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Linear damping models for structural vibration are examined: first the familiar
dissipation-matrix model, then the general linear model. In both cases, an approximation
of small damping is used to obtain simple expressions for damped natural frequencies,
complex mode shapes, and transfer functions. Results for transfer functions can be
expressed in the form of very direct extensions of the familiar expression for the undamped
case. This allows a detailed discussion of the implications of the various damping models
for the interpretation of measured transfer functions, especially in the context of
experimental modal analysis. In the case of a dissipation-matrix model, it would be possible
in principle to determine all the model parameters from measurements. In the case of the
general model, however, there is a fundamental ambiguity which prevents full
determination of the model from measurements on a single structure.
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1. INTRODUCTION

All structures exhibit vibration damping, but despite a large literature on the subject
damping remains one of the least well-understood aspects of general vibration analysis.
The major reason for this is the absence of a universal mathematical model to represent
damping forces. There are excellent reasons why the stiffness and inertia properties of a
general discrete system, executing small vibrations around a position of stable equilibrium,
may be approximated via the familiar stiffness and mass matrices. These simply represent
the first non-trivial terms which do not vanish when the potential and kinetic energy
functions are Taylor-expanded for small amplitudes of motion [1]. Nothing so simple can
be done to represent damping, because it is not in general clear which state variables the
damping forces will depend on. A commonly-used model, originated by Rayleigh [1],
supposes that instantaneous generalized velocities are the only relevant state variables.
Taylor expansion then leads to a model which encapsulates damping behaviour in a
dissipation matrix, directly analogous to the mass and stiffness matrices. This model will
be examined in some detail in this paper.

However, it is important to avoid the widespread misconception that this is the only
linear model of vibration damping. It is perfectly possible for damping forces to depend
on values of other quantities, or equivalently to depend, via convolution integrals, on the
past history of the motion. Any such model which guarantees that the energy dissipation
rate is non-negative can be a potential candidate to represent the damping of a given
structure. The dissipation-matrix model is just one among many such models.

The appropriate choice of model depends, of course, on the detailed mechanism(s) of
damping. Unfortunately, these mechanisms are more varied and less well-understood than
the physical mechanisms governing stiffness and inertia. A very brief review is useful to
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set the scene. In broad terms, structural damping mechanisms can be divided into three
classes: (1) energy dissipation distributed throughout the bulk material making up the
structure, which can generically be called ‘‘material damping’’; (2) dissipation associated
with junctions or interfaces between parts of the structure, generically ‘‘boundary
damping’’; and (3) dissipation associated with a fluid in contact with the structure,
involving either local viscous effects or radiation away into the fluid.

Material damping can arise from a variety of microstructural mechanisms (see e.g.,
reference [2]) but for small strains it is often adequate to represent it through an equivalent
linear, viscoelastic continuum model of the material. Damping can then be taken into
account via the ‘‘viscoelastic correspondence principle’’, which leads to the concept
of complex moduli [3]. For sinusoidal motion at a given frequency v, the effects of
viscoelasticity can be exactly represented by replacing each of the real elastic constants
of the material by a suitable complex value. The number of independent elastic constants
for a given material is governed by its microscopic symmetries as usual—an isotropic
material requires two, a general orthotropic material requires nine and so on.

It is important to keep in mind that complex moduli must be defined in the frequency
domain. Although it is often found empirically that complex moduli are almost
independent of frequency in the low audio range, considerations of causality [4] show that
it is not possible for the complex moduli to be entirely independent of frequency. If inverse
Fourier transformation is used to obtain results in the time domain, this inevitable
frequency dependence of the complex moduli must be taken into account. Failure to do
this properly leads to the notion of ‘‘a differential equation with frequency-dependent
coefficients’’, which is all too often encountered in the literature. As has been pointed out
forcibly by Crandall [4], this is a mathematical nonsense because it mixes time-domain and
frequency-domain concepts, and is likely to lead to fallacious results. In particular, it
disguises the distinction between linear and non-linear models: the cases with constant
coefficients and frequency-dependent coefficients are often described as ‘‘linear’’ and
‘‘non-linear’’, respectively, when in reality both are linear models.

‘‘Boundary damping’’ is less easy to model than material damping, but it is of crucial
importance in most engineering structures. When damping is measured on a built-up
structure like a ship or a building, it is commonly found to be at least an order of
magnitude higher than the intrinsic material damping of the main components of the
structure. This difference is attributed to effects such as frictional micro-slipping at joints
and air-pumping in riveted seams, but this attribution is usually based on negative evidence
(‘‘what else could it be?’’) rather than on any attempt at detailed modelling. A familiar
example would be a window pane in a substantial masonry wall. The intrinsic damping
of glass is extremely low, but the damping of an in-situ window is far higher. The
impedance mismatch to the wall is very high, so the energy is presumably being lost
primarily in boundary effects associated with the putty joint holding the glass to the frame,
or perhaps the bolts and cement holding the frame to the wall.

In such a system the energy loss mechanism would no doubt be significantly non-linear
if examined in detail, and if there is a justification for approximating the behaviour by a
linear theory it probably depends on an assumption of ‘‘small damping’’. This issue has
been discussed by Heckl [5, 6], who found that linear theory produced acceptable response
predictions for panels whose main damping mechanism arose from a bolted-on beam. (He
attributed the damping mechanism primarily to air-pumping between beam and panel.)

Is the ‘‘dissipation matrix’’ model of damping suitable for describing any of these effects?
For some systems it is certainly appropriate—examples might be vehicle suspensions with
‘‘shock absorbers’’ which are approximately classical dashpots, and other systems in which
fluid viscosity is the main energy dissipation mechanism. However, for most physical
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mechanisms of material or boundary damping it is far from obvious that instantaneous
generalized velocities will be the only state variables determining the rate of energy
dissipation, even to a first approximation. In this paper the dissipation-matrix model is
considered, and then the results are compared with those from the most general linear
model of damping. In both cases, a small-damping approximation is used to obtain simple
expressions for complex frequencies and mode shapes, and for transfer functions.

Within the scope of this approximation, it is possible to address some general questions.
Given a particular physical system, how could one determine experimentally whether a
particular damping model (such as a dissipation-matrix model) is appropriate? If a
particular model can be fitted to a set of measurements to satisfactory accuracy, does that
mean that the underlying physical mechanisms have been well represented? Will the effect
of structural modifications be well predicted? Could an entirely different damping model
be fitted equally well to the same set of measurements? Would that matter for the accuracy
of prediction of system behaviour, or of the efficacy of vibration-control measures?

A question of particular interest concerns the ‘‘complex mode shapes’’ often revealed
by experimental modal analysis [7]. Within the small-damping approximation, it will turn
out to be rather easy to examine the significance of such complex shapes. It will be shown
that the pole-fitting approach to experimental modal analysis can indeed be used to
discover the correct complex modes, even for the most general linear model of damping
forces. Modal analysis might thus be able to give an experimental procedure for
determining the parameter values of a given damping model, and of testing the validity
of different damping models. However, care must be exercised because it is not a priori
obvious that reciprocity between excitation and observing points will necessarily hold in
general.

2. SMALL DAMPING IN THE DISSIPATION-MATRIX MODEL

2.1.     

A discrete system with N degrees of freedom, executing small vibrations about a position
of stable equilibrium and with damping governed by a dissipation matrix, obeys the
governing equations

Mÿ+Cẏ+Ky= f, (1)

where M, C and K are the mass, dissipation and stiffness matrices respectively, y is the
vector of generalized co-ordinates, and f is the vector of generalized forces driving the
vibration. By analogy with the kinetic and potential energy functions, Rayleigh’s
dissipation function is defined by

F= 1
2ẏtCẏ, (2)

and is equal to half the rate of energy dissipation. The dissipation matrix is symmetric and
positive semi-definite.

Treatments in the literature of the coupled equations (1) usually follow one of two
routes. Either it is assumed that C is simultaneously diagonalizable with M and K, so-called
proportional damping, or else the equations are recast into the form of 2N coupled
first-order equations (e.g., reference [8]), which allows solutions to be computed readily
but which loses much of the intuitive immediacy of the familiar treatment of the undamped
case via normal modes. Instead, a route pioneered by Rayleigh himself is followed here,
and approximate solutions of equation (1) are considered which assume that the terms of
the dissipation matrix are small but not otherwise constrained. The motivation for this lies
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in application to engineering systems which one would consider studying by experimental
modal analysis—in such systems damping is invariably small, typically of the order of 1%
of critical damping.

Consider first the undamped natural frequencies vn and corresponding mode shape
vectors u(n): these satisfy

Ku(n) =v2
n Mu(n), n=1, . . . , N, (3)

and the vectors may be normalized as usual by requiring

u(n)tMu(n) = 1, n=1, . . . , N. (4)

Now for free motion (i.e., f=0) of the damped system, the complex frequencies will be
the roots of

det [−v2M+ivC+K]=0. (5)

For small damping, one would expect to find roots of this equation close to 2vn for each
value of n, with corresponding displacement vectors y close to u(n). (Special cases involving
degeneracies will be ignored throughout this paper.) Denote these complex solutions v̄n

and ū(n). Seek a solution

ū(n) = s
N

j=1

aju(j) where an =1, =aj =�1 (j$ n). (6)

Substituting into equation (1), multiplying on the left by the transposed vector u(k)t and
using the orthogonality properties of the undamped modes yields

−v2ak +iv s
j

C'kjaj +v2
kak =0, (7)

where

C'kj = u(k)tCu(j) (8)

is the dissipation matrix expressed in normal co-ordinates. Using equation (6), the nth
equation of the set (7) yields

v2
n − v̄2

n +iv̄nC'nn 1 0,

so that

v̄n 12vn +iC'nn /2, (9)

while the kth equation (k$ n) yields

ak 12
ivnC'kn

(v2
n −v2

k )
,

so that

ū(n) 1 u(n) + i s
k$ n

vnC'knu(k)

(v2
n −v2

k )
. (10)

These are Rayleigh’s results [1, section 102, equations (5) and (6)]. Equation (9) shows that
the damped natural frequencies depend (to this order of approximation) only on the
diagonal terms of the dissipation matrix in normal co-ordinates. Equation (10) shows that
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the off-diagonal terms of the transformed dissipation matrix C' govern the modified ‘‘mode
shapes’’, which are now in general complex. Within this model the complex modes consist
approximately of a real part which is the undamped mode shape, and an imaginary part
which is a mixture of the other undamped mode shapes. It follows that the imaginary part
should be orthogonal to the real part (with respect to the mass or stiffness matrices).

The extra contributions to mode shape are weighted to favour modes close in natural
frequency to the one in question because of the term in the denominator. When k and n
refer to two adjacent modes, the weighting factor can be rewritten, approximately, using

vnC'kn

(v2
n −v2

k )
1 1

2mgkn

where

gkn =C'kn /C'nn ,

and m is the modal overlap factor of the two modes. Thus, significantly complex modes
are to be expected whenever the modal overlap is not small and the off-diagonal damping
terms are comparable with the diagonal terms.

2.2.  

One useful application of these approximations lies in the fact that the damped
frequencies and mode shapes can be deduced readily from the undamped ones. Thus an
elastic solution, whether analytic or based on, for example, finite-element computation, can
be readily augmented to a damped solution without the necessity to assume proportional
damping or to solve a more complicated problem (e.g., using the first-order formulation).
It is rather rare in a structural vibration problem to need more accuracy than these
equations yield: in practice the damping model is likely to be uncertain, and normally one
neither expects nor requires estimates of damping to be more accurate than, perhaps,
220%.

To give a simple illustration, consider an idealised three-degree-of-freedom problem
treated by the first-order method by Newland [8, pp. 148–151]. The system is shown in
Figure 1. The undamped problem is simple enough to be solved analytically: the
normalized modes and natural frequencies are:

1
2 & 1

z2
1 ' at v1 =z2−z2,

1
z2 & 1

0
−1' at v2 =z2,

1
2 & 1

−z2
1 ' at v3 =z2+z2.

Figure 1. Three degree-of-freedom system as studied by Newland [8]. Parameter values are: m=1 kg,
k=1 N/m, c=0·3 Ns/m.
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The dissipation matrix is

C= &000 0
0·3
0

0
0
0',

so that

C'= & 1/2
1/z2
1/2

1/z2
0

−1/z2

1/2
−1/z2

1/2 '&000 0
0·3
0

0
0
0'& 1/2

1/z2
1/2

1/z2
0

−1/z2

1/2
−1/z2

1/2 '
= & 0·15

0
−0·15

0
0
0

−0·15
0

0·15 '.
Substitution into equation (9) thus gives the approximate damped frequencies as follows:

v̄1 1v1 +0·075i, v̄2 1v2, v̄3 1v3 +0·075i, (11)

with corresponding approximate mode shapes:

ū(1) 1 & 1/2
1/z2
1/2 '+ iv1

v2
3 −v2

1
(−0·15)& 1/2

−1/z2
1/2 '1 & 1/2

1/z2
1/2 '−i0·041& 1/2

−1/z2
1/2 ', (12a)

ū(2) 1 u(2), (12b)

ū(3) 1 & 1/2
−1/z2

1/2 '+ iv3

v2
1 −v2

3
(−0·15)& 1/2

1/z2
1/2 '1 & 1/2

−1/z2
1/2 '+i0·098& 1/2

1/z2
1/2 '. (12c)

These all agree with Newland’s results to excellent accuracy.

2.3.  

The same small-damping approximation can be used to obtain a surprisingly simple
expression for the matrix of transfer functions (receptances, mobilities etc.). Suppose that
the forcing vector f is zero for all entries except the mth, which has harmonic forcing f eivt.
Write the response vector

y= s
j

qju(j) eivt. (13)

Substituting into equation (1) and multiplying on the left by u(k)t gives

−v2qk +iv s
j

C'kjqj +v2
kqk = u(k)tf= fu(k)

m (14)

or

[A+ivC0]q=Q, (15)
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where

A=diag [v2
k +ivC'kk −v2],

Q=[ fu(1)
m fu(2)

m · · · ]t

and C0 is C' with the diagonal elements deleted.
Now noting the standard expansion

(A+ivC0)−1 1A−1 − ivA−1C0A−1, (16)

one obtains

qk 1
fu(k)

m

(v2
k +ivC'kk −v2)

− iv s
j$ k

fC'kju(j)
m

(v2
k +ivC'kk −v2)(v2

j +ivC'jj −v2)
. (17)

(The expansion (16) has been previously applied to vibration transfer functions by Bhaskar
[9], but with a somewhat different objective). Now the transfer function to the nth
generalized co-ordinate is

Hmn =
yn

f
1 s

k

u(k)
m u(k)

n

(v2
k +ivC'kk −v2)

− iv s
k

s
j$ k

C'kju(j)
m u(k)

n

(v2
j +ivC'jj −v2)(v2

k +ivC'kk −v2)
. (18)

It is useful to express this as a partial-fraction expansion. The quadratic terms appearing
in the denominator can be factorized: for example

v2
k +ivC'kk −v2 =−(v− v̄k )(v+ v̄*k ), (19)

where the star denotes the complex conjugate. Ignoring the possibility of degeneracies, the
usual ‘‘cover-up rule’’ allows one to write down the residue of the pole at v= v̄k : it is
approximately

R(k)
mn 1−

u(k)
n u(k)

m

v̄k + v̄*k
−

i
2

s
j$ k

C'jk (u(j)
n u(k)

m + u(j)
m u(k)

n )
(v2

k −v2
j )

, (20)

where advantage has been taken of the symmetry of C' , and terms involving C' have been
omitted from the denominator of the final term at this order of approximation, because
of the term in C' in the numerator. Thus

R(k)
mn 1−

1
2vk 6u(k)

m +ivk s
j$ k

C'jku(j)
m

(v2
k −v2

j )76u(k)
n +ivk s

j$ k

C'jku(j)
n

(v2
k −v2

j )7
1−

1
2vk

ū(k)
m ū(k)

n , (21)

using equation (10). Thus finally,

Hmn (v)1 s
N

k=1

1
2vk 6− ū(k)

m ū(k)
n

(v− v̄k )
+

u(k)
m *ū(k)

n *
(v+ v̄*k )7 (22)

(adding in the corresponding terms for the conjugate poles.) This is the simplest
conceivable generalization of the familiar expression for undamped systems [10], in which
the real mode shapes and natural frequencies are replaced by their complex values at this
first order of approximation. It is clear from equation (22) that Hnm =Hmn so that the
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principle of reciprocity between excitation and observing points (or generalized
co-ordinates) applies. Reciprocity should not be taken for granted in all linear vibration
problems, though. It is certainly not obvious that it will hold for linear damping models
other than the one considered so far.

For this case in which the damping is represented by a dissipation matrix, a result very
similar to equation (22) can be proved exactly using the first-order formalism [11]. The
details are given in the Appendix. The term in braces turns out to be exactly correct,
provided the exact complex frequencies and mode shapes are used. But the factor (1/2vk )
is replaced by a more complicated expression which reduces to this value in the
zero-damping limit. The reason for presenting the approximate analysis in this section is
that when one proceeds to the case of general linear damping there is no equivalent of
the first-order method, but the approximate analysis carries over very straightforwardly.

3. GENERAL LINEAR DAMPING

3.1.    

The next step is to put the dissipation-matrix model in the context of the most general
linear model of damping in a discrete system. Suppose that the main stiffness and inertia
behaviour of the system has been represented by potential and kinetic energy functions,
approximated as quadratic forms for small-amplitude motion and thus described via the
usual stiffness and mass matrices. Any other internal forces within the system, including
those responsible for dissipation of energy, will now appear as generalized forces. If the
generalized co-ordinates are qk (t), k=1, . . . , N then motion of the system corresponding
to each co-ordinate will in general result in contributions to all N generalized forces Qj .
For linear behaviour the individual contributions can be expressed as convolution
integrals, and the total generalized force is simply a sum of these:

Qj (t)=− s
N

k=1 g
t

t=−a

gjk (t− t)q̇k (t) dt. (23)

The negative sign and the choice of q̇k rather than qk within this expression are purely for
convenience—integration by parts would give an expression involving qk instead, with
kernel functions ġjk (t). The particular case in which the kernel functions are all Dirac delta
functions and their matrix of coefficients is symmetric recovers the dissipation-matrix
model of the previous section. The kernel functions gjk (t), or others closely related to them,
are described under many different names in the literatures of different subjects: examples
are ‘‘retardation functions’’, ‘‘heredity functions’’, ‘‘after-effect functions’’ and ‘‘relaxation
functions’’. Note that any set of generalized co-ordinates may be used in this formalism,
including normal co-ordinates, in which the mass and stiffness matrices have been
diagonalised.

The rate of energy dissipation is now given by

2F= s
j

q̇jQj = s
j

s
k

q̇j g
t

t=−a

gjk (t− t)q̇k (t) dt. (24)

Any set of kernel functions which guarantee that this function is positive semi-definite gives
a model which does not obviously contradict the laws of physics. From this definition,
there is no reason in general to expect the matrix gjk (t) to be symmetric. A single
counter-example is sufficient to demonstrate this. If the kernels are all delta functions but
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with a skew-symmetric matrix of coefficients, the resulting model describes what are
usually called ‘‘gyrostatic’’ [1] or ‘‘gyroscopic’’ [12] forces. It is obvious from equation (24)
that this is a conservative effect, since the dissipation rate is zero as the terms cancel in
pairs. This case is not ruled out by the criterion of non-negative energy dissipation. Indeed,
such gyroscopic forces arise occasionally in the modelling of physical phenomena.

This example suggests that one might separate ‘‘damping forces’’ from other internal
forces by expressing the matrix of kernels as the sum of a symmetric and a skew-symmetric
part. It is easiest to formulate the argument in the frequency domain. Suppose the system
is forced in some way at frequency v, so that the kth generalized co-ordinate responds
as qk eivt. The mean rate of energy dissipation by internal forces is then

2F=
1
2

s
j

Re (q̇*j Qj )=
v2

2
Re 6sj,k q*j Gjk (v)qk7, (25)

where * denotes the complex conjugate, and Gjk (v) is the Fourier transform of gjk (t).
Decompose this matrix G into the sum of Hermitian-symmetric and Hermitian-antisym-
metric parts:

G=G(s) +G(a) 0 1
2[G+G*t]+ 1

2[G−G*t]. (26)

It is then clear that G(a) contributes nothing to the dissipation rate in equation (25), since
each pair of terms consists of the difference between a number and its complex conjugate.
All ‘‘damping’’ forces are described by G(s), while G(a) describes what might be called
‘‘generalized gyroscopic forces’’. Whether this distinction carries any physical significance,
however, will depend on the detailed mechanisms of the internal forces.

3.2.    

For harmonic excitation of a single generalized co-ordinate of a discrete system subject
to the generalized forces (23), the set of equations of motion equivalent to (14) is

−v2qk +iv s
j

G'kjqj +v2
kqk = fu(k)

m , (27)

where

G'kj = u(k)tGu(j) (28)

is expressed in normal co-ordinates, exactly analogous to equation (8). The only differences
between equations (27) and (14) are that G'kj may depend on frequency while C'kj did not,
and that G'kj may not be symmetric. To obtain the set of transfer functions analogous to
equation (18) involves inverting the matrix

D=diag [v2
k −v2]+ ivG'. (29)

Before obtaining an explicit expression for the inverse using the small-damping
approximation, it is worth noting an important deduction which is not a priori obvious.
All transfer functions will have poles corresponding to the zeros of the determinant of D,
and these poles are therefore guaranteed to be the same for all possible transfer functions,
apart from special cases where a residue happens to be zero. There may also be additional
poles associated with the frequency-dependence of the terms of G', but it is the former set
of poles which includes the ‘‘damped resonances’’ if damping is in some sense light.

It will now be assumed that damping is light, in the sense that the terms =G'kj (v)= are
small for frequencies within the range of interest, covering the undamped resonance
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frequencies of the system. We do not rule out the possibility that these terms might not
be small at very low or very high frequencies, depending on the particular mechanism(s)
responsible for the internal forces. For example, in the experimental characterization of
material damping it is common to measure ‘‘heredity functions’’ gkj (t) and approximate
them well by a weighted sum of exponential decays [2]. This would correspond to one or
more poles on the imaginary v axis in the corresponding functions Gkj (v), so that large
values might be obtained at very low frequencies.

The calculation of complex frequencies and mode shapes, to first order in the terms of
the damping matrix, follows the analysis of section 2.1 very closely. To this order, when
an approximation is sought to the nth mode, it is sufficient to evaluate the relevant terms
Gkj (v) at the undamped frequency vn . (If the functions Gkj (v) were to vary rapidly with
frequency near the mode in question this approximation might be inadequate, but
empirically that eventuality seems unlikely for the damping mechanisms normally
operating in structures.) It follows that the complex frequency is given by

v̄n 12vn +iG'nn (vn )/2, (30)

and the corresponding mode shape by

ū(n) 1 u(n) + i s
k$ n

vnG'kn (vn )u(k)

(v2
n −v2

k )
. (31)

In a sense, G'kj (vj ) is an ‘‘effective dissipation matrix’’ for this problem, but it is not
symmetric because the different rows of the matrix are evaluated at different frequencies.
Also, since the values are in general complex the structure of the complex mode shapes
is slightly less simple than before. It is no longer the case that the real part is,
approximately, the undamped mode shape, with the correction terms being purely
imaginary.

The same approximation can be applied to calculate the matrix of transfer functions as
in section 2.3. Analogous to equation (15), write equation (27) in the form

[B+ivG0]q=Q, (32)

where

B=diag [v2
k +ivG'kk (vk )−v2],

and G0 is G' with the diagonal terms deleted. Using expression (16) to invert B+ivG0,
the transfer functions corresponding to equation (18) are given by

Hmn 1 s
k

u(k)
m u(k)

n

(v2
k +ivG'kk (vk )−v2)

−iv s
k

s
j$ k

G'kj (v)u(j)
m u(k)

n

(v2
j +ivG'jj (vj )−v2)(v2

k +ivG'kk (vk )−v2)

+(terms arising from poles of G') (33)
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and the residue of the pole at v= v̄k , corresponding to equation (20), is

R(k)
mn 1−

u(k)
n u(k)

m

(v̄k + v̄*k )
−

i
2

s
j$ k

G'kj (vk )u(j)
n u(k)

m +G'jk (vk )u(j)
m u(k)

n

(v2
k −v2

j )

1−
1

2vk 6u(k)
m +ivk s

j$ k

G'kj (vk )u(j)
m

(v2
k −v2

j )76u(k)
n +ivk s

j$ k

G'jk (vk )u(j)
n

(v2
k −v2

j )7. (34).

The second bracketed term here is the complex mode component ū(k)
n , but now the first

term does not correspond to the component ū(k)
m , unless the matrix G' is symmetric (as

opposed to Hermitian-symmetric). The transfer function matrix now takes the form

Hmn (v)1 s
N

k=1 6 R(k)
mn

(v− v̄k )
−

R(k)
mn*

(v+ v̄*k )7
+(terms arising from poles of G'). (35)

Note that for this general model of damping forces, reciprocity will not necessarily be
found.

3.3.  

To illustrate the procedure outlined, and to explore the accuracy of the small-damping
approximation, a very simple idealized example will be studied in detail. Consider the
system shown in Figure 2, in which two oscillators are coupled by a spring, and also in
parallel by an element which will provide the damping forces. This element will be
modelled as a ‘‘Maxwell element’’, a spring of stiffness C in series with a linear dashpot
of rate R. The equations of motion of this system are

mÿ1 + k1y1 +S(y1 − y2)+P= f1

mÿ2 + k2y2 −S(y1 − y2)−P= f2 7, (36)

where the force P across the viscoelastic element satisfies

P=C g
t

−a

(ẏ1(t)− ẏ2(t)) e−l(t− t) dt, (37)

with

l=C/R.

Figure 2. Two-degree-of-freedom model system. The shaded bar represents a viscoelastic element whose
behaviour is defined in the text.
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The mass and stiffness matrices are thus

M=m$1 0
0 1%, K=$k1 +S

−S
−S

k2 +S%, (38)

and the matrix of kernel functions is

g(t)=C e−lt$ 1 −1
−1 1%, (39)

with Fourier transform

G=
C

(iv+ l) $ 1 −1
−1 1%. (40)

Since this matrix G is symmetric, reciprocity will hold for this system. The matrices G(s)

and G(a) in this case are simply the real and imaginary parts of G. The dissipation is
associated with the ‘‘resistive’’ real part, while the ‘‘reactive’’ imaginary part describes
conservative effects. This is a case where there seems to be no very interesting physical
significance in this separation. Note that any model of a system in which the internal forces
were represented by a sum of forces like P here, acting between pairs of points with equal
and opposite forces whose line of action is along the line joining the points, will give a
symmetric matrix. One might guess that many types and distributions of internal force
could be modelled in this way, so that symmetric matrices might occur quite commonly.

If the applied forces are harmonic at frequency v, the (exact) response is the solution
of the equations

$−mv2 + k1 +S+ivC/(iv+ l)
−S−ivC/(iv+ l)

−S−ivC/(iv+ l)
−mv2 + k2 +S+ivC/(iv+ l)%$x1

x2%=$f1

f2%. (41)

The determinant of this matrix, after slight manipulation, is

1
(iv+ l)

{(k1 −mv2)(k2 −mv2)(iv+ l)+ (k1 + k2 −2mv2)[(S+C)iv+Sl]}. (42)

Poles of the transfer functions will arise at the zeros of this determinant. The numerator
is a 5th-order polynomial in iv with real coefficients, so as well as the two pairs of
complex-conjugate roots corresponding to the damped resonance frequencies of this
two-degree-of-freedom system, there must be a fifth root which is real. This corresponds
to a pole on the imaginary v-axis associated with the internal behaviour of the damping
model.

In terms of this determinant, the matrix of transfer functions can be trivially written
down. At first sight there appears to be an additional pole where iv+ l=0, from the
terms of the matrix involving C, but this is cancelled by a corresponding factor in the
denominator of the determinant. Since the determinant is a quintic expression, it is not
possible to find the roots analytically and thus work out the exact expansion in partial
fractions corresponding to the approximate version equation (35). Instead, it is easy to
compute the approximate transfer functions from equation (35), in which the addition pole
due to the damping model is simply ignored. These can then be compared with the exact
transfer functions deduced from the matrix inversion.
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The undamped problem is trivial to solve. The undamped natural frequencies satisfy

2mv2 = k1 + k2 +2S2z(k1 − k2)2 +4S2, (43)

and in terms of these frequencies the mode shapes have the displacement ratios

x1

x2
=

(k1 +S−mv2)
S

. (44)

These mode shapes and frequencies exhibit the familiar ‘‘veering’’ behaviour when the two
springs k1 and k2 are close to equality, provided S$ 0 [13]. The modes must be
mass-normalized, they can then be used to transform the matrix G into normal
co-ordinates according to equation (28). Evaluating the rows of this matrix at the two
undamped natural frequencies, the approximate complex frequencies and complex modes
can be calculated. Since G is symmetric, the residues R(k)

mn are given directly in terms of these
complex modes, and the approximate transfer functions can thus be computed by equation
(35).

For this very simple example the results could be worked out in analytic form, but they
would be too complicated to be very illuminating. Instead, the main features of the
behaviour will be illustrated by numerical computations. As one would anticipate, the
approximate theory is most accurate when C is small, and increasing C while keeping all
other parameters fixed eventually leads to unacceptable errors. This behaviour is illustrated
in Figure 3. This shows a contour plot of the maximum deviation (in dB) between the exact
and approximate calculations of =H12(v)=, as S and C are varied over quite wide ranges

Figure 3. Contour plot of the maximum deviation of =H12(v)= between the exact result and the approximation
developed here, applied to the model system of Figure 2, for a range of values of the stiffness S and the
‘‘viscoelastic stiffness’’ C defined in the text. Other parameter values are: k1 =1000 N/m, k2 =1100 N/m,
l=100 s−1. Contours are logarithmically spaced at 1-dB intervals. The large blank space in the figure
corresponds to agreement between the two theories better than 1 dB, the first (jagged) contour is the 1-dB level,
and the contour levels are monotonically increasing into the top left-hand corner of the plot. The solid circle
marks the case treated in Figure 4.
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while k1, k2 and l are held fixed at values given in the caption. This deviation gives a
reasonable measure of the adequacy of the approximate theory: when the prediction is
within 1 dB of the exact result for all frequencies the approximate theory is presumably
accurate enough for all practical purposes, but once the deviation grows to a few dB it
becomes less convincing. The jagged form of the lower contours in Figure 3 arises from
numerical resolution, together with the fact that the measure calculated is a maximum
deviation, and as parameter values change the frequency at which the maximum deviation
occurs can jump.

The detailed behaviour for a case near the threshold of acceptability is shown in
Figure 4. It corresponds to the point marked in Figure 3, close to the 5-dB contour. It
can be seen that the deviation of =H12(v)= is indeed a good measure of the general behaviour
of this case. The phase deviation and the deviations of H11 and H22 all follow similar
patterns. The detailed modal results for this case are as follows: the undamped frequencies
and mode vectors are

v1 =32·2211, u1 =$0·8507
0·5257%,

Figure 4(a)—(Caption page 562)
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Figure 4(b)—(Caption overleaf )

v2 =35·5219, u2 =$−0·5257
0·8507%, (45)

and the approximate complex values from equations (30) and (31) are

v̄1 1 32·2519+0·0956i, ū1 1$0·8309−0·0614i
0·5577+0·0993i%,

v̄2 1 36·1194+1·6822i, ū2 1$−0·5639−0·1073i
0·8271−0·0663i%. (46)

The two modal damping factors are quite different in this case: in terms of Q-factors, given
for small damping by

Qj 1
Re (v̄j )

2 Im (v̄j )
, (47)
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Figure 4(c)

Figure 4. Comparisons between exact theory (solid lines) and approximate theory (dashed lines) for the three
transfer functions of the system shown in Figure 2: (a) H11(v); (b) H12(v); (c) H22(v). Parameter values are:
k1 =1000 N/m, k2 =1100 N/m, S=100 N/m, C=200 N/m, l=100 s−1.

they are

Q1 1 169, Q2 1 10·7. (48)

The reason is that the coupling spring S is sufficiently strong that the system is within the
‘‘veering range’’, with modes involving significant motion of both masses, as shown by
equation (45). The lower of these two modes involves motion of the two masses in the same
direction, with little extension of the ‘‘viscoelastic’’ element and hence little damping, but
the higher mode involves motion of the masses in opposite directions, and thus much more
damping. Notice that the corresponding mode shape is also changed quite substantially
from the undamped case: one element has an imaginary part which is 19% of its real part,
a significantly complex mode. The approximate theory is near the edge of acceptability
when one mode has a Q-factor of 10, very high damping for most structural vibration
applications. This gives a strong indication that the approximate theory might be useful
for a wide range of practical problems. Indeed, it is questionable whether there are many
real systems with modal Q-factors this low in which the damping obeys a linear model
to the required accuracy.
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The general features of Figure 3 are now easy to explain. For all values of S, the
deviation increases with increasing C as expected. Less immediately obvious is that for a
given value of C, decreasing S increases the deviation. The reason lies in the ‘‘veering’’
phenomenon. The mode shapes of this system are very sensitive to the strength of coupling
between the two masses: for weak coupling, towards the left of the figure, the modes consist
(approximately) of separate oscillation of the two masses, but for stronger coupling,
towards the right of the figure, they tend towards symmetric and antisymmetric motion
of the masses, as described for the case shown in Figure 4. This strength of coupling arises
from the parallel combination of the spring S and the viscoelastic element. If the spring
is strong, a relatively large force from the viscoelastic element still represents a small
perturbation, and the approximate theory works well. However, if the spring S is weak,
the net coupling strength is influenced strongly by the viscoelastic element, and it is not
surprising that the perturbation approximation is less good.

Finally, it should be noted that the omission of the contribution associated with the
additional pole of the damping model has made very little difference to the accuracy of
prediction. Even at very low frequencies, the exact and approximate calculations of all
three transfer functions remain in good agreement in amplitude and phase.

4. IMPLICATIONS FOR EXPERIMENTAL MODAL ANALYSIS

4.1.  - 

Equations (10) and (22) generalize readily from discrete to continuous systems, the mode
vectors becoming continuous functions of position in the system and the number of modes
becoming infinite. Thus, any system with small damping which can be described by a
Rayleigh dissipation function should have transfer functions which are well approximated
by equation (22), and which are described exactly by equation (A9). This fact can be used
to predict the results of measurements designed to find mode shapes.

The most common method of experimental modal analysis involves measuring many
transfer functions, usually with a fixed observation point and exciting the structure at many
different points using an impulse hammer. Various computational schemes may be used
to identify the poles of these transfer functions, and then to calculate the spatial variation
of the residue of a given pole as the excitation point moves. It is immediately clear from
equation (22) that if damping forces are well-represented by a dissipation matrix, the result
of such a measurement does indeed reveal the complex mode corresponding to the chosen
pole, as given by equation (10). Also, for this case the principle of reciprocity between
excitation and observing points (or generalized co-ordinates) applies: it does not matter
whether the excitation point or the observation point is moved around.

If a set of measurements satisfies the requirement of reciprocity, a dissipation-matrix
model of damping is a possible candidate, and one might try to extract the parameters
of such a model from the measurements. A natural approach is to determine the complex
mode shapes (and the diagonal damping terms) by pole-fitting, then use the simple
expression (10) to determine the off-diagonal terms of the dissipation matrix C'. This would
involve determining the ‘‘undamped’’ modes from the real part of the measured shapes,
then expressing the imaginary part of a given complex mode as a linear combination of
these undamped modes. The coefficients of such an expression would directly give values
for C'kn . If the measurements are truly reciprocal, the matrix C' deduced in this way will
automatically be symmetric. Carrying this procedure through in practice would, of course,
raise questions of numerical methods and accuracy which are not explored further here.

Often, complex modes are regarded as simply a nuisance when they appear in a modal
test. However, the analysis of section 2 shows that for a general dissipation matrix,
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complex modes appear at the same order of approximation as complex (i.e., damped)
natural frequencies. Only for the special case of proportional damping do the modes
remain real in the presence of damping. Necessary and sufficient conditions on the
dissipation matrix for this to occur have been given by Caughey and O’Kelly [14].
However, the concept of proportional damping seems to be entirely a matter of
mathematical convenience. There is no obvious justification for expecting physical systems
to exhibit this effect, and complex modes should be regarded as the norm.

Tracking the poles of transfer functions is not the only approach to experimental
determination of mode shapes. A common alternative is to use a ‘‘full-field’’ visualization
technique. Typically the structure would be driven at one or more points, with a sinusoidal
excitation tuned to match a resonant peak. Efforts may be made to suppress nearby modes
by making the excitation pattern orthogonal to them. For example, in a system having
a plane of symmetry one might use symmetrically-placed drive points driven in antiphase
to excite antisymmetric modes but not symmetric ones. The response field would then be
observed by, for example, holographic means or scanning laser vibrometry.

Not surprisingly, such a method sometimes shows phase differences between different
points on the system. These are often described as ‘‘complex modes’’, but one can now
see easily that they are not in general the same as the complex modes defined earlier. A
simple counter-example is sufficient. Consider a long, uniform, one-dimensional system
with uniformly distributed viscous damping, such as a long beam undergoing flexural
vibration when submerged in oil. Such a system has a dissipation matrix with the same
diagonal form as the mass matrix, so this is a system with proportional damping [1]. The
modes, defined as the free motion of the system corresponding to a given (complex) natural
frequency, are still purely real in this case. A particular mode involves a certain vibration
pattern in the rod which decays exponentially in time without phase difference between
different points.

If this system is driven at a point with a real frequency v, in order to make a full-field
measurement, the response pattern will show phase differences. If the rod is long, one
would expect to see traces of outgoing waves from the excitation point, which are not
entirely matched by reflected waves to form pure standing waves. The reason can be simply
stated in terms of travelling-wave components of the motion: the modes have real
wavenumbers but (slightly) complex frequencies. If driven at a real frequency, the
wavenumber inevitably becomes slightly complex. The two are directly related via the
group velocity of the system. This problem could only be circumvented if the excitation
was distributed over the entire system in such a way as to be orthogonal to all the other
modes. But to do that would involve knowing the mode shapes in detail in advance, which
defeats the point of the measurement.

The conclusion seems to be that such full-field methods, although very powerful for
showing the general character of modes, would require considerable care in interpretation
if used to study complex modes and damping models. As an example, consider the practice
of using arrangements of driving to eliminate contributions from nearby modes. Equation
(10) shows that, in the presence of off-diagonal damping terms in a dissipation matrix
model, the main perturbation to a given mode shape comes from an admixture of the other
modes, predominantly those closest in frequency. These contributions are in quadrature
with the original ‘‘undamped’’ component of the mode. So according to this model, the
driving arrangement must eliminate any in-phase contribution of the neighbouring mode
but not remove a quadrature component. Apart from the practical difficulties of doing this
reliably, there is a hint of circular logic here: to use this fact deliberately in the design of
the driving is to assume that a dissipation-matrix model of damping is appropriate at the
outset.
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4.2.   

What happens if the methodology of experimental modal analysis is applied to a system
described by the more general damping model of section 3? The first comment to be made
is that the basic methodology of experimental modal analysis should still be applicable to
this rather general class of systems, since it is based on fitting a fixed set of complex pole
frequencies to a set of measured transfer functions, and it was shown from equation (29)
that the set of poles associated with structural resonances will be the same in all transfer
functions.

One consequence of equation (35) for experimental modal analysis is that for this general
model of damping forces, reciprocity will not necessarily be found. However, if the spatial
variation of the residue of one pole is tracked as the observation point (but not the
excitation point) is varied, the result will accurately reproduce the form of the complex
mode corresponding to that pole. No assumption has been made about the form of G'
except that its terms are small, so this conclusion remains true in the presence of
generalized gyroscopic forces as well as truly dissipative forces. If the internal forces in
a given system were to behave as in the example of section 3.3, then reciprocity would hold,
and the measurement could be made in the usual way by moving the excitation point.

A thorough experimental study aimed at establishing which damping model was
appropriate to a given system, and determining the relevant parameter values, might
proceed by the following steps. First, tests would be made to check for linearity. If
non-sinusoidal response to sinusoidal driving, or amplitude-dependence of measured
transfer functions, were seen, then there would be little point in trying to fit the fine details
of a linear model. If the system passes this test, a set of transfer functions would be
measured. Enough measurements must be made to check carefully for failures of
reciprocity. If reciprocity is verified to sufficient accuracy, the simpler version of the general
damping model with a symmetric matrix should be expected to hold, and it might even
transpire that a dissipation-matrix model will be adequate.

In any case, the next step is to identify the set of poles, and fit the residues of these poles
in all the measured transfer functions. If all the modal Q-factors exceed 20 or so, the results
of the simple example from section 3.3 suggest that the small-damping approximate theory
will be sufficiently accurate to interpret the results with some confidence. In that case the
complex mode shapes can be deduced, bearing in mind that if reciprocity does not hold
then results must be deduced from variation of the observation point rather than the
driving point. The final stage is to attempt to invert equations (10) or (31) to deduce the
parameters of the damping model.

If a dissipation-matrix model is adequate, then there is in principle just enough data
available to determine the full set of parameters. The diagonal terms of the dissipation
matrix are deduced from the complex frequencies, via equation (9). To determine the
off-diagonal terms, it would be necessary to express the complex modes as a linear
combination of the undamped mode shapes, each coefficient of this expansion giving the
value of one term of the dissipation matrix in normal co-ordinates. The undamped mode
shapes would be approximated by the real parts of the complex mode shapes. Ideally, these
would be checked for orthogonality with respect to the mass matrix, then advantage could
be taken of this fact to carry out the decomposition of the imaginary parts into a modal
sum. To carry out this sequence of steps would be a tall order in terms of computational
accuracy, but it is certainly conceivable. The final check on whether the dissipation-matrix
model is valid would be made by checking whether the matrix C'jk deduced was symmetric.
Recall that this question is unrelated to the issue of reciprocity: the derivation of equation
(10) makes no use of symmetry.
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If the more general linear model of damping is relevant, then things are much more
difficult: there simply is not enough information available, even from a perfect
measurement, to determine the model completely. The same sequence of steps could be
followed, but there are two problems in the final stage. The first problem is that there is
no longer a direct experimental way to deduce the undamped mode shapes. It is conceivable
that this could be overcome by a combination of theoretical modelling and careful data
analysis, but it would be a very tall order. The second problem is even more serious—even
if the decomposition of complex modes into a linear combination of undamped modes
could be carried out, the results would only give very sketchy information about the
damping model. The reason is that each element G'jk is an unknown function of frequency,
and all one can deduce from equation (31) is the value of this function sampled at the
particular frequency vk . It seems clear that many different damping models might happen
to give the same complex value at this particular frequency, and thus be indistinguishable
by this measurement method.

Admittedly, this argument has omitted one consideration. If it were possible to find
reliably the additional poles associated with the damping model, then the theory of
complex functions might in principle allow the frequency-dependent behaviour to be
deduced on the assumption that the functions G'jk are all analytic except at isolated poles.
However, this seems a very slender hope in practice. Probably, one would need to have
some knowledge of the relevant damping model based on knowledge of the physical
mechanisms operating to resolve the serious ambiguity outlined in the previous paragraph.

It thus appears that measurements confined to a certain frequency bandwidth could be
fitted equally well by a variety of different damping models. Since all these models fit the
full set of transfer functions well, it is reasonable to ask whether the ambiguity over
damping models is important. Under some circumstances, it might not matter at all. In
that case, one might as well fit a dissipation-matrix model if the experimentally-determined
matrix is symmetric within the bounds of experimental accuracy. However, for some
purposes of engineering design the ambiguity about damping models might be quite
significant, especially if the purpose of the measurements on a structure were to predict
the effect of structural modifications. If the damping model is wrong, the spatial variation
of the energy dissipation is probably not represented correctly. Recall that the proposed
measurements are made in normal co-ordinates, and have to be transformed back to give
spatial information. That might lead to quite misleading predictions of the effect of a
localized change to the structure. This issue would merit further study.

5. CONCLUSIONS

The vibration behaviour of systems with linear damping has been analyzed in some
detail, both for the case when the damping forces can be expressed through a dissipation
matrix and for the more general case where nothing is assumed beyond linearity. In both
cases, an approximation of ‘‘small damping’’ was made, and this allowed very simple
expressions to be calculated for the damped natural frequencies, complex mode shapes and
transfer functions. The formulae for transfer functions follow very closely the familiar
result for undamped systems, giving them considerable intuitive appeal. The approximate
forms can be found by simple post-processing of the results of an undamped calculation,
such as a finite-element computation. A simple numerical example was presented, for
which it was found that the approximate results gave satisfactory accuracy over a very wide
range of parameter values.

The theory has useful implications for the interpretation of results in experimental modal
analysis. It has been shown that, within the limits of this approximation, it should be
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possible to determine reliably the correct complex modes of any structure for which the
mechanism of damping is linear to sufficient accuracy. Furthermore, these complex mode
shapes can be analyzed to give information about the damping model. It has been shown
that it is not in general possible to determine the correct damping model for a structure
by purely empirical means, but the class of possible models can in principle be identified.
The problem is that a damping model is specified by a matrix of frequency-dependent
functions, but for a given structure each of these functions can only be observed at the
frequency of one particular normal mode, via the residue of the corresponding pole in a
transfer function. To resolve this fundamental ambiguity would presumably require
detailed modelling of the physical mechanisms of damping.
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APPENDIX

Equations (1) can be recast in first-order form (see e.g., reference [8]) as

ż=Az+F, (A1)

in terms of the state vector and force vector

z=$yẏ%, F=$ 0
M−1f%,
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and the 2N×2N matrix

A=$ 0
−M−1K

I
−M−1C%.

Assuming the eigenvalues lj (=iv̄j ) of this matrix are distinct, each is associated with a
right eigenvector v(j)

r and a left eigenvector v(j)
l :

Av(j)
r = ljv(j)

r , v(j)t
l A= ljv(j)t

l

or

AR=RL, LA=LL (A2)

where R has the right eigenvectors as its columns, L has the left eigenvectors as its rows,
and L=diag (lj ).

For distinct eigenvalues lj , lk , the left and right eigenvectors are orthogonal:

v(j)t
l v(k)

r =0 (j$ k).

If one normalizes so that

v(j)t
l v(j)

r =1, (A3)

then

L=R−1. (A4)

Thus, from equation (A2)

A=RLL,

and so from equation (A1)

z=[ivI−A]−1F=[ivRL−RLL]−1F=R diag 0 1
iv− lj1LF=0s

2N

j=1

v(j)
r v(j)t

l

iv− lj1F. (A5)

This expresses the matrix of transfer functions in partial fraction form, which must now
be related to equation (22). Note that

v(j)
r =$ ū(j)

lj ū(j)%
in terms of the complex modes of the second-order system as defined earlier. Now let

v(j)
l =$v(j)

1

v(j)
2 %.

Then from equation (A1),

6ljv(j)t
1 =−v(j)t

2 M−1K
ljv(j)t

2 = v(j)t
1 − v(j)t

2 M−1C
(A6)

from which it follows that

[l2
j M+ ljC+K](M−1v(j)

2 )=0,
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so that

M−1v(j)
2 = ajv(j)

r (A7)

for some scalar multiple aj . The value is determined by the normalization condition (A3).
Substitution from (A6) yields

aj =
1

lj ū(j)tMū(j) − l−1
j ū(j)tKū(j) . (A8)

Using the second-order governing equation for this mode, this can be re-written

aj =
1

2lj ū(j)tMū(j) + ū(j)tCū(j)

(=1/2ivj for the undamped case with the usual normalization.)
Combining equations (A5) and (A7), and recalling that the first-order modes occur in

complex-conjugate pairs with eigenvalues iv̄k , −iv̄*k , one obtains

Hmn (v)= s
N

k=1

iak6− ū(k)
m ū(k)

n

(v− v̄k )
+

ū(k)
m *ū(k)

n *
(v+ v̄*k )7. (A9)

This is written in a form immediately comparable with equation (22).


