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Optimal control of dampers has been proposed to mitigate vibration effects in mechanical
systems. In many cases, systems are subject to periodic forcing and the goal is to maximize
the energy dissipated by the damper. In contrast to prior work utilizing instantaneous or
infinite-time−horizon optimization, this paper employs periodic optimal control to
maximize the energy dissipated per cycle. For single-degree-of-freedom systems in which
the maximum allowable control effort is of the same order as the forcing magnitude, a
state-dependent singular control law is shown to deliver maximum energy dissipation.
Alternate control laws are proposed for situations when rattle space requirements dictate
damper displacements other than that of the singular solution. Saturation of the damping
force is also considered.

7 1998 Academic Press

1. INTRODUCTION

Dampers are used in a wide variety of applications to isolate structures and equipment
from vibrations and to dissipate energy. Applications include flutter mitigation in turbine
blades of aircraft engines and power plant generators [1, 2], vibration damping in large
space structures [3] and helicopters [4], and shock and vibration isolation for vehicles and
equipment cradles [5–7].

Dampers can be designed to be either passive (e.g., dashpots), active (e.g., motors) or
semi-active (e.g., hydraulic cylinders with controllable orifice diameter). Semi-active
dampers are the most appealing to designers because they deliver performance that rivals
active dampers, while consuming only a fraction of the power required by them [7].

In this paper, periodic optimal control is employed to maximize the energy dissipated
by a damper. In order to establish a benchmark for controller performance, no constraints
are imposed on the damping force. For implementation, controller saturation as well as
any relevant damper dynamics would have to be considered.

In the next section, control approaches which have been applied to dampers are
reviewed. The following section presents the derivation of the singular controller which
maximizes energy dissipation according to the system parameters and the periodic forcing.
A penalty on control effort is then introduced to obtain controllers for a range of damper
displacement amplitudes (rattle space). Next, the case of control saturation is discussed.
Numerical results are presented for each case followed by conclusions.
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2. CONTROL OF DAMPERS

Several control approaches have been pursued to maximize damper energy dissipation.
These include Lyapunov’s direct method, sliding mode control and LQR theory. The first
method entails optimizing energy dissipation in an instantaneous sense by choosing the
control which maximizes the derivative of a Lyapunov energy function. Semi-active
controllers of this type have been developed for use with electrorheological (ER) fluid
dampers [8] as well as friction dampers [9]. Sliding mode control, on the other hand, was
successfully employed by Wang and co-workers [10] to improve the performance of ER
dampers.

Another control approach that has received considerable attention is LQR theory. Ferri
and co-workers have applied this technique to friction dampers [5]. The cost function used
was an infinite time integral of a weighted sum of system energy and control effort.
Numerical simulations indicated a marked improvement in energy dissipation over a
simple feedback controller given by FN (t)= k=ẋ=, where ẋ is the relative velocity and FN (t)
is the normal force at a friction interface. In the vibration isolation of automobiles, Hrovat
proposed LQR controllers using cost functions composed of mean-square rattle space and
a metric of ride discomfort [6]. Similarly, Karnopp and Trikha have proposed the use of
LQR theory in enhancing shock and vibration isolation in an aircraft landing/taxiing on
a runway [7].

In many situations, the vibrational energy is concentrated at a few frequencies
correspondihng either to the natural frequencies of the structure or to the forcing
frequencies. For example, in helicopters the critical forcing frequencies are v̄ and nv̄. Here
v̄ is the rotational frequency of the rotor and n is the number of blades. In this context,
Johnson has surveyed modelling and active damping techniques designed to minimize
structural vibration and loads [4]. For a given helicopter flight condition, a linear
quasistatic model which relates rotor blade pitch angles to vibration and load is estimated
in the frequency domain. The control approach employs a cost function quadratic in the
harmonics of the inputs and outputs. The cost function is minimized using either current
and prior values of the inputs and outputs. As a consequence, it is a type of instantaneous
optimization. The resulting control signal is superimposed on the nominal rotor blade
oscillation necessary for trim.

In applications such as this, the controlled steady state response will be periodic and
the control law should take advantage of this fact. Instantaneous optimization approaches
do not take the periodicity into account and so the results tend to be suboptimal. Similarly,
those who have applied LQR theory have considered only transient response or stochastic
excitation. In contrast, the periodic controllers developed here maximize steady state
dissipation according to the particular forcing.

3. PERIODIC OPTIMAL CONTROL

In this section, a standard variational approach is employed to derive the optimal
damping force for systems with periodic excitation. Given the forcing, it is expected that
the system trajectory will be periodic. It is interesting to note, however, that the classical
applications of periodic optimal control are systems which possess closed-loop equilibrium
points. For example, Horn and Lin showed that in chemical reactor operation, periodic
control laws improve performance in comparison to steady state optimal controllers [11].
Similar strategies were employed in the analysis of fuel-efficient cruise trajectories for
aircraft, wherein the standard optimal controllers (LQR, etc.) were replaced by periodic
controls [12].
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3.1.  

Consider maximizing the energy dissipated by a control force, u on the system shown
in Figure 1. A state variable representation of this system is given by

ẋ1 = x2, ẋ2 =
1
m

(Fext (t)− cx2 − kx1 − u), (1, 2)

where Fext (t) is a known external periodic force.
Since this is a non-autonomous system, these equations can be redefined as

ẋ1 = x2, ẋ2 =
1
m

(Fext (x3)− cx2 − kx1 − u), ẋ3 =1, (3–5)

where x3 = t.
To maximize the energy dissipated, the negative integral of damping power is minimized

over the system period. Together with a quadratic penalty on control force, the cost
function is given by

J(u)=min
u$V

1
t g

t0 + t

t0
$−ux2 +

o

2
u2% dt, (6)

where t$T,(0, a) is the time period of the system and t0 is the initial time. V is the set
of all admissible values for u, in which the maximum value of u is of the same order as
the forcing magnitude and u(t) is piecewise continuous.

An optimal controller with no constraints on the control effort expended (o=0) will
first be developed. It is assumed that the state variables as well as the time period are free
variables. Furthermore, periodicity of the state variables, x1 and x2, is treated as an input
to the problem. Penalty on control effort (o$ 0) will be introduced in the subsequent
sections.

With o=0, the Hamiltonian can be written as

H(x, l, u, x3, l3)=−ux2 + l1x2 +
l2

m
(Fext (x3)− cx2 − kx1 − u)+ l3. (7)

Figure 1. Block model for studying forced vibrations.
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Necessary conditions for optimality indicate that

l� 1 =
k
m

l2, l� 2 =−l1 +
c
m

l2 + u, l� 3 =−
1
m

1Fext (x3)
1x3

l2, (8–10)

x2 +
l2

m
=0, x1(t0)= x1(t0 + t), x2(t0)= x2(t0 + t), (11–13)

l1(t0)= l1(t0 + t), l2(t0)= l2(t0 + t), H(x, l, u, x3, l3)=K, H(t0 + t)= J(u),

(14–17)

along the optimal trajectory [13]. Here, K is a constant to be determined.
Since the Hamiltonian is linear in u, Hu =0 does not yield an expression for the optimal

controller. Instead, it defines a singular arc, given by equation (11). This equation implies
that

ẋ2 +
l� 2
m

=0. (18)

From equations (8)–(11) and (18), the expression for u can be determined to be*

u=Fext (x3)− cx2 − kx1 −
m
2c

1Fext (x3)
1x3

. (19)

With x3(t)= t, and u as defined above, the system dynamics, equations (3)–(5), can be
solved to give

x1(t)= x1(t0)+$− 1
2c

Fext (t0)+ x2(t0)%t+ 1
2c g

t

t0

Fext (s) ds, (20)

x2(t)= x2(t0)+
1
2c

[Fext (t)−Fext (t0)]. (21)

Note that equations (19)–(21) hold for any periodic input. Since any such input can be
written as a Fourier series, let Fext (t)=A sin (v̄t+f), without any loss of generality. The
optimal period of the system for this case is the same as the forcing period.

The initial conditions, x1(t0) and x2(t0), in the above equations can now be chosen such
that the periodicity conditions, (12) and (13), are satisfied. With Fext (t) as defined above
and f=0, these initial values can be shown to be

x1(t0)=−
A

2cv̄
cos (v̄t0), x2(t0)=

A
2c

sin (v̄t0), (22, 23)

Since x1, x2, and u are known along the singular arc, the transversality conditions of
equations (16) and (17) give the average rate of energy dissipation,

J(u)=K=
A2

8c
, (24)

for v̄=2p/t and t0 =0.

* Since this control law is valid only along the singular arc, it will be referred to as the ‘‘singular
controller’’ from here onward in this paper.
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Finally, since the Hamiltonian (7), is linear in u, the generalized Legendre–Clebsch
condition, (H� u )u E 0, can be employed as a weak local sufficiency condition. This is satisfied
along the singular arc,

1

1u
d2Hu

dt2 =−
2c
m2 Q 0. (25)

3.1.1. Numerical evaluation of singular control
To facilitate the comparison of controller performance due to variations in parameter

values, let the ratio between the forcing frequency and the undamped natural frequency
of the system be given by b= v̄/vn , where vn =zk/m. Also, let the damping ratio of the
system be given by z= c/(2mvn ). The state trajectories, optimal control force, net energy
dissipated by the controller, and control effort spent can now be rewritten in terms of these
quantities as

x1(t)=−
A

4zbmv2
n
cos (v̄t), x2(t)=

A
4zvnm

sin (v̄t), (26, 27)

u(t)=
A
2

sin (v̄t)+ (1− b2)
A

4zb
cos (v̄t), (28)

E=g
t

0

ux2 dt=
A2

16zvnm
t=Kt, (29)

U=g
t

0

u2(s) ds=
A2

8 $1+
(1− b2)2

4z2b2 %t, (30)

where E is the energy dissipated per cycle and U is the control effort expanded per cycle.
Note that for general periodic forcing,

Fext (t)= s
a

p=1

Ap sin (v̄pt), (31)

the optimal control force can be shown to be

u(t)= s
a

p=1 $Ap

2
sin (v̄pt)+ (1− b2)

A
4zb

cos (v̄t)%. (32)

The following results were obtained with parameters chosen as follows: A=105, m=1,
c=0·1, v̄=2p. k was chosen to give a desired value of b.

Figure 2 depicts control force versus displacement along the singular arc, for b=0·8,
1·0, and 1·25, while holding z constant (=0·00796). The area inside this curve represents
the amount of energy dissipated per cycle by the controller—equal to E. It can be shown
that the optimal control force corresponds to a passive system*. From equations (27) and
(28), the optimal control impedance is

c*=
u(t)
x2(t)

=2zvnm+(1− b2)
vnm
b

cot (v̄t)= c+(1− b2)
vnm
b

cot (v̄t). (33)

* A system is said to be passive if, for all time, the power entering the system is greater than or equal to the rate
of change of energy stored in the system.
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Figure 2. Control force versus displacement for b=0·8 (– – –), 1, (——), 1·25 (. . . .) along singular arc
trajectory; z is held constant at 0·00796.

From this equation it can be observed that the optimal control force is viscous in nature
for b=1. Otherwise, the corresponding passive system would store and release energy
during each period. For example, a passive implementation of c* could be comprised of
a spring (bq 1) or mass (bQ 1) in parallel with a viscous damper.

While not apparent from this figure, equation (29) indicates that the amount of energy
dissipated per cycle, E, depends on t. Therefore, as b increases (v̄ is increased holding vn

Figure 3. Control force versus displacement for z=0·00796 (——), 0·03, (– – –), 0·3 (–·–·–·) along singular
arc trajectory; b is held constant at 1.
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Figure 4. Average control effort expended versus b for different values of z: ——, 0·00796; –.–, 0·01; · · · · ,
0·02; ---, 0·03; – . – . –, 0·30.

constant), the amount of energy dissipated per cycle decreases. Thus, for the areas in
Figure 2, A1 QA2 QA3 corresponding to b=1·25, 1·0 and 0·8, respectively. The average
rate of energy dissipation, E/t, however, remains constant. It can also be observed from
this figure and equation (26) that the peak-to-peak amplitude of oscillation decreases with
increase in the value of b.

Figure 3 represents optimal control force versus displacement for z=0·00796, 0·03 and
0·3, with b and vn held constant. It is clear from this figure, as well as from equations (26)
and (29), that the peak-to-peak amplitude of oscillation besides the average rate of energy
dissipation, E/t, decrease with increasing z. In other words, as the amount of internal
damping in a system increases, the scope for improvement in energy dissipation through
an external damping force decreases.

The ratio between amount of control effort expended per cycle and time period of the
system, U/t, for different values of b and z is presented in Figure 4. This figure indicates
that the minimum control effort is expended when b=1, independent of the value of z.
For b$ 1, however, the control effort decreases with increasing z.

Since E/t remains the same for any value of b, and it increases as z decreases, a key
factor in determining operating conditions under which the singular optimal controler will
be most effective is U/t. It can, therefore, be deduced from Figure 4 that an external
damper will be most effective when b=1 and z is very small. Of course most systems for
which energy dissipation is of import have very low internal damping (directly related to
z) and operate near resonance (b=1).

3.1.2. Rattle space constraints
In many practical systems, the rattle space* may be smaller than what is commanded

by the singular controller described above. To determine an optimal control force for
systems with rattle space constraints, the problem is redefined as follows: for a given value
of x1(t0) and x2(t0), determine the maximum amount of energy that can be dissipated by
an external control force, while ensuring periodicity about x1(t0) and x2(t0). Since the choice

* Rattle space is defined as the permissible peak-to-peak displacement of a system.
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Figure 5. Energy dissipated per cycle versus rattle space (x1 peak-to-peak) for o=0·01 (· · ·), 0·1 (–.–), 1 (- - -),
100 (——).

of initial values for xi obviates the necessary condition on periodicity of li , a numerical
solution entails solving for li such that x1 and x2 are periodic.

To solve this problem, a penalty on control effort is introduced (o$ 0 in equation (6)).
The optimal control force for this case can be determined to be

uo =0x2 +
l2

m1>e. (34)

Figure 6. Control effort expended versus rattle space (x1 peak-to-peak) for o=0·01 (· · ·), 0·1 (–·–), 1 (- - -),
100 (——).
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Numerical analysis was used to compare the performance of the constrained rattle space
controller with that of the singular controller. Four different values of o were considered
(0·01, 0·1, 1 and 100).

Figure 5 depicts energy dissipated versus rattle space, for b=1, z=0·00796 and the
four values of o. It is evident from this figure that there exists a unique value of
displacement amplitude (1167) where the maximum energy is dissipated. This amplitude
is equal to that of the singular arc amplitude (refer to the peak-to-peak value of x1 for
b=1 in Figure 2). In fact, at this amplitude, the trajectories are those of the singular arc,
independent of o.

It is also clear from this figure that the amount of energy dissipated by the constrained
rattle space controller is practically independent of the value of o. Figure 6, however,
indicates that control effort expended for b=1 and z=0·00796 is highly dependent on
o at rattle space amplitudes other than that of the singular arc. From Figures 5 and 6, it
is clear that the control trajectory obtained for large o should be used in any
implementation.

Numerical results for large o and b=1 indicate that the optimal displacement trajectory
is sinusoidal and that the optimal damping force is viscous. Given these two observations,
the optimal viscous damping force can be shown analytically to be

c*=
2A
v̄xpp

− c, (35)

where A and v̄ are the amplitude and frequency of the external forcing, Fext , and the desired
rattle space is xpp . In contrast to equation (34), this expression can be directly implemented
as a feedback control law for systems with b=1.

It is also clear from this equation that, for positive energy dissipation, the specified rattle
space must satisfy

xpp Q
2A
v̄c

. (36)

3.1.3. Controller saturation
The magnitude of the optimal damping force described by equation (34) is bounded.

In implementation, however, it is still possible that the maximum output of the prescribed
damper is less than this magnitude. It is therefore of interest to know how the optimal
control is modified by saturation limits. Furthermore, bang-bang controllers have been
proposed in several previous studies [8–10]. Thus, it is also of interest to know when the
saturated optimal control is of the bang-bang variety.

In this case, equation (34) is modified according to Pontryagin’s Maximum Principle as
follows:

usat = 8M,
(x2 + l2/m)/o,
−M,

if (x2 + l2/m)/oeM,
if −MQ (x2 + l2/m)/oQM,
otherwise,

(37)

where M is the maximum allowed control force.
Consider the case when M is slightly smaller than umax (xpp ), the magnitude called for by

equation (34) for a fixed value of rattle space, xpp . Simulation shows that except for two
segments per cycle, x2 + l2/m=O(o). Thus, the trajectory of usat remains unsaturated
except during these two segments. If M is decreased, the duration of the unsatured portion
decreases and the duration of the saturated portion increases.
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The same effect is achieved by holding M constant and decreasing the rattle space. The
minimum rattle space solution corresponds to a bang-bang solution, i.e., usat =M sgn (x2).
Note that if MO umax (xsa ), where xsa is the singular arc rattle space, the minimum rattle
space can be greater than the singular arc rattle space.

As expected, holding the rattle space fixed, more control effort, defined by
U= ft

0 u2(s) ds, is expended by a saturating controller than for a non-saturating controller
obtained for oe 1. In other words, while the non-saturating controller produces a larger
peak force, it requires less control effort per cycle.

4. CONCLUSIONS

In this paper, periodic optimal controllers were designed to maximize energy dissipated
by a damper. For single-degree-of-freedom systems, a singular control low was shown to
deliver the maximum energy dissipation. The singular controler can be implemented as a
passive system. Except when forced at resonance, however, the damping system would
include energy storage elements.

Constrained optimal controllers were proposed for systems with rattle space less than
what is commanded by the singular controller and for dampers with saturation limits. The
controller performance indicates that the energy dissipated is virtually independent of any
penalty imposed on the control effort. The control trajectories obtained for the largest
penalty can, therefore, be used to deliver maximum energy dissipation for the allowed
rattle space and saturation limits, while expending the least control effort.

The periodic forcing acting on the system was assumed to be composed of one frequency.
Since any periodic input can be written as a Fourier series, the results obtained in this paper
can be appropriately extended to such inputs. Future work involves finding representations
of the constrained optimal control laws which can be written explicitly in terms of the state
variables, desired rattle space and saturation limit.
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