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1. 

Determination of the influence of the parameters characterizing a system on the vibration
of the system is of practical interest in engineering applications. Many factors can affect
the flexural vibrations of beams, in particular the axial load, intermediate supports and
attached masses. Studies of the influences of these individual factors on Bernoulli–Euler
beam vibrations for various attachments to the beam have been made from various
approaches [1–12].

Kukla [5] investigated the lateral vibration of a loaded beam with intermediate elastic
supports and concentrated masses by applying the Green functions method [5], while the
optimized Rayleigh–Schmidt approach was used to study the dynamic behaviour of loaded
beams with elastic ends [8]. The classical Rayleigh method, with different assumed shape
functions, was used to generate the frequency expressions of loaded beam systems [13–15].

In this paper, a frequency analysis of loaded beams is performed for ten classical beams
involving guided, fixed, free and/or pinned ends. The explicit frequency equations are
obtained by satisfying the differential equation of the eigenvalue problem, the boundary
and compatibility conditions. A solution set of the transcendental expression will be
compared with the experimental results and also with those obtained by using Rayleigh’s
method.

2.  

As shown in Figure 1, the model considered is a beam with a concentrated mass located
at x= a, where x is the spatial co-ordinate along the beam length of l. Figure 1 illustrates
a loaded beam with simply-supported ends. Other beams with guided, fixed, free and/or
pinned ends are also considered in this work.

The differential equation associated with the present eigenvalue problem is known as
[16]

d4V
dx4 − k4V=0, (1)

in which

k4 =
rAv2

EI
, (2)

where r is the beam’s density, A is the cross-sectional area, E is Young’s modulus, and
I is the moment of inertia of the beam cross-section with respect to the neutral axis of the
beam.
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The general solutions of the ordinary differential equation (1) for the loaded beam
system are [16, 17]

V1(x)=C1 sin kx+C2 cos kx+C3 sinh kx+C4 cosh kx,

V2(x)=C5 sin kx+C6 cos kx+C7 sinh kx+C8 cosh kx, (3)

where V1 and V2 are the left and right transverse displacements with respect to the
concentrated mass M, and Ci (i=1–8) are constants to be determined.

The compatibility conditions at the location of concentrated mass, which apply to all
cases, are given as follows:

V1(a)=V2(a), V'1 (a)=V'2 (a), V01 (a)=V02 (a),

V11 (a)−V12 (a)+ ak4V1(a)=0, (4)

where primes denote differentiation with respect to the spatial variable x, while the mass
ratio is defined by a=M/(rAl).

To complete the formulation of the boundary-value problem, the boundary conditions
must be specified as follows:

V'=0 and V1=0 (guided end);

V=0 and V'=0 (fixed end);

V0=0 and V1=0 (free end);

V=0 and V0=0 (pinned end). (5)

3.  

3.1. Eigenfrequency expressions
Conditions stated in equations (4) and (5) can be written in terms of Ci by virtue of

equation (3),

AC= 0, (6)

where CT = {C1, C2, C3, C4, C5, C6, C7, C8} and A is the associated 8×8 matrix.
The frequency equation det (A)=0 can be generated by executing the following Maple

code [18]:

qgenmatrix({i1, i2, i3, i4, e1, e2, e3, e4}, [C1, C2, C3, C4, C5, C6, C7, C8]);

qdet (0)=0; (7)

Figure 1. A beam–mass system considered.
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where ip (p=1–4) are the four compatibility conditions at the loading point (see equation
(4)), while eq (q=1–4) are the boundary conditions at both ends for the respective case
specified in equation (5). A solution for Ci (i=1–8) and the subsequent substitution into
equation (3) constitute the eigenfunctions, V1 and V2, which satisfy all the boundary
conditions and the differential equation of the eigenvalue problem [19].

The resulting eigenfrequency equations for ten different cases can be written in terms
of eigenvalue b (bi = kil for mode i) and position parameter h (= a/l) as follows:

(i) guided–guided

2 sin b sinh b+ ab[sin b sinh b(cos bh sin bh−cosh bh sinh bh)

+ cos b cos2 bh sinh b+sin b cosh b cosh2 bh]=0; (8a)

(ii) guided–fixed

2(cos b sinh b+sin b cosh b)+ ab[cos2 bh (cos b cosh b−sin b sinh b)

+ cosh2 bh(cos b cosh b+sin b sinh b)−2 cos bh cosh bh

+(cos b sinh b+sin b cosh b)(cos bh sin bh−cosh bh sinh bh)]=0;

(8b)

(iii) guided–free

2(cos b sinh b+sin b cosh b)+ ab[cos2 bh (cos b cosh b−sin b sinh b)

+ cosh2 bh (cos b cosh b+sin b sinh b)+2 cos bh cosh bh

+(cos b sinh b+sin b cosh b)(cos bh sin bh−cosh bh sinh bh)]=0;

(8c)

(iv) guided–pinned

2 cos b cosh b+ ab[cos b cosh b(cos bh sin bh−cosh bh sinh bh)

+ cos b sinh b cosh2 bh−sin b cosh b cos2 bh]=0; (8d)

(v) fixed–fixed

2(1−cos b cosh b)+ ab[sin b cosh b cosh2 bh−cos b sinh b cos2 bh

+cos b cosh b (sin bh cosh bh−cos bh sinh bh)

+ cos b sinh b (cos bh cosh bh−sin bh sinh bh)

− sin b cosh b(cos bh cosh bh+sin bh sinh bh)

+ sin b sinh b(sin bh cosh bh+cos bh sinh bh)

− sin b sinh b (cos bh sin bh+cosh bh sinh bh)

+ cos bh sinh bh−sin bh cosh bh]=0; (8e)

(vi) fixed–free

2(1+cos b cosh b)+ ab[cos b sinh b cos2 bh−sin b cosh b cosh2 bh

+cos b cosh b(cos bh sinh bh−sin bh cosh bh)

+ cos b sinh b(sin bh sinh bh−cos bh cosh bh)

+ sin b cosh b(cos bh cosh bh+sin bh sinh bh)
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−sin b sinh b(cos bh sinh bh+sin bh cosh bh)

+ sin b sinh b(cosh bh sinh bh+cos bh sin bh)

+ cos bh sinh bh−sin bh cosh bh]=0; (8f)

(vii) fixed–pinned

2(cos b sinh b−sin b cosh b)+ ab[cos2 bh(cos b cosh b−sin b sinh b)

− cosh2 bh(cos b cosh b+sin b sinh b)

+ (cos b sinh b+sin b cosh b)(cos bh sin bh+cosh bh sinh bh)

+2(cos b sin bh−sin b cos bh)(cosh b sinh bh−sinh b cosh bh)]=0;

(8g)

(viii) free–free

2(cos b cosh b−1)+ ab[cos b sinh b cos2 bh−sin b cosh b cosh2 bh

+cos b cosh b(sin bh cosh bh−cos bh sinh bh)

+ cos b sinh b(cos bh cosh bh−sin bh sinh bh)

− sin b cosh b(cos bh cosh bh+sin bh sinh bh)

+ sin b sinh b(cos bh sinh bh+sin bh cosh bh)

+ sin b sinh b(cos bh sin bh+cosh bh sinh bh)

+ cos bh sinh bh−sin bh cosh bh]=0; (8h)

(ix) free–pinned

2(cos b sinh b−sin b cosh b)+ ab[cos2 bh(cos b cosh b−sin b sinh b)

− cosh2 bh(cos b cosh b+sin b sinh b)

+ (cos b sinh b+sin b cosh b)(cos bh sin bh+cosh bh sinh bh)

+2(cos b sin bh−sin b cos bh)(sinh b cosh bh−cosh b sinh bh)]=0;

(8i)

(x) pinned–pinned

2 sin b sinh b+ ab[sin b sinh b(cosh bh sinh bh−cos bh sin bh)

+ cos b sinh b sin2 bh−sin b cosh b sinh2 bh]=0. (8j)

3.2. Rayleigh’s expression
The fundamental frequency of three classical beams carrying a mass at various positions

was obtained by substituting different shape fucntions, one at a time, into Rayleigh’s
quotient [12, 13]. A frequency expression for each case was then symbolically written in
terms of mass ratio and position parameter as [14]:

v2
1 =

KEI
rAl4

Ga +G
Ha +H

, (9)
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which yields

b4
1 =

K(Ga +G)
(Ha +H)

, (10)

since b4
1 = rAl4v2

1 /(EI).
To compare with the corresponding frequency equation in section 3.1, the closed form

expression obtained for a fixed–fixed case [14] is reproduced with the associated
parameters:
(i) deflection shape of the beam under a concentrated mass M,

K=192, G=1, H=(16/35)h(h3 −2h2 −2h+3),

Ga =0, Ha =−64ah3(h3 −3h2 +3h−1); (11a)

(ii) deflection shape in terms of the concentrated mass M and the uniformly distributed
beam mass m (= rAl),

K=192, G=1/8, H=1/21,

Ga =−30a2h3(h3 −3h2 +3h−1)+ (15/2)ah2(h2 −2h+1),

Ha =1920a3h6(h6 −6h5 +15h4 −20h3 +15h2 −6h+1)

+ (2/7)a[h2(118h6 −432h5 +644h4 −420h3 +105h2 −14h+9)

− ah4(1728h6 −8640h5 +17136h4 −16704h3 +7776h2 −1152h−144)]. (11b)

Figure 2. Experimental set-up for the beam-mass system.
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Note that the parameters G and H are independent of the mass ratio a. It is obvious that
the eigenvalue b1 can now be calculated by substituting the parameters of equation (11)
into the closed-form algebraic equation (10).

4.    

Experimental testing was conducted to obtain the frequencies of different loaded beams
with a mass placed at various locations. The experimental set-up for the loaded beam is
shown in Figure 2. Analytical results evaluated based on the expressions in section 3 can
be compared to those measured experimentally.

Figure 3 shows an analytical-experimental comparison for a fixed–fixed beam with
l=1 m, E=207 GPa, r=7810 kg/m3 and sr =727, where sr (=zAl2/I) is defined as the
slender ratio of the beam. Note that the mode frequency in Hz can generally be calculated
as fi = b2

i zE/r/(2psrl), where bi is obtained by solving the corresponding transcendental

Figure 3. Analytical–experimental frequencies of a fixed–fixed loaded beam: —r— f1, experimental; —×—
f1, equation (8e); —e— f2, experimental; —q— f2, equation (8e). (a) h=0·1, (b) h=0·2, (c) h=0·3, (d) h=0·4,
(e) h=0·5.
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expression (8) or by equation (10). Only results of 0E hE 0·5 are required owing to the
symmetrical ends of fixed–fixed beams. The comparison in Figure 3 shows that the
transcendental expression (8e) can well predict the frequencies of the beam carrying a mass
at various positions. Note that the first two frequencies for the unloaded beam
(mb =556·2 g) are: f1 =25·15 Hz (experimental), f1 =25·22 Hz (analytical); f2 =69·25 Hz
(experimental), f2 =69·51 Hz (analytical).

In another comparison, as shown in Table 1, the fundamental frequency parameters
obtained by Rayleigh’s method, equation (10), are listed with respect to those generated
by solving the transcendental equation (8e).

The following observations can be made by virtue of the results in Figure 3 and Table
1: (1) As shown in Figure 3 for h=0·1, magnitude of the load is insignificant to the
fundamental frequency if the mass is placed near the beam end (an anti-node of the mode
shape). (2) The fundamental frequencies increase as the mass is placed away from the
beam’s centre, but not for the second frequencies. (3) The second mode frequency remains
constant for different central concentrated masses. In fact, the trends just stated can in fact
be associated with the corresponding mode shapes. (4) In general, the frequencies predicted
by the transcendental expression, equation (8e), is slightly higher than the measured values.
(5) As shown in Table 1, the frequency expression (11a), which is generated by using the
shape function involving the load (M) only, gives very poor results if aQ 10 and h=0·1,
a location very near to the beam end. For example, the eigenvalues for a=0·01 via
equations (8e) and (11b) are both close to the fundamental eigenvalue of the unloaded
beam with fixed ends, 4·730 [16, 17], but the value of b1W is totally out. (6) The values of
b1W approach those of b1t for cases with h=0·5 and ae 10. On the other hand, all the
three expressions would give similar eigenvalues if M�m. (7) The values of b1W are always
the highest among the three. In most cases, the values of b1c are close to those solutions
of the transcendental equation, b1t , while the former values are higher. (8) As concluded
in Figure 3 and Table 1, the transcendental expression for b1t can best predict the
experimental frequencies, but the closed-form algebraic solution for b1W enables a quick
estimation of the fundamental frequency of beams carrying a mass at various postions.

5.  

In this paper a frequency analysis of a Euler–Bernoulli beam carrying a concentrated
mass at any arbitrary location is presented. The dimensionless eigenfrequency equations
for the boundary value problem have been derived for ten different sets of boundary
conditions, involving guided, fixed, free and/or pinned ends. The expressions were
generated by satisfying the differential equations of motion and by imposing the
corresponding boundary and compatibility conditions. On the other hand, approximate
results are given using Rayleigh’s method with two static deflection shape functions. The
effects of the position and magnitude of the mass, as well as comparisons of the different
results obtained experimentally and analytically, have been determined.

It can be seen from the comparisons that the eigenfrequencies of the beam–mass system
can be accurately predicted by the solutions of transcendental equations. However, the
closed-form Rayleigh expressions would be used for a quick estimation of fundamental
frequency.


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