2o2B11r(t)x(t) cos (−v1t−v2t+ q(t)+8(t))

−2o2B	 11r(t)x(t) sin (−v1t−v2t+ q(t)+8(t))

+2o2B1−1r(t)x(t) cos (−v1t+v2t− q(t)+8(t))

−2o2B	 1−1r(t)x(t) sin (−v1t+v2t− q(t)+8(t))+ o(e3). (17b)

An attempt is now made to provide information on the accuracy of AP method by using
comparison with direct numerical integration of (2a)–(2b) and it is demonstrated that
satisfactory results are obtained for many varied situations. Some solutions of (2a)–(2b)
have been obtained numerically using a fifth order Runge–Kutta–Fehlberg integration
scheme. It is possible to estimate a reasonable error bound directly from the perturbation
method, as terms of order e3 have been neglected and then the difference between numerical
and analytical solutions must be of the same magnitude order.

Figure 1. Representation in the X–Y space of an orbit with the set of parameters defined in equation (18).
w numerical solution; + approximate solution.
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Figure 2. X–Y orbit with the same set of parameters of Figure 1 but with a1 =−0·02, b1 =0·01.

Figure 1 shows a representation in the X–Y space of an orbit with the following set of
parameters:

v1 =1, v2 =z2, (18a)

a1 =−0·002, a4 =−1, a13 =−2, a16 =1·5,

a2 = a3 = a5 = a6 = a7 = a8 = a9 = a10 = a11 =1 (18b)

a12 = a14 = a15 = a17 = a18 = a19 =1,

b1 =0·001, b2 = b3 = b5 =−2, b4 = b16 =1·5,

b6 = b7 = b8 = b10 =−1, (18c)

b9 = b11 = b12 = b13 = b14 = b15 = b17 = b18 = b19 =1.

Note that o1 0·04, because o2 is the magnitude order of linear dissipative terms. The point
P4 0 (0·0132; 0·0098) is asymptotically stable and the initial conditions have been chosen
on the invariant torus corresponding to P4. Circles correspond to the numerical solution
and crosses to the approximate solution (17a)–(17b). The numerical solution and the
approximate solution overlap almost entirely and the maximum different between the two
solutions is 0·00080 and the mean difference is 0·00025, i.e. of order o3. The agreement of
the results appears to be excellent.

In Figure 2 the same set of parameters as for Figure 1 are considered but with
a1 =−0·02, b1 =0·01, o1 0·1 (an increase of an order of magnitude). The point
P4 0 (0·042; 0·031) is always asymptotically stable and the maximum difference between
the numerical and the approximate solution is 0·0085 and the mean difference is 0·0025,
i.e. of order o3 as expected.

The bifurcation diagram can be easily determined, taking into account that the involved
parameters are only a2, b2, g1. The behaviour of the system (2a)–(2b) is then intelligible
in terms of a very limited number of parameters.
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Figure 3. Response-parameter (a2) diagram: squares stand for P1, crosses for P2 and circles for P4. Dots
represent unstable solutions. a1 =−1, b1 =1, g1 =3, b2 =−3, g2 =−1.

The AP method enables one to reduce the number of the effective parameters and to
calculate the opportune combinations of the starting parameters suitable to produce the
universal parameters a2, b2, g1.

In Figures 3, 4 and 5 we show a parameter (a2)-response diagram: the response is
represented by the amplitude of the relative equilibrium point. Squares stand for P1,
crosses for P2, rectangles for P3 and circles for P4, if they are asymptotically stable,

Figure 4. Response-parameter (a2) diagram: squares stand for P1 and circles for P4. Dots represent unstable
solutions. a1 =−1, b1 =−1, g1 =3, b2 =−2, g2 =1.
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Figure 5. Response-parameter (a2) diagram: crosses stand for P2. Dots represent unstable solutions. a1 =−1,
b1 =1, g1 =3, b2 =3, g2 =−1.

otherwise they are represented by simple dots. Our results are in qualitatively agreement
with those of the center manifold reduction and the normal form theory [4, section 7.5].

4. TWO-ROD SYSTEM UNDER AERODYNAMIC EXCITATION

In this section, the perturbation method described above is applied to a mechanical
system composed of two rods under aerodynamic excitation [22]. Consider a structure
composed of two vertical rigid rods of length L, constrained by two visco-elastic hinges
of torsion rigidity KH and damping coefficient CH q 0. The structure is loaded by a fluid
flow of uniform velocity V in a direction orthogonal to the plane of motion. The rods are
joined at their ends by a visco-elastic device, that either puts or dissipates energy into the
system, whose rigidity is KD and damping coefficient CD . An aerodynamic force, depending
on V and on the shape of the cross-section, arises in the plane of motion. As a consequence
in particular conditions one observes a galloping instability (Hopf bifurcations). By
applying the quasi-static theory for aerodynamic forces and expanding non-linearities up
to the third order, gives the following non-dimensional equations of motion [22]

X� +(f1 − fv)X� +X=2hXY2 +4fAXYY� +C2(X� 2 +Y� 2)+
C3

v
(X� 3 +3X� Y� 2) (19a)

Y� +(f2 − fv)Y� +v2
0Y=2hXY2 + 4

3hY3 +4fA(X2Y� +XYX� +Y2Y� )

+C2X� Y� +
C3

v
(Y� 3 +3X� 2Y� ) (19b)

where

v=
rb

mvx
V, v2

x =
3KH

mL3, h=
2KDL2

KH
, v2

0 =1+ h, (20a)

f1 =
3CH

mL3vx
, f2 = f1 + fA, f=

=CD +C'L =
2

, A=
3CD

mLvxf
, (20b)
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C2 =
3
16 0rbL

m 1(C0L +CL +2C'D ), (20c)

C3 =−
1
20 0rbL

m 1
2

(C1L +C'L ++3C0D +3CD ) (20d)

where the dot denotes differentiation with respect to non-dimensional time t	 =vxt,
v0 =vy /vx is the ratio between the two undamped frequencies, assumed to be
incommensurable, CD and CL are the drag and lift non-dimensional coefficients,
respectively; C'D , C0D , C'L , C0L and C1L are their derivatives with respect to the attack angle,
r is the air density, b is an appropriate characteristic length of the cross-section of the rods,
m is the mass per unit length of rods, f1 and f2 are the modal structural dampings, f is the
aerodynamic modal damping, A is the non-dimensional damping of the visco-elastic
device, assumed as the first control parameter and v is the non-dimensional wind velocity.
In equations (19a, b), modal co-ordinates have been used in order to uncouple the linear
part, namely

X= 1
2(q1 + q2), Y= 1

2(q1 − q2) (21)

where Lagrangian co-ordinates q1 and q2 represent the angles formed by rods with the
vertical axis. X is then the amplitude of the antisymmetric (q1 =1, q2 =1) mode and Y
the amplitude of the symmetric (q1 =−1, q2 =1) mode. Equations (19a, b) have been
studied by the multiple scales method in reference [8].

If the coefficients of the velocities X� and Y� in equations (19a, b) vanish, the trivial
equilibrium position X=Y=0 loses its stability through a Hopf bifurcation. An
antisymmetrical and a symmetrical galloping mode are produced by the instability which
happens for two critical wind velocities v1 = f1/f and v2 = f1/f+A, respectively. By posing
B= v− v1, and assuming B as the second control parameter, it easily be concluded that

Figure 6. Stability of the trivial path in the parameter space (A, B).
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the trivial path is stable for BQ 0 and AqB. Two successive Hopf bifurcations associated
with the symmetric and the antisymmetric modes happen for negative damping A and
increasing B; for positive damping A the two bifurcations occur in the reverse order (Figure
6). The two boundary stability curves are determined by the equations B=0 and A=B.
Equations (2a, b) are identical to equations (19a, b), if one sets

v2
1 =1, v2

2 =v2
0, a1 = fv− f1, b1 = fv− f2,

a16 = b16 =2h, a20 = b17 = b20 = b13 =4fA, (22)

a4 = a9 = b11 =C2, a19 = b15 =3b19 =3a15 =
C3

v
, b12 = 4

3h,

and all the other coefficients are zero. The system model (15a)–(15d) yields

dr

dt
=

1
2

fBr+
C3

v1
v2

0rx2 +
3
2

C3

v1
r3 (23a)

dx

dt
=

1
2

f(B−A)x+
C3

v1
r2x+

3
2

C3

v1
v2

0x
3 (23b)

and

dq

dt
= 2

3C
2
2r

2 +20v2
0C2

2(2v2
0 −1)

4v2
0 −1

+2h1x2 (23c)

d8

dt
=0 v0C2

2

4v2
0 −1

+2
h
v01r2 +013 v0C2

2 +2
h
v01x2. (23d)

The amplitude equations (23a, b) are uncoupled from the phase equations (23c, d). It is
now necessary to determine the steady-state solutions of the dynamical system and to
perform the stability analysis.

Equations (23a, b) admit the trivial solution (r1, x1)= (0, 0), but three non trivial
steady-state solutions with one or two non vanishing components are possible:

r2 =X−
v1fB
3C3

, x2 =0 (24)

x3 =Xv1f(A−B)
3C3v

2
0

, r3 =0 (25)

r4 =X−
2v1f
C3 0B2 +A1, x4 =X−

v1f(B−3A)
5C3v

2
0

, (26)

while the corresponding qj and 8j , j=2, . . . , 4 are obtained by direct substitution of
(24)–(26) in (23c, d).

Both solutions (24) and (25) correspond to periodic responses of the original system
(19a, b), while the resultant motion of solution (26) is quasi-periodic, since the frequencies
of the two interacting modes are incommensurable. First order approximations of the
original system (19a, b) are given by (17a, b). Solutions (24) and (25) exist only for certain
ranges of the control parameters, depending on the sign of C3. For example, if C3 q 0
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Figure 7. Response-parameter (B) diagram: bifurcated steady-state amplitudes vs B for (a) Aq 0 and (b)
AQ 0 for C3 Q 0.

solution (24) exists for BQ 0 and solution (25) for AqB, while the domain of definition
of solution (26) is B+2Aq 0 and B−3Aq 0, since r and x are real and positive.

Now consider the stability and bifurcation analysis.
Let (rj , x j ), j=1, . . . , 4, be a steady-state solution to equation (23a, b). The stability

of (rj , x j ) depends on the Jacobian matrix J

J=

fB
2

+
C3

v1
(v2

0x
2
j + 9

2r
2
j )

2C3rjxj

v1

2C3v
2
0

v1
rjxj

f(B−A)
2

+
C3

v1
(9
2v

2
0x

2
j + r2

j )
. (27)

A geometric representation of the bifurcation analysis has been drawn in Figure 7,
obtained for C3 Q 0, in which the stability of the various equilibrium points is determined
for different regions of the control parameters plane. Six different regions are distinguished.

(I) the quasi-periodic solution (26) is stable, while the other solutions exist but are
unstable;

(II) the periodic antisymmetric solution (24) is stable, while the solution (25) and the
trivial path exist but are unstable;

(III) the periodic antisymmetric solution (24) is stable, while only the trivial path
exists but is unstable;

(IV) only the trivial path exists and is stable;
(V) the periodic symmetric solution (25) is stable, while only the trivial path exists

but is unstable;
(VI) the periodic symmetric solution (25) is stable, while the solution (25) and the

trivial path exist but are unstable.
Considering AQ 0 and increasing B, one concludes that the trivial equilibrium position

loses its stability after a pitchfork bifurcation and the stable symmetric solution (25) arises.
For increasing values of B, a second static bifurcation is observed and the unstable
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Figure 8. Representation in the X–Y space of an orbit of the system (19a, b) with the following set of
parameters: v1 =1, v2 =z2, A=0·25, B=1, f=0·001, v=C2 =C3 =1, h=−1. w numerical solution, +
AP method, q multiple scales method.

antisymmetric mode (26) appears. Finally, if B is further increased, the antisymmetric
periodic solution (26) bifurcates in the quasi-periodic stable solution (27). An analogous
discussion can be applied for Aq 0. The trivial equilibrium position loses its stability after
a pitchfork bifurcation and the stable antisymmetric solution (26) arises. For increasing
values of B, one observes a second static bifurcation and the unstable symmetric mode
(25) appears. Finally, if B is further increased, the symmetric periodic solution (25)
bifurcates into the quasi-periodic stable solution (27). In the particular case A=0, all the
bifurcation points coalesce and a unique stable steady-state quasi-periodic motion exists,
directly bifurcating from the trivial path.

Our results are in qualitative agreement with the analysis of reference [8], but the first
order approximations (17a, b) are slightly different, due to the different perturbation
methods used. In Figure 8, the results obtained by the AP method are compared with those
obtained in reference [8]. For the chosen set of parameters, the AP method approximate
solution is slightly better of the multiple scales method solution.

5. CONCLUSION

A perturbation analysis for a system of two non-linearly coupled oscillators resulting
in a set of ordinary differential equations that depends on five essential parameters only
has been presented. The analytical results are then used for a bifurcation analysis.
Amplitude equations have been derived which describe the solutions of non-linear systems
as superpositions of harmonic terms, the amplitude of which is modulated by the
non-linear terms. The solution is written as a Fourier expansion in which the coefficients
are power series of a small parameter and vary slowly in time. The lowest order terms
correspond to the harmonic solutions of the linear problem. Dynamic equations for the
amplitudes of these harmonic terms are then derived by substituting the expression of the
solution into the original equation and projecting onto each Fourier component. This
technique has been applied to a very general system of non-linear differential equations.
The model equations in polar form (15) are used to locate invariant tori depending on three
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arbitrary parameters. Finally, numerical evidence has been presented for the accuracy of
the amplitude equations as approximations to the original systems. The analytical results
are then compared with numerical solutions.

Finally, the results have been applied to the analysis of the post-critical behavior of a
two-rod system under aerodynamic excitation.

Some possible extensions of the technique described in this paper are:
(i) application of the reduction method beyond its leading order;
(ii) study of the special case

b1g1 = b2g2, a2 =−a1 (28)

that implies the existence of a first integral

F(x, r)= (rx)A(1+Br2 +Cx2), (29a)

A=
−2b1

b1 + b2
, B=

b1

a1
, C=−

g2

a1
, (29b)

i.e. of a function constant along the solution curves of (15a)–(15b);
(iii) study of the special case b2 = g1: in this case system (15a)–(15b) can be written

as

X� =9U(X), X=(r, x) (30a)

U(r, x)= a1
r2

2
+ a2

x2

2
+ b1

r4

4
+ g2

x4

4
+ g1

x2r2

2
; (30b)

(iv) generalization to three or more coupled oscillators leading to similarly universal
set of equations;

(v) parametric vibrations: single- and multi-frequency excitations of the non-linear
coupled oscillators (4a)–(4b).
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