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Rattling in change-over gears of automobiles is an unwanted comfort problem. In recent
years very general models have been developed to analyze the rattling phenomenon. One
of them, in consideration of plays being the consequence of tolerances, of backlashes and
others, is modelled as an impulsive system that consists of some gears not under load being
able to rattle. Modern research has shown that chaotic vibration can occur on impulsive
systems with plays, which are confident of a non-linear element in mechanics. Therefore,
the chaotic vibration on a rattling system has received attention. In this paper, instead of
performing the very tedious numerical calculation for a rattling system, a discrete stochastic
model described by a mean map is established using the non-Gaussian closure technique.
By the analysis of the example this model can reveal chaotic stochastic behaviour. Based
on a detailed investigation the existence of random chaos can be justified. This finding in
a special impulsive system is also significant for chaos study.
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1. INTRODUCTION

Rattling in change-over gears of automobiles is an unwanted comfort problem. In recent
years very general models have been developed to analyze the rattling phenomenon [1–4].
One of them, in consideration of plays being the consequence of tolerances, of backlashes
and others, is modelled as an impulsive system that consists of some gears not under load
being able to rattle [5]. Modern research has shown that chaotic vibration can occur on
impulsive systems with plays, which are confident of a non-linear element in mechanics
[6]. Therefore, the chaotic vibration on a rattling system has received attention.

In 1988, Pfeiffer came up with an idea from Fermi’s experiment and elaborated a discrete
model using a map to describe the rattling vibration [5]. By means of experiment and
numerical simulation, a detailed analysis was performed by Karagiannis and Kunert
[7–11]. A significant step was taken by Pfeiffer and Kunert, who considered the effects of
an additional noise and introduced stochastic modelling into the analysis [9]. The random
model is also more realistic because a finite level of noise is present everywhere in reality.
However, their analysis was only limited to the investigation of the deterministic chaos
using the stochastic perturbing technique. In fact, due to influence of the noise, another
type of vibration can be induced. On the one hand, except for an additional noise, a
random modulation of the control parameter of a non-linear system can also induce
interesting behaviour [12], and on the other hand, chaotic stochastic vibration may occur
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in random dynamical systems [13]. In the present paper, these problems are considered in
detail.

The concept of the chaotic stochastic vibration was proposed by Kapitaniak in 1988 [13].
He interpreted that for a random dynamical system, the chaotic behaviour of statistical
results including mean value and probability density indicates a new motion called chaotic
stochastic vibration. Kapitaniak’s work was based on the average results of finite
performances of the numerical simulation for an unstable Duffing’s oscillator. In this
paper, instead of performing the very tedious numerical calculation for a rattling system,
a discrete stochastic model described by a mean map is established using the non-Gaussian
closure technique. By means of the analysis of the example it is proved that the model can
reveal chaotic stochastic behaviour. Through investigation, the Poincaré maps exhibit
typical chaotic vibrations and the power spectrum of mean velocity shows characteristics
of a continuous spectrum. Moreover, it is discovered that the time difference of two
successive impacts is a white noise process. The results again demonstrate the existence
of the chaotic stochastic vibration. The routes to random chaos in the frequency domain
display more complexity compared with one for deterministic chaos. The findings in a
special impulsive system are also significant for chaos study.

2. DISCRETE STOCHASTIC MODEL

Due to unbalance of the engine small and mostly harmonic vibrations enter the gear-box
and excite all gears. In that case, two different phenomena, rattling and hammering, may
occur depending on the exciting torque. In the following, attention is focused on the first
one. In change speed gears, for example, it is discovered that some gear wheels not under
load are able to rattle. In this case, the teeth of the gear wheels come into contact only
for a very short time, where contact moment is small. An impulsive process of this type
can be approximated very well by a generalized impact theory. The basic idea is simple.
Consider a shift transmission with many plays and assume that in one of these plays an
impact has just taken place so that one starts with free flight phase in the various plays.
Contact in one of the plays is indicated by zero relative distances. For that system, one
must evaluate the backlash where a contact occurs at the earliest. Then one can apply a
generalized impact theory yielding the state shortly after that impact, which serves as the
initial state for the next free flight phase. The results of such a patching method depend
very much on the accuracy of interpolating the impulsive events. Based on that argument,
a discrete model on deterministic rattling vibration has been obtained [5].

A random description may be fitting for the properties of the real world, because even
with modern production possibilities no gear tooth can be manufactured in an ideal way
and there is a lot of additional small irregularities due to oil splash and the complete system
behaviour. Therefore, in reference [9], an appropriate description is given by a probability
distribution for the state space. In the free flight phase, the dynamical system is then
described by a corresponding Fokker–Planck equation. The boundary conditions for the
probability density are derived from the classical impact theory. Using finite differencing
methods, the solution of F–P equation with the probability boundaries can be
approximated. However, performance of finite differential methods takes a lot of time on
the computer, which is very uneconomical and inconvenient. Moreover, in reference [8],
it has been shown that rattling noise in real gear-boxes does not depend in a significant
way on the structural properties of the corresponding non-linear vibrations; it depends
mainly on the parameter influencing the mean values of the impulsive processes. Therefore,
a more adequate description by mean value on the random rattling system will need to
evolve.
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2.1.  

To develop a stochastic model, a brief review about the deterministic model is necessary.
In this paper, only a single stage rattling system is considered. In Figure 1, the driven gear
wheel not under load can move freely between backlashes, and the free flight motion is
only stopped by the backlash boundary, where an impact occurs. According to what has
been mentioned above, the motion of the driven wheel can be distinguished into two
phases: the free flight phase and the contact phase. The motion equation can be written
in the following way:

I1f� 1 + d1f� 1 =−T1, (1)

for the free flight phase and the contact phase is expressed by

f� +
1 =−of� −

1 + (1+ o)
Re

R1
ė(t), (2)

in which Re and R1 are basic radii; e(t) is a harmonic rotation with amplitude a and
frequency v; v1 indicates a constant play in mesh plane; I1 stands for inertia moment of
driven gear wheel; f1 is angular displacement; T1 denotes a constant moment; d1 means
damping ratio in free flight phase; and o is the restitution coefficient. The signs (−) and
(+) denote short time before and after impact. During the infinitesimal short impact all
position and orientation magnitudes remain unchanged.

First, the above motion equation is reformed to be described by relative displacement
and relative velocity. If

t=vt, x=
Ree(t)−R1f1

v1
, b=

d1

Iv
, g=

T1R1

Iv1v
2 , a=

Rea
v1

,

the following dimensionless equations are obtained:

6ẋ= y,
ẏ=−by+ g+ f� + bf� ,

(3)

Figure 1. Mechanical model.
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in the free flight phase, x$(−0·5, 0·5) and

y+ =−oy−, (4)

in the contact phase, x$(−0·5, 0·5), where x and y are relative displacement and relative
velocity, respectively. b is the damping ratio in the free flight phase, g indicates constant
moment, f(t)= a sin t, t is dimensionless time, and a stands for excitation amplitude. For
the above equations, patching and point mapping equations are particularly simple. An
accurate solution by a map for the above deterministic equations has been derived [11].

In the prsent paper, a stochastic model is considered. Considering a general case, the
excitation function is perturbed by an addition noise and a modulation noise. It is assumed
that the magnitude of backlash consists of two parts: average value and measure tolerance.
After normalizing, the backlash magnitude is equal to 1+2d, where d is a stochastic
variable with null mean value whose maximum value is dm . Then a modified motion
equation can be written as:

6ẋs = ys ,
ẏs =−bys + g+ s1h(t)+ [a+ s2h(t)][sin t+ b cos t],

(5)

in the free flight phase, xs $(−(0·5+ d), (0·5+ d)). The subscript s indicates a perturbed
system that differs from unperturbed systems (3) and (4), xs and ys describe the
dimensionless relative displacement and velocity of a perturbed system and a is the
deterministic part of the excitation amplitude. All other parameters are the same as in
equation (3). si (i=1, 2) represents the intensity of random forces described by a standard
Gaussian white noise h(t). It satisfied the following conditions.

E[h(t)]=0 and E[h(t)h(s)]= d(t− s).

According to the classical impact theory, in the contact phase,
xs ${−(0·5+ d), (0·5+ d)}, it has

y+
s =−oy−

s . (6)

2.2.  

In general, when noise intensity is small, the stochastic models (5) and (6) can be
considered as a modification for the determinsitc models (3) and (4). Equation (5) is a
non-linear equation without a high order term that can be decoupled. To derive a discrete
model, it is attempted to decouple equations (5) and (6) into two parts: deterministic and
stochastic. Because the modification value of the backlash d is very small, in the following
derivation the influence of d is not considered. First, it is assumed that the solution of
perturbed systems (5) and (6) can be separated into deterministic and stochastic parts with
the form

6xs = x+ j

ys = y+ j
, (7)

in which x and y are solutions of unperturbed systems (3) and (4), while j and z are
stochastic variables. Substituting equation (7) into equations (5) and (6), and subtracting
equations (3) and (4), respectively, one obtains

6j� = z

z� =−bz+ {s1 + s2[sin t+ b cos t]}h(t),
(8)
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in the free flight phase, j$(−(0·5+ d+ x), (0·5+ d )− x) and

z+ =−oz−. (9)

in the contact phase, j${−(0·5+ d+ x), (0·5+ d )− x}.
Now equations (5) and (6) have been separated into two parts. The deterministic part

is the same as equations (3) and (4). The stochastic part consists of equations (8) and (9).
The solution of the deterministic part can be obtaind by use of the patching method, as
in references [5, 11]. Integrating equation (3), if the sequence of system states before or after
impacts are known, x and y can be defined exactly. Considering the mapping before impact
H: X−

k :X−
k+1, in which X=[x, y]T is a state vector of the unperturbed system, an iterated

operator (10) is obtained as derived in reference [11],

x−
k+1 = x−

k + a(sin tk+1 − sin tk )

+
1
b

(1−exp (−bDtk ))0−oy−
k − a cos tk −

g

b1+
g

b
Dtk ,

y−
k+1 = a cos tk+1 +0−oy−

k − a cos tk −
g

b1 exp (−bDtk )+
g

b
. (10)

In the above operator, the time difference Dtk of the two successive impacts has not been
defined yet. Now look at the stochastic part. Equation (8) in the free flight phase is a
non-linear stochastic differential equation whose exact solution cannot be solved. Because
there is no restitution force term in equation (8), the correlation coefficient r of the random
variables j and z from the corresponding moment equation of equation (8) does not always
satisfy the relation rE 1 and, therefore, its distribution is out of accordance with a
Gaussian normal distribution. To derive a mean iterated operator analytically, a
non-Gaussian closure technique is used here. An Edgeworth expansion in reference [14]
is adopted to approximate the true distribution. The two-dimensional Edgeworth
expansion is expressed as

P*(j, z)=P(j, z)6 s
N

k=0

rk

k!
Hk0 j

sj1Hk0 z

sz1
+ s

N

j+ l=3

1
j!l!

ljl

sj
js

l
z

s
N

k=0

rk

k!
Hk+ j0 j

sj1Hk+ l0 z

sz1
+ s

N

j+ l=4

1
j!l!

ljl

sj
js

l
z

s
N

k=0

rk

k!
Hk+ j0 j

sj1Hk+ l0 z

sz1
+

1
2

s
N

j+ l=3,r+ s=4

1
j!l!r!s!

ljl

sj
js

l
z

lrs

srss
z

s
N

k=0

rk

k!
Hk+ j+ r0 j

sj1Hk+ l+ s0 z

sj1 , (11)
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where moments lnp =E[jn zp], (n= j or r, p= l or s) and the correlation r= l11/sjsz .
The polynomial Hk (z) is in the form of reference [14],

H0(z)=1, H1(z)= z, H2(z)= z2 −1, H3(z)= z3 −3z, H4(z)= z4 −6z2 +3, . . .

in which P(j, z) means a standard Gaussian normal distribution. It has the form of

P(j, z)=
1

2psjsz

exp 0−(j−mj )2

2s2
j 1 exp 0−(z−mz )2

2s2
z 1 , (12)

where the standard derivations si (i= j, z) and the mean values mi (i= j, z) can be solved
from the 2-order and the 1-order moment equations, respectively.

It seems probable that the distribution (10) obtained by the method of non-Gaussian
closure will eventually converge to that of the true distributions as N:a. In the process,
the accuracy of approximation for most statistics constructed from the distribution will
generally improve as N increases. It is, however, possible for some particular statistics on
some oscillators to suffer a decrease in accuracy when at some stage N is increased to N+2
[15]. That is a defect of non-Gaussian closure technique. However, in the problem under
consideration, this defect can be avoided. The reason may be interpreted in the following.
The approximated accuracy of the distribution P*(j, z) is determined by lnp which can be
solved from a set of corresponding moment equations. For example, in reference [15] there
are higher order terms in equations, so the moment equation chains are not closed. After
closing, the accuracy of moments cannot be warranted. In our problem, moments lnp can
be determined from the following:

l� np =
1E[jnzp]

1t

=E$z 1(jnzp)
1j %− bE$z 1(jnzp)

1z %+
x(t)
2

E$12(jnzp)
1z2 % ,

x(t)= [s1 + s2(sin t+ b cos t)]2, (n, p=0, 1, 2, . . . ) (13)

in the free flight phase. In the contact phase, there exists the impact constrained conditions
of the moments as

6l+
np =−ol−

np

l+
np = l−

np
if

p$ 0
p=0

(n, p=0, 1, 2, . . . ) (14)

In the free flight phase, the moment equation chains (13) are closed and the moments
can be solved uniquely without closing tolerance. Therefore, the approximated distribution
can tend to the true one, if N:a. Integrating equation (13), all moments in the time
interval Dtk can be obtained when initial moments from equation (14) are known.
Considering the mapping before impact Hs : [lnp ]−k :[lnp ]−k+1, a set of iterated operators for
all moments is obtained. Introducing the initial conditions [lnp ]0 =0, all odd order
moments are equal to zero, and a set of iterated operators of all even order moments are
derived as follows.
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Case 1, s1 $ 0, s2 =0:

[l02]−k+1 =6−o[l02]−k −
s2

1

2b7 exp (−2bDtk )+
s2

1

2b

[l11]−k+1 =−6o[l11]−k +
o

b
[l02]−k +

s2
1

b27 exp (−bDtk )+6o

b
[l02]−k +

s2
1

2b27 exp

× (−2bDtk )+
s2

1

2b2 ,

[l20]−k+1 =
1
b 6o[l11]−k +

o

b
[l02]−k +

s2
1

b27 exp (−bDtk )−
1
2b 6o

b
[l02]−k +

s2
1

2b27 exp

×(−2bDtk )+
s2

1

2b2 Dtk ,

. . . . .

Case 2, s1 =0, s2 $ 0:

[l02]−k+1 = a2 exp (−2bDtk )+ a0 + a01 sin 2tk+1 + a02 cos 2tk+1,

[l11]−k+1 = b1 exp (−bDtk )+ b2 exp (−2bDtk )+ b0 + b01 sin 2tk+1 + b02 cos 2tk+1,

[l20]−k+1 =−
2b1

b
exp (−bDtk )−

b2

b
exp (−2bDtk )+2b0tk + b02 sin 2tk+1

+ b01 cos 2tk+1,

. . . . ,

where

a2 =−6o[l02]−k +
s2

2 (1+ b2)
2b

+
s2

2

2
sin 2(tk + a07 ,

a0 =
s2

2 (1+ b2)
2b

, a01 =
s2

2

2
cos 2a0, a02 =

s2
2

2
sin 2a0,

b2 =
a2

b
, b0 =

a0

b
, b01 =

2a02 + ba01

4+ b2 , b02 =
2a02 − ba01

4+ b2 ,

b1 =−{o[l11]−k + b2 + b0 + b01 sin 2tk + b02 cos 2tk},

a0 =arctg (−b),

. . . . .

To derive the iterated operator of stochastic parts, it is assumed that the probability
distribution of the system between the two successive impacts can be approached by
equation (11) and it can be deduced from equation (15) for the state before impact.

P*k+1(j, z)=P(j, z) s
N

i=0

s
N

j=0

[aij ]−k+1Hi0 j

[sj ]k1Hj0 z

[sz ]k1 , (15)
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where the coefficients [aij ]−k+1 are the functions related to moments [lnp ]−k+1 and can be
derived from equation (11).

[a01]−k+1 =0, [a11]−k+1 =
[l11]−k+1

[sj ][sz ]
= [rjz ]−k+1, . . . . .

After two integrations of equation (15), the discrete mean values of random variables
j and z for the states before impact are expressed as follows

E[j]−k+1 =g
(0·5+ am )− x

−(0·5+ dm + x)

j g
a

−a

P*k+1(j, z) dz dj

=[sj ]kA−
k+1,

E[z]−k+1 =g
a

−a

z g
(0·5+ dm )− x

−(0·5+ dm + x)

P*k+1(j, z) dj dj

=[sz ]kB−
k+1, (16)

where

A−
k+1 =c0 + [a30]−k+1c3 + [a40]−k+1(c4 −2c2 +c0)+ · · · , B−

k+1 = s
N

i=0

[ai1]−k+1mi ,

and in which

ci = di
1 exp 0−d 2

1

2 1− di
2 exp 0−d 2

2

2 1 and d1,2 =
2(0·5+ dm )− x−

k

sj

,

m1 =c0, m2 =c1, m3 =c2 −c0, m4 =c3 −3c1, . . . .

If the iterated operators (7) and (16) are superposed, a mean map (17) for the states before
impact to describe the stochastic rattling system has the form

E[xs ]−k+1 = x−
k+1 +E[j]−k+1 = x−

k+1 + [sj ]kA−
k+1,

E[ys ]−k+1 = y−
k+1 +E[z]−k+1 =0−oE[ys ]−k − a cos tk −

g

b7 exp (−bDtk )+
g

b

+ a cos tk+1 + (B−
k+1 + oB−

k exp (−bDtk ))[sz ]k ,

tk+1 = tk +Dtk . (17)

Now the time difference Dtk of the two successive impacts can be solved from the following
mesh condition of the gears.

E[xs ]−k+1 =E[xs ]−k or E[xs ]−k+1 =−E[xs ]−k .

3. RESULTS AND DISCUSSION

In order to understand the study, we look back on the definition of stochastic processes.
In 1980, the various stochastic processes were subdivided in reference [16]. One of them
was defined as a periodic stochastic process, which had to satisfy the condition that its
mean values, variances and correlation were periodic. In 1988, a new stochastic process,
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Figure 2. Poincaré maps, case 1: (a) dat 11; (b) dat 12; (c) dat 13; (d) dat 14.

called the chaotic stochastic process, was proposed by Kapitaniak [13], who discovered
that the probability or the mean value of stochastic process might be chaotic and that
phenomenon was defined as random chaos and process as chaotic stochastic process. Based
on the above definitions, the chaotic stochastic process can be identified by the mean
Poincaré map, the power spectrum density and others.

In order to continue the work of references [5, 7–11], data from references [11–14] is used
as follows:

dat 11: a=0·70, b=0·3, g=0·15 and o=0·7;

dat 12: a=3·00, b=0·1, g=0·14 and o=0·8;

dat 13: a=3·00, b=0·1, g=0·10 and o=0·9;

dat 14: a=1·58, b=0·1, g=0·10 and o=0·9.

3.1.  ́       

In this section, two cases are discussed: additional noise; random modulation amplitude.

3.1.1. Case 1, s1 $ 0, s2 =0
Performing the iterated operator (17) for the above data and the noise intensity s1 =za,

and considering counter meshes of the gears E[xs ]−k+1 =−E[xs ]−k , the representative
calculating results are shown in the following figures. Figures 2(a–d) are mean Poincaré
maps, in which the horizontal co-ordinate is the time difference Dtk , and the vertical
co-ordinate is the mean velocity before impact E[ys ]−k+1. Figures 2(b–d) display typical
chaos and Figure 2(a) shows another structure. That phenomenon can also be observed
in the power spectra of mean velocity. Figures 3(a–d) show power spectra in which the
horizontal co-ordinate indicates dimensionless frequency f, and the vertical co-ordinate is
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Figure 3. The power spectrum of the mean velocity, case 1: (a) dat 11; (b) dat 12; (c) dat 13; (d) dat 14.

the power spectral density of the mean relative velocity. Whereas all Figures 3(b–d) show
wide band spectra, in Figure 3(a), there is only a single peak. It denotes that in counter
meshes, for dat 11, the relative velocity is a typical periodic stochastic process, so that
Figure 2(a) exhibits no chaotic attractor. A more interesting discovery is that the time
difference Dtk for dat 14 seems to be a white noise (see Figure 4). In Figure 4, the horizontal
co-ordinate indicates dimensionless frequency f, and the vertical co-ordinate is the spectral
density of the time difference Dtk . The various structures in the maps can be understood
according to the above descriptions. When the two variables consisting of Poincaré maps
are wide band processes, the point set of maps nearly fills up a large attraction area of
the phase plane. However, when variables are periodic, the point numbers of maps are
finite.

Figure 4. The power spectrum of the time difference, case 1.
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Figure 5. Poincaré maps, case 2: o=0·0001; (b) o=0·001; (c) o=0·01; (d) o=0·10.

3.1.2. Case 2, s1 =0, s2 $ 0
In this case, the noise intensities are assumed as a2 =0·0001, s2 =0·001, s2 =0·01,

s2 =0·1 and dat 11 is used in counter meshes. The mean Poincaré maps (See Figure 5),
in which the co-ordinates are the same as in Figure 2, show the structure of chaotic
attractor. However, this is different from case 1 because the point set of maps does not
fill up the attraction areas. This phenomenon can also be observed in Figure 6 which gives
power spectra of mean velocity. Figures 6(a–d) exhibit continuous spectra, but which
possesses narrow-band character. This phenomenon may be interpreted as follows: in the
case of random modulation amplitude, only the excitation amplitude is randomly
modulated and the frequency fluctuates around a principal frequency; thus the mean
velocity is narrow-band process. Moreover, it is interesting that the power spectral
densities do not always improve as the intensity of the external noise s2 increases. In Figure
6(b) (s2 =0·001), the frequency band is wider and the peaks of the spectral density of mean
velocity are lower than others in Figure 6. This phenomenon leads to a new idea that one
can control rattling noise by external noise.

3.2.  

In this section, case 1 only is considered. Reference [10] has shown that the probability
distribution can be used to characterize the fluctuations of the total energy of the system.
In reference [13], a chaotic stochastic process was defined through the probability density.
The probability possesses intersting behaviour and can be used to study the chaotic
phenomena. In the present paper, a non-Gaussian closure technique is adopted and thus
it is inevitable that the probability can satisfy the bifurcation condition according to its
definition in reference [13]. However, it is difficult to determine whether the probability
density possesses the structure of a Cantor set. Therefore, instead of the probability
density, a characteristic function such as Fourier transform of the PDF is used to detect
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Figure 6. The power spectrum of the mean velocity, case 2: (a) o=0·0001; (b) o=0·001; (c) o=0·01; (d)
o=0·1.

the chaotic stochastic behaviour of the system. The results show that the characteristic
function can exhibit typical chaotic attractor. Figure 7 gives the information of the
imaginary part of the characteristic function F(q) of the mean velocity in which the
horizontal co-ordinate indicates the imaginary part of the characteristic function before
the kth impact [Im (F(q)]−k and the vertical co-ordinate is one before the k+1th
[Im (F(q)]−k+1. For q=2, dat 11, in counter meshes, Figure 7(a), for a=0·7, shows a
periodic stochastic motion and Figure 7(b), for a=0·85, shows a chaotic stochastic
motion. It is significant that the imaginary part of the characteristic function can display
the same structure as mean Poincaré maps in Figure 2, and so a characteristic function
is suggested to detect the random chaos.

Figure 7. The imaginary part of the characteristic function, case 1: (a) a=0·7; (b) a=0·85.
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Figure 8. The bifurcation diagram in the frequency domain, case 1.

3.3.    

The above section shows that the mean relative velocity is a most interesting physical
magnitude, which can display various motions if the system parameters change. In this
section, a bifurcation diagram in the frequency domain is developed and the routes to
random chaos are compared, using date 11, in counter meshes and assuming the noise
intensity s1 = s2 =za.

3.3.4. Case 1, s1 $ 0, s2 =0
The computed results in Figure 8 show that the x co-ordinate designates dimensionless

frequency f, the y co-ordinate denotes the excitation amplitude a, and z stands for the
power spectrum density of the mean velocity. Compared with the deterministic chaos in
[11], the analogous behaviour is that the route to random chaos also goes through a
sequence of period–doubling bifurcation and intermittence, and the difference is that the
frequency does not appear in a single form, but in small block. In Figure 8, one can see
only a small frequency block in the domain a=0·0–0·15. When a=0·13–0·3, the diagram
shows an intermittence of chaos. In the domain a=0·3–0·6, two small blocks bifurcate.
Then an intermittence of chaos occurs in the domain a=0·6–2·0. When a=2·0–2·4, the
diagram is split into four small blocks, and so, on, until at last it tends to random chaos.
The frequency distribution in the diagram is not very regular. Some smaller peaks exist
in the neighbourhood of the principal frequency blocks, which is different from the
deterministic case.

3.3.2. Case 2, s1 =0, s2 $ 0
Now the case of random modulation is discussed. Figure 9 is also a bifurcation diagram

in the frequency domain. Comparing the two diagrams in Figures 8 and 9, it is found that
two routes are different. In the additional noise case 1, the route to random chaos is
relatively regular through a sequence of periodic-doubling bifurcation and intermittence,
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Figure 9. The bifurcation diagram in the frequency domain, case 2.

but in the random modulated case 2, the sequence of periodic-doubling bifurcation is not
evident. It seems that there is ‘‘chaos’’ everywhere in Figure 9. That phenomenon reveals
that the random modulated rattling system is obviously more complex than the one with
additional noise. By the use of a bifurcation diagram in the frequency domain, the influence
of external disturbance on a non-linear system in energy can be examined and a chaotic
region can be determined.

4. CONCLUSIONS

In the present paper, a discrete stochastic model described by a mean map has been
established from a real vibrating system and the random chaos on the dynamcis of a
rattling system has been explored. It is a very specific problem, however. Based on our
study the existence of the random chaos has been justified. More broadly, this investigation
method can be used in more general discussion of other systems.

In our study, the mean Poincaré map, the power spectrum density and the characteristic
function have been investigated for the dynamics of random chaos. The calculation results
have shown that the mean Poincaré maps exhibit clearly typical chaos and the power
spectra of mean velocity display the behaviour of a continuous spectrum. The
characteristic function of mean velocity has shown the same structure as a Poincaré map.
Moreover, it has been detected that the time difference may be a white noise. Those
phenomena can be iterated so that the random chaos can occur in some real physical
systems. It is well known that rattling vibration causes noise and its deterministic model
is only an ideal one, so that based on the present work, the use of a stochastic model
described by a mean map is suggested to investigate rattling noise.

The final conclusion is that the rattling system studied here, as an impulsive system, is
extremely convenient for detailed investigation of complex phenomena. The routes to
random chaos have shown that the chaotic stochastic vibration can be controlled by
variation of a single system parameter. It is very important in practice to reduce the rattling
noise. For the random modulated system, the possibility of reducing noise by noise has
been found, and continuing work for such a system is suggested.
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APPENDIX: NOMENCLATURE

Re and R1 basic radii
e(t) harmonic rotation
a amplitude
v frequency
v1 constant play in mesh plane
I1 inertia moment of driven gear wheel
f1 angular displacement
T1 constant moment
d1 damping ratio in free flight phase
o coefficient of restitution
x relative velocity displacement of unperturbed system
y relative of unperturbed system
b damping ratio in free flight phase
g indicates constant moment
t dimensionless time
a excitation amplitude
xs relative displacement of perturbed system
ys relative velocity of perturbed system
si (i=1, 2) intensity of random forces
h(t) standard Gaussian white noise
j and z stochastic variables
P*(j, z) non-Gaussian probability distribution
rjz correlation coefficient of the random variables j and z
lnp moments
P(j, z) standard Gaussian normal distribution
si (i= j, z) standard derivations
mi (i= j, z) mean values
F(q) characteristic function


