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GRAVITY EFFECTS ON THE COUPLED
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This paper discusses an experimental study of the coupled frequencies of a flexible
structure partially immersed in a fluid in a finite container, in two dimensions, with
non-negligible gravity effects. The results are compared with those obtained using a
theoretical linear model including surface tension and meniscus length. The good agreement
obtained validates this theoretical model. Curves are then presented for the coupled
frequencies vs the fluid level in this container for various values of the gravity.
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1. INTRODUCTION

Fluids in flexible containers behave differently from fluids in rigid ones. Space launch
vehicle tanks can be considered elastic, and are partially filled with liquid. Coupled
fluid–structure frequencies can therefore be crucial for the stability of this system and
optimum launcher command systems must utilize a realistic model. In order to determine
the effect of the major launch vehicle accelerations on the free surface, the variations of
the coupled frequencies induced have to be calculated.

Rigid tanks have been investigated by Moiseev [1], Moiseev and Petrov [2], Boujot [3]
and many other workers. The vibration characteristics of elastic containers are modified
when they are filled with a liquid. The main difficulty in this type of problem is that neither
the motion of the fluid nor the motion of the structure are known beforehand.

Fluid–structure interaction in an elastic container have been investigated extensively
using various methods such as finite-element analysis, boundary-integral techniques,
variational methods, and analytical methods. For an overview of numerical methods, the
reader is referred to Zienkiewicz and Bettess [4], Valid and Ohayon [5], Valid et al. [6],
Berger et al. [7], Morand and Ohayon [8], Boujot [3], and Schulkes [9]. For variational
methods, there are Yamamoto [10] and Gupta and Hutchingson [11]. Test cases are needed
to validate these numerical codes.

This paper develops such a test case for a flexible structure partially immersed in a liquid
in a finite container when the effect of gravity on the free surface cannot be neglected.

The works of Caillot [12] and Veklich and Malyshev [13] neglect gravity effects on the
coupled frequencies, and thus can only be used as limits of the above problem. Cylindrical
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containers are studied in Miles [14], Bauer [15], Kana [16], Lindholm et al. [17], Chiba [18]
and Zhou [19].

In the case of a rectangular container with elastic side walls, the variable separation
method fails. Schulkes [20] gives an analytical solution for side walls considered as
membranes. If the elastic side wall is treated as a beam, an analytical solution with gravity
effects is proposed by Bauer et al. [21], but giving only the first coupled frequency. In fact,
a single function is used to describe the mode shape of both the immersed part and the
dry part of the beam, and this entails major discrepancies between their results and ours
which are validated in section 3 of this paper.

Section 2 presents the geometrical configuration, mechanical characteristics, and the
experiment performed for the test case. Section 3 summarizes the analytical solution of
this problem, which was presented in detail in a preceding paper [22] for the linearized
equations. Section 4 compares the analytical results of the model with experimental
data, and details the procedure used to validate this approach. The coupled frequencies
are then given as a function of the fluid level in the container for different values of
gravity.

2. TEST CASE

The experimental geometry is presented in Figure 1. The dimensions of the rectangular
container are (L*r =0·231 m; L*l =0·191 m; L*z =0·1 m). It is partially filled with water

Figure 1. Cantilever beam immersed in a finite rigid container.



2 –  333

(h* from 0 to 0·21 m). A cantilever plate is clamped to the bottom of the rigid container,
and the top of the plate is equipped with an accelerometer and a small steel piece used
to excite the system. The level of the free surface can be modified. The duraluminum plate
dimensions (thickness e*=0·001 m; length h*b =0·311 m; width b*=0·0995 m) are such
that its first dry bending frequency when equipped with the accelerometer, is close to the
first sloshing modes of the fluid. In the Z direction, the gap between the plate and the
container is so small that any flow between the two parts of the container can be neglected.
The position of a point of the free surface is measured by limnimeter. The container wall
is coated with silicone oil to limit the meniscus.

2.1.  

An electromagnet placed above the structure is excited by a Bruël&Kjaër generator and
amplifier. A 3·2 Ohm resistor is placed in series in the circuit. A Bruël&Kjaër analyser is
used to measure the tension U between the resistor terminals. The force on the structure
is proportional to the square of the electromagnet current, so that excitation frequency
is twice that of the generator. The force–current ratio depends on the distance between
the structure and the electromagnet, the geometric characteristics of the magnetic field, the
magnetic characteristics and the size of the steel piece at the top of the plate. These
parameters are kept constant throughout all the experiments. The Fourier transform of
the voltage shows that the signal harmonics are negligible. The Fourier transform of U2

is also calculated using the fundamental line of U. The amplitude of the motion w(h*b , t);
is then divided by the amplitude of U(t)2. If this ratio remains constant, the linear range
of the response is explored and the measure is validated. During the experiments, linear
behaviour is obtained for motion amplitudes of Q23 mm.

2.2.  

The excitation is in the (X, Y) plane of Figure 1. The motion of the coupled system (fluid
and structure) also occurs in this plane: so the problem can be considered as
two-dimensional, and the plate can be modelled by beam equations in transverse
oscillations. In the following, the ‘‘plate’’ will be referred to as the ‘‘beam’’. If the excitation
induced any torsional motion in the structure or a fluid velocity field in the Z direction,
the 2D model would not hold.

The motion of the free end of the beam is measured by an accelerometer (4370
Brüel&Kjaër) which is connected to the other channel of the analyser. The acquisition time
is 64 s. The Fourier transform of the signal gives the fundamental line of the acceleration
(12w(h*b , t*))/(1t*2) with a precision of 20·0156 Hz.

The free surface is measured by a limnimeter during the accelerometer acquisition. The
precision of this measurement is 20·1 mm.

3. MODEL

A model, similar to the one developed by Chai et al. [22, 23] can be developed. The fluid
is non-viscous, and the amplitudes of the movement are so small that linearized solutions
are possible, so potential flows are assumed to exist everywhere in the container. The
motion of the structure remains perpendicular to the direction of the gravity. The
potentials will be noted by f*i . In this paper, the subscript ‘‘· r’’ indicates a parameter
corresponding to the right-hand side of the beam (x*q 0), ‘‘· l’’ for the left-hand side
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(x*Q 0). For convenience, all physical variables (denoted by superscript asterisks) are
made dimensionless as follows:

(x, y, Li , hb, hi , w, wd )=
(x*, y)*, L*i , h*b , h*i , w*, w*d )

h*
,

t= t*Xg*
h*

, f(x, y, t)=
f*(x*, y*, t*)

h*zg*h*

in which h*i is the free surface elevation, w* the transverse displacement of the beam for
the immersed part, w*d for the dry part, t* is the time, g* is the gravity.

The dimensionless equations of the problem are as follows [24]:
In each fluid domain:

12fi

1x2 +
12fi

1y2 =0, (1)

for i= r: 0E xELr , 0E yE 1
for i= l: −Ll E xE 0, 0E yE 1.

On the rigid side walls of the container:

1fi

1x
=0, (2)

for i= r: x=Lr , 0E yE 1
for i= l: x=−Ll , 0E yE 1.

On the bottom of the container:

1fi

1y
=0, (3)

y=0, −Ll E xELr .

On the free-surface, the linearized boundary condition is:

12fi

1t2 +
1fi

1y
=0, (4)

for i= r: 0E xELr , y=1
for i= l: −Ll E xE 0, y=1.

On the elastic beam, the velocity compatibility condition is given by:

1fi

1x
=

1w
1t

, (5)

x=0, 0E yE 1.

The dynamic equations differ for the wet and the dry part of the beam:

b0
12w
1t2 +

14w
1y4 =G001fr

1t
−

1fl

1t 1, x=0, 0Q yQ 1. (6)
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The right-hand side term of this equation represents the load applied by the liquid.

b0
12wd

1t2 +
14wd

1y4 =0, x=0, 1Q yQ hb (7)

where b0 = h*3r*s g*(E*I*)−1; G0 = h*4r*f g*(E*I*)−1 are two dimensionless parameters
that correspond to the characteristics of the beam and the liquid respectively. r*s is the
linear mass density of the beam, r*f the mass density of the liquid per unit area, E*I* the
flexure stiffness of the beam.

The boundary conditions for the beam give relations between wd and w, as functions
of the mass m* and the rotational inertia J* around the Z axis of the accelerometer and
the small steel piece [25].

w=0,
1w
1y

=0, y=0

12w
1y2 =

12wd

1y2 ,
13w
1y3 =

13wd

1y3 , y=1

h
G

G

G

G

G

G

G

G

J

j

wd =w,
1wd

1y
=

1w
1y

, y=1
. (8)

12wd

1y2 + J
13wd

1t21y
=0,

13wd

1y3 −m
12wd

1t2 =0, y= hb

Two dimensionless parameters appear in the boundary condition equations at the
extremity of the beam m=(G0m*)/(r*f h*2); J=(G0J*)/(r*f h*4).

The method for solving this set of equations was given by Chai [24]. The form of the
solution is briefly as follows:

For the potentials,

fi (x, y)=0b cos [q(x−1)]
sin (q)

cosh (qy)+ s
a

n=0

an
cosh [pn (x−1)]

sinh (pn )
cos (pny)1v sin vt. (9)

For the free surfaces,

hi (x, y)=0bq
cos [q(x−1)]

sin (q)
sinh (q)− s

a

n=0

anpn
cosh [pn (x−1)]

sinh (pn )
sin (pn )1(−cos vt).

(10)

For the immersed part of the beam,

w=0s
4

j=1

ZjHj (y, v)1(−cos vt). (11)

For the dry part of the beam,

wd =(Z5 cos By+Z6 sin By+Z7 cosh By+Z8 sinh By)(−cos vt). (12)
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The function Hj (y, v) is given in the appendix of [2]. The parameters q and pn are given
by the following relations in which the surface tension s* is taken into account.

v2 =−pn tan pn (1+ p2
ns) (13)

v2 = q tanh q(1+ q2s) (14)

with,

s=
s*

r*f h*2g*
. (15)

The real quantities q, pn , a and b, as well as the functions Hj (y, v), depend on the
angular frequency v. For a given v, the set of equations (8) gives the values of the Zj ( j
ranging from 1 to 8). The determinant of the corresponding matrix must be zero to avoid
the solution Zj =0 for any j. This relation gives the coupled angular frequencies of the
model vcm . Before observing the behaviour of the model, its parameters must be defined.

The dimensionless parameters reflect the effect of the different characteristics of the
system. s=quantifies the ratio between the surface tension phenomena and the gravity
effects [equation (15)]; b0 = characterizes the ratio between the beam inertia and stiffness,
using the dry frequencies of the structure [equation (7)]; G0 = characterizes the level of the
fluid–structure interaction [equation (6)]; m and J=quantify the effect of the
accelerometer inertia on the dry frequencies [equation (8)]; Li =quantifies the ratio
between the length of each container and the water depth for the side i of the beam;
hb =quantifies the ratio between the length of the beam and the water depth.

4. RESULTS

The model parameters are determined and then the frequency predictions are compared
to experimental data, for two water levels, to validate the model. The behaviour of the
coupled frequencies with the water level is then presented.

4.1.     

The validity of the model is demonstrated by the following procedure. The
characteristics of the dry structure model are first determined, and then the effective length
of the free surfaces. Then the model parameters are completely defined and the response
of the fluid–structure model are compared to experimental results for several frequencies
and several water depths.

The first dry frequency of the equipped beam was measured and found to be
fs1 =4·06262 0·0156 Hz. This frequency depends on the characteristics of the beam and
on its boundary conditions. The flexure stiffness E*I* of the beam was calculated to
achieve this first frequency. The mass of the accelerometer and the steel piece is
m*=0·058962 0·00005 kg. The inertia was calculated using the dimensions of the pieces,
J*=3·21×10−6 2 0·03×10−6 kg m4. I*, which is given by (b*e*3)/12. The derived
Young’s modulus used to find fs1 is E*=0·6243×1011 2 0·0048×1011 Pa. This value is
realistic for duraluminium.

When the first two coupled frequencies for a given water level h*1 were measured,
Lr =L*r /h* was chosen to be close to 1 in order to get a strong coupling between the fluid
and the structure. For the experiment, h*1 =0·182 m. The first two coupled frequencies
were measured to be f *c1 =1·81282 0·0156 Hz; f *c2 =2·03122 0·0156 Hz. For f *c1 , the
motion of the free surface h*r is greater than h*l : the mode shape for f *c1 mainly concerns
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Figure 2. Comparison between coupled frequencies for the experiment (fc ) and the model (fcm ) without
consideration of meniscus effects, for a fluid height of 0·182 m. The mean value corresponds to the bar. The
accuracy of the measure or the model is also indicated. The tip indicates maximum value.

the right-hand side of the beam. For f *c2 , the mode shape mainly concerns the left-hand side
of the beam.

The characteristics of the fluid and of the free surface are r*f =(1000 ( 0·1) kg m−2 and
s*= (0·072 ( 0·1) N is the surface tension in the model. The factor 0·1 corresponds to the
width of the container. If the real lengths of the container are used (L*r =0·231 m and
L*l =0·1913 m), the calculated coupled frequencies are f *cm1 =1·75282 0·0058 Hz and
f *cm2 =1·96682 0·0058 Hz. The accuracies on f *cm1 and f *cm2 are obtained using all the
accuracies of the model parameters. The first two coupled frequencies ( f *cm ) calculated do
not coincide with the experimental results (Figure 2). The effective length of each free surface
must be shorter. The size of the meniscus at all structure free–surface interfaces seems to
be of the order of 5×10−3 m. The strong curvature of the free surface increases its stiffness
locally. The effective length of each free surface can be calculated to match the two first
coupled frequencies according to their accuracy. The results are L*r =0·21642 0·0039 m
and L*l =0·17992 0·0027 m. A meniscus influence of 0·0063 m can be considered for all
the contact lines. This value reduces the experiment-model gap (Figure 3). This meniscus
effect is consistent with its size.

In order to validate these effective lengths, the first twelve coupled frequencies were
measured. The Bode diagram of w(hb ) is presented in Figure 4. The maximum responses
indicate the coupled frequencies. The calculated coupled frequencies fcm are compared to the
experimental ones fc using the mean value of the effective length (L*r =0·2184 m and
L*l =0·1787 m) (Figure 4). These show very good agreement except for the 4th coupled
frequency. For this frequency, the discrepancy between the model and the experiment is
0·0092 Hz. This disagreement is very small compared with the frequency value. The 12th
predicted frequency was not found, experimentally. But the Bode diagram (Figure 4) shows
a maximum about 4·85 Hz larger than the others, so that the two maximums cannot be
distinguished experimentally.

The Bode diagram for a fluid height of h*2 =0·0986 m is plotted in Figure 5 along with
the predicted coupled frequencies, fcm , and the experimental frequencies fc . The first seven
frequencies are predicted well by the model. The 8th frequency of the model cannot be

Figure 3. Comparison between coupled frequencies for the experiment ( fc ) and model ( fcm ) considering the
meniscus effects of 0·0063 m, for a fluid height of 0·182 m. The accuracies of the measure and the model are also
indicated.
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Figure 4. Experimental Bode diagram for a fluid height of h*1 =0·182 m. The vertical axis is proportional to
the ratio of the displacement of the top of the structure w(hb ) to the square of the excitation tension U.
fcm =predicted frequencies, fc =measured frequencies. Length of bar indicates accuracy.

detected in the Bode diagram. This experimental frequency may be masked by the major
increase in the frequency response. The 9th and the 10th numerical frequencies are closer
to one another than the experimental ones. These correspond to the highest frequency
response. The interactions between these two close modes are not predicted by the model.
The 11th and the 12th frequencies are the sloshing frequencies of the fluid in the container.
The corresponding motion of the structure is smaller than the free-surface motion, so it

Figure 5. Experimental Bode diagram for a fluid height of h*2 =0·0986 m. The vertical axis as in Figure 4.
fcm , fc as for Figure 4 as in the meaning of the bars. W, Small amplitude oscillation; q large amplitude
(wq 0·005 m) oscillation.
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Figure 6. Variation of the coupled frequencies of the model (fcm ) with the height of the liquid. The sloshing
frequencies in rigid containers of the same size are also plotted (dashed lines: W (solid circle), right side fslr , w
(open circle) left side fsll ).

appears on the Bode diagram only as a small increase in the displacement at the extremity
of the beam. If the amplitude of the excitation is increased, nonlinear effects modify the
frequency response as shown on Figure 5. A nonlinear model would be useful.

4.2.       

The model can now be considered to be validated. Figure 6 gives, the variation of the
coupled frequencies with the fluid height. The sloshing frequencies in containers of the
same dimensions are also plotted: fsll (left), fslr (right). Figure 7 shows the coupled frequencies

Figure 7. Variation of the coupled frequencies of the model (fcm ) with the height of the liquid for low water
levels. The sloshing frequencies in rigid containers of the same size are also plotted (dashed lines).



10

1
1 10 100

g* (m s–2)

C
o

u
p

le
d

 f
re

q
u

en
ci

es
 (

H
z)

.-.   .340

for low water levels (h*Q 0·1 m in the configuration). These consist of the sloshing
frequencies and a frequency near the first dry frequency of the beam. Closer analysis shows
that this frequency does not cut the others as the water level increases. Near 4 Hz, the
coupled frequency leaves the proximity of fsl i , and jumps to the proximity of fsl i−1.

For higher water levels, two cases can be pointed out. Those frequencies that are greater
than the first dry frequency (4 Hz), are more or less equal to the sloshing frequencies. The
lower frequencies decrease as the water level rise and leave their corresponding sloshing
frequencies. For a given water level, these decreases are not proportional to the distance
to the dry frequency. For h*=0·182 m, for example, the distance between fcm1 and fslr1 is
greater than the distance between fcm2 and fsll1. The ratio of the beam motion amplitude
to that of the free surface increases with the distance of fcm from fsll and fslr .

4.3.      

The dimensional time t* is related the dimensionless time t, by

t*= tXh*
g*

, (16)

so the coupled frequencies v* are related to the dimensionless frequencies v by

v*=vXg*
h*

. (17)

The dimensionless system is solved. If the value of g* is changed, the only dimensionless
equations that are changed are (13) and (14). The parameter s depends on g* [see equation
(15)]. Two cases must be studied.

(1) If the surface tension is negligible compared to the gravity effects, the second terms
p2

ns and q2s are smaller than 1 (p2
ns�1; q2s�1). The dimensionless frequencies are then

Figure 8. Variation of the coupled frequencies with g* for a water level of 0·182 m.
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independent of g*, and the dimensional frequencies can be deduced by the above
equation (17).

(2) If the surface tension is not negligible compared to the gravity effects, the
dimensionless coupled frequencies are modified slightly and the dimensional frequencies
are then deduced.

For a given system in a launcher whose acceleration varies for example, from g* to 10
g* and then returns to 0·1 g*, each vci remains more or less constant (as it depends on
s*), and the corresponding dimensional frequencies vary approximately from v*ci to z10
v*ci and back to z0·1 v*ci . It quickly appears that the entire frequency domain will be swept
by several coupled frequencies of the system with the variation of g*. This is illustrated
in Figure 8. For a water level of 0·182 m, the 11 first coupled frequencies are roughly
proportional to zg*.

5. CONCLUSION

A two-dimensional test case is presented for fluid–structure interaction where gravity
effects cannot be neglected. The analytical solution of the problem is outlined, and the
results are compared with experimental data. The need to take into account the surface
tension of the free surface and a meniscus length of 6 mm at each solid-fluid-air line is
pointed out. The analytical model is validated. The behaviour of the coupled frequencies
with changes in container liquid level is then calculated. Far from the first dry frequency
of the structure, the effect of the coupling is not negligible.

This problem could be used in the future as a test case for numerical codes. The
nonlinear solution of this problem and the experimental measurements are presently being
studied.
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