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1. 

Extensional vibrations are analyzed in the linear theory of an elastic rod of finite length
which accounts for lateral deformation. A simplified version of a theory of elastic rods is
used; it is based on the concept of a directed curve as developed by Green et al. [1–3].
This simplified version is similar to Mindlin and Herrmann’s theory [4], and has been used
recently by Krishnaswamy and Batra [5] to study wave propagation and pure thickness
oscillations in an infinitely long rod.

It may be recalled that for an infinitely long circular rod whose lateral surface is free
of traction, the frequencies of extensional vibration are obtained by solving the well-known
Pochhammer–Chree equation (see e.g., reference [6]). However, for a finite rod, this
equation is invalid as it cannot satisfy the stress-free end boundary conditions. Various
approximate solutions for extensional oscillations of a free finite rod have been obtained
by Rumerman and Raynor [7], Hutchinson [8, 9], and Rasband [10], all of whom based
their work on the classical three-dimensional theory of elasticity. McNiven and Perry [11]
presented a solution based on an approximate set of equations which take into account
the coupling between longitudinal, axial shear, and radial modes in a rod of infinite length.
An experimental study on vibrations of solid cylinders can be found in reference [12].

In the present paper, free extensional vibrations of a finite rod subjected to various
boundary conditions are analyzed. It is shown that the analysis can be separated into three
cases depending on the range in which the natural frequency lies. Such a situation also
arises in the Timoshenko theory of flexural vibrations of a beam (see, e.g., reference [13]).
The differential equations of the extensional theory are very similar to those of the
Timoshenko theory but there are some differences which we will allude to when
appropriate. Our analysis of Case 3 (see section 3) may be regarded as the extensional
counterpart of a recent paper by O’Reilly and Turcotte [14] on Timoshenko beams.

2.      

Consider a uniform straight rod of length L and cross-sectional area A. The rod is
referred to a system of Cartesian co-ordinates (x, y, z) with the z-axis along the centreline
of the rod and the origin at one end. An elastic rod possessing certain material and
geometrical symmetries* and attention is confined to axially symmetric deformations.

* For a discussion of these symmetries, see references [2, 3].
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Denoting time derivatives by a superposed dot and partial derivatives with respect to z
by a comma followed by z, and referring the reader to references [2, 3, 5] for details, the
governing equations for extensional motions may be written in the form*

n,z = r0ü, m,z − k= r0yd� , (1a, b)

where u= u(z, t) is the longitudinal displacement of particles on the centreline of the rod,
d= d(z, t) is the displacement associated with a material fibre lying in the cross-section,
y= I/A, I being the area moment of inertia of the cross-section, and r0 denotes the mass
density per unit undeformed length of the rod. The quantity n in equation (1a) is the axial
force, and m and k in equation (1b) are generalized forces whose actions account for lateral
deformation of the rod. Note that the displacement d is the kinematical variable associated
with this mode of deformation.

The following linear constitutive equations relate the forces {n, m, k} to the
displacements {u, d} and their derivatives:

n=2a8d+ a3 u,z , m=(a10 + a17)d,z , k=(a2 + a7)d+ a8u,z , (2a–c)

where the a’s are material constants which, for a circular rod of radius a, have been
recently determined by Krishnaswamy and Batra [5] to be

a2 = r0yv̄2 − a7, a3 =EA+
2a2

8

a2 + a7
, a7 = a8 =

EAn

(1+ n)(1−2n)
, (3a–c)

a10 =
(0·615+0·792n)2

(1+ n)3 EI, a17 =0. (4a, b)

In equations (3) and (4), E is Young’s Modulus, n is Poisson’s ratio, A= pa2, I= pa4/4,
and the quantity v̄ is the frequency of pure radical oscillations of the rod given by†

v̄2 = c2
Db2, c2

D =
EA(1− n)

(1+ n)(1−2n)r0
, (5a, b)

where cD is the speed of propagation of dilatational waves in a linearly elastic body of
infinite extent, and b satisfies

(1−2n)J1(ba)= (1− n)baJ0(ba), (6)

Jn being the Bessel function of order n. Also note that the constants in equations (3) and
(4a) are non-zero. The following coupled linear differential equations governing the
displacements u and d are obtained by substituting equations (2a–c) into equations (1a, b):

2a8d,z + a3u,zz = r0ü, a10d,zz −(a2 + a7)d− a8u,z = r0yd� , (7, 8)

where equation (4b) has been used in obtaining equation (8).‡ It may be remarked that
the differential equations (7) and (8) bear a striking resemblance to those governing flexural
vibrations of a rod according to Timoshenko theory.

For free vibrations of the rod, we seek solutions to equations (7) and (8) of the form

u(z, t)=U(z) eivt, d(z, t)=D(z) eivt, (9)

* These equations are valid only for the case when the three-dimensional rod is free of traction on its
lateral surface. However, in its original form, the theory can accommodate other types of conditions
imposed on this surface.

† This mode of vibration is one in which u(z, t) vanishes for all z and t.
‡ Note that equations (7) and (8) can be decoupled into two fourth order differential equations for u

and d; since these equations are not explicitly used, they are not recorded.
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v being the radian frequency, so that equations (7) and (8) reduce to

2a8
dD

dz
+ a3

d2U
dz2 + r0v

2U=0, (10)

a10
d2D

dz2 − a8
dU
dz

+(r0yv2 − a2 − a7)D=0. (11)

It is clear from equations (2a–c), (4b) and (9) that {n, m, k} have the forms {N(z), M(z),
K(z)} eivt, where

N=2a8D+ a3
dU
dz

, M= a10
dD

dz
, K=(a2 + a7)D+ a8

dU
dz

. (12a–c)

The differential equations (10) and (11) constitute an eigenvalue problem with eigenvalue
v2 and eigenfunction pair {U(z), D(z)}. Attention is confined to certain common boundary
conditions; a simply-supported end for which U=M=0, a clamped end for which
U=D=0, and a free end for which N=M=0. For various combinations of these end
conditions, it can be shown using standard techniques that the pair {U(z), D(z)} satisfies
the orthogonality relation

g
L

0

{r0UiUj + r0yDiDj} dz=0, (13)

where {Ui , Di} and {Uj , Dj} are eigenfunction pairs corresponding to distinct frequencies
vi and vj , respectively. The eigenfunctions may be normalized by the condition fL

0

{r0U2
i + r0yD2

i } dz=1.

3.    

Solutions to the ordinary differential equations (10) and (11) may be obtained by
standard techniques. First, assume that U(z)=U0 elz and D(z)=D0 elz and note that the
following characteristic equation must be satisfied in order for non-trivial solutions to
exist:

l4 + bl2 + c=0, (14)

where

b= {2a2
8 + a3(r0yv2 − a2 − a7)+ a10r0v

2}/a3a10, (15)

c= {r0v
2(r0yv2 − a2 − a7)}/a3a10. (16)

There are several possible cases associated with the characteristic equation (14) depending
on the range in which the frequency v lies. Each case is treated separately below.

3.1. Special case: v=0
This case corresponds to static extensional deformations of the rod and the four roots

of equation (14) are 0, 0, 2zb*, with b*= {a3(a2 + a7)−2a2
8}/a3a10. It may be readily

verified from equations (3) and (4) that b* is positive. The solutions for the displacements
U and D are

U(z)=
−2a8

a3zb*
A0 sinh zb*z−

2a8

a3zb*
B0 cosh zb*z+01+

2a2
8

a2
3 1C0z+D0, (17)
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D(z)=A0 cosh zb*z+B0 sinh zb*z−
a8C0

a3b*
. (18)

The constants A0, B0, C0 and D0 are to be determined from the two boundary conditions
at each end of the rod. It may be remarked that the corresponding case for flexural
vibrations in a Timoshenko beam (i.e., the v=0 case) admits polynomial solutions for
the field variables in contrast to the solutions (17) and (18) (see, e.g., reference [15]).

The remaining three cases correspond to v2 being less than, equal to, or greater than,
the quantity (a2 + a7)/r0y. Once again, there is a similarity between the present
development and the Timoshenko theory; solutions to the latter are also separable into
three cases depending on the value of v2 as is made clear in reference [13].

3.2. Case 1: v2 Q (a2 + a7)/r0y
This case corresponds to cQ 0 and hence to (−b+zb2 −4c)q 0. The four roots of

equation (14) are 2g and 2io, where

g=6−b+zb2 −4c
2 7

1/2

, o=6b+zb2 −4c
2 7

1/2

. (19)

For a fixed value of v, the general solution is

U(z)=A1 cosh gz+B1 sinh gz+C1 cos oz+D1 sin oz, (20)

D(z)= āA1 sinh gz+ āB1 cosh gz− âC1 sin oz+ âD1 cos oz, (21)

where

ā=
r0v

2

2a8g
−

a3g

2a8
, â=

r0v
2

2a8o
−

a3o

2a8
. (22)

For simply-supported ends, in light of equation (12b), the boundary conditions become

U(0)=0, U(L)=0,
dD

dz
(0)=0,

dD

dz
(L)=0. (23)

The frequency equation in the form of a vanishing determinant is

1 0 1 0

cosh gL sinh gL cos oL sin oLG
G

G

G

G
āg 0 −âo 0

G
G

G

G

G

=0. (24)

āg cosh gL āg sinh gL −âo cos oL âo sin oL

Since âo− āg$ 0, equation (24) reduces to

sinh gL sin oL=0. (25)

For clamped ends, the boundary conditions are

U(0)=0, U(L)=0, D(0)=0, D(L)=0, (26)
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so that the frequency equation is

1 0 1 0
cosh gL sinh gL cos oL sin oLG

G

G

G

G
0 ā 0 â

G
G

G

G

G

=0. (27)

ā sinh gL ā cosh gL −ā sin oL â cos oL

For free ends, one has

dD

dz
(0)=0,

dD

dz
(L)=0, 2a8D(0)+ a3

dU
dz

(0)=0, 2a8D(L)+ a3
dU
dz

(L)=0,

(28)

and the frequency equation may be written as

āg 0 −âo 0

āg cosh gL āg sinh gL −âo cos oL −âo sin oLG
G

G

G

G
0 2āa8 + ga3 0 2âa8 + oa3

G
G

G

G

G(2āa8 + ga3) sinh L (2āa8 + ga3) cosh gL −(2âa8 + oa3) sin oL (2âa8 + oa3) cos oL

=0. (29)

These frequency equations provide conditions for the existence of the mode in question
in terms of geometric and material properties of the rod. Furthermore, the matrices
corresponding to the determinants in equations (24), (27) and (29) have a one-dimensional
kernel implying that only three of the four boundary conditions in equation (23), (26) and
(28) are functionally independent. These independent boundary conditions may be used
to obtain the eigenfunction pair associated with the mode of vibration. This procedure is
illustrated for Case 3 below.

3.3. Case 2: v2 q (a2 + a7)/r0y
The four roots of equation (14) are given by 3ig and 2io, where g and o are given in

equation (19). The solutions to this case can be gotten by replacing the hyperbolic functions
in equations (20) and (21) by corresponding trigonometric ones. That is, the linearly
independent solutions are {cos gx, sin gx, cos ox, sin ox}. The frequency equations follow
in the same way as before and furthermore, the comments following equation (29) apply
to this case as well. In light of the observations just made and for brevity’s sake, the
solutions and frequency equations are not reproduced.

3.4. Case 3: v2 = (a2 + a7)/r0y
This value of v2 is equal to v̄2 in equation (5). By setting u(z, t)=0, one can see from

equation (7) that d is forced to be constant in z so that for time-harmonic motions,
equation (8) reduces to a simple harmonic oscillator with frequency v̄. Thus, from a
physical viewpoint, the rod undergoes pure radial oscillations with particles on its
centreline remaining stationary. This situation is analogous to one in Timoshenko’s theory
in which the beam undergoes pure thickness-shear oscillations.* This is discussed under
Case II in O’Reilly and Turcotte [13], and the analysis which follows presently is the
extensional counterpart of that in reference [13].

* Here, the beam vibrates in the absence of flexural displacement of its centreline particles.
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The roots of the characteristic equation (14) reduce to 0 occurring as a double root and
2iḡ, where ḡ2 = [2ya2

8 + a10(a2 + a7)]/ya3a10. The general forms of U(z) and D(z) are

U(z)=F1 cos ḡz+F2 sin ḡz+F3, (30)

D(z)=
a8

ḡa10
F1 sin ḡz−

a8F2

ḡa10
cos ḡz+F30a8

a10
−

a3ḡ
2

2a81z+F4, (31)

where F1, F2, F3, F4 are constants to be determined from boundary conditions. As before,
this yields four linear equations which may be written as [D]{F}= {0}, where [D] is a 4×4
matrix of coefficients, {F} is the column of constants in equation (31) and {0} is the column
of zeroes. For a non-trivial solution, it is required that =D==0, where =D= is the determinant
of [D]. The comments just following equation (29) are recalled and the procedure to obtain
eigenfunctions for two types of boundary conditions is illustrated.

For a rod clamped at both ends, the frequency equation may be determined to be

1−cos ḡL+0a3a10ḡ
2

4a2
8

ḡL−
ḡL
2 1 sin ḡL=0. (32)

If equation (32) is satisfied, [D] has a one-dimensional kernel since only three of the four
boundary conditions are functionally independent. These may be used to determine the
eigenfunction pair {U, D}:

U(z)=F1{cos ḡz−1+(cosec ḡL−cot ḡL) sin ḡz}, (33)

D(z)=F16 a8

ḡa10
sin ḡz−

a8

ḡa10
(cosec ḡL−cot ḡL) cos ḡz−0a8

a10
−

ḡ2a3

2a81z
+

a8

ḡa10
(cosec ḡL−cot ḡL)7. (34)

The constant F1 may be determined from the normalization condition mentioned just
following equation (13). It is clear that for specified values of y and n, only a rod of specific
length L will possess eigenfunctions (33) and (34).

For the simply-supported rod, the matrix [D] is

1 0 1 0

cos ḡL sin ḡL 1 0

[D]=G
G

G

G

G

G

G

K

k

a8

a10
0 0a8

a10
−

ḡ2a3

2a81 0 G
G

G

G

G

G

G

L

l

. (35)

a8

a10
cos ḡL

a8

a10
sin ḡL 0a8

a10
−

ḡ2a3

2a81 0

Clearly, the rank of [D] is 3 so that [D] has a one-dimensional kernel. Hence, the
eigenfunctions are given by

U(z)=0, D(z)=F4, (36)
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and the normalization condition yields F4 =1/zr0yL. Furthermore, if sin ḡL=0, then [D]
has rank 2 and hence a two-dimensional kernel; only two of the four boundary conditions
are independent. One sees that ḡ must satisfy

ḡ2L2 = n2p2, (37)

where n is a non-zero integer and since v is fixed, only a rod of specific length satisfies
this condition. It follows that there are two eigenfunction pairs associated with the
eigenfrequency v̄. One pair is given by equation (36) while the other orthogonal pair is

U(z)=F2 sin ḡz, D(z)=
− a8

ḡa10
F2 cos ḡz, (38)

in which the constant F2 may be determined from the normalization condition.

4.     – 

Recall that the solution of equation (29) yields natural frequencies of the rod with free
end boundary conditions. Although equation (29) was derived under the assumption
v2 Q (a2 + a7)/r0y, it may be used for the case when v2 q (a2 + a7)/r0y if g is replaced by
g*i and the relations sinh (gL)= i sin (g*L) and cosh (gL)= cos (g*L) are used. Equation
(29) may be simplified and written as

2[1−cosh (jz) cos (z)]+0 a3 − h

hj+ a3j
3 −

hj+ a3j
3

a3 − h 1 sinh (jz) sin (z)=0, (39)

where

j=
g

e
, z= eL, h= r0v

2/e2. (40a–c)

With the help of equation (40c), it is easily seen that the slenderness parameter L/a is given
by

L/a=
v̄

2vX h

a2 + a7
z, (41)

where v̄=(a2 + a7)/r0y. Equations (39)–(41) are solved numerically to obtain the natural
frequencies v. One proceeds in the following manner.

First, note that for given values of the coefficients a2, a3, a7 and a10 in equations (3) and
(4) and for a given value of v, the values of j and h in equation (40) are determined and
hence the transcendental equation (39) involves only one unknown z. A solution to
equation (39) yields z for a particular mode and therefore one may obtain a value for L/a
for this mode from equation (41). Thus, by sweeping through various values of v, one
obtains corresponding values of L/a for each mode and hence, one may plot the variation
of the natural frequencies of various modes with the slenderness parameter L/a. v is
non-dimensionalized by v*=va(mA/r0)1/2, m being the shear modulus jv* which is the
frequency associated with propagating shear waves in an infinite linear elastic body. This
facilitates a comparison of our results with those of Rumerman and Raynor [7] which were
obtained using a different approach.

Prior to presenting numerical results, a comment regarding the value of a2 in equation
(3a) is in order. In a previous paper [5], the authors chose the second non-zero root b of
equation (6) to compute a2 in order to better capture the three-dimensional high-frequency
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behaviour of higher modes of an infinite rod. However, it was seen in reference [5] that
this compromised the predictions of the present theory in a small range of intermediate
frequencies. Since it is precisely this range of frequencies that Rumerman and Raynor [7]
report results for, a2 is computed by choosing b to be the first non-zero root of equation
(6). Of course, now the high-frequency three-dimensional behaviour of higher modes will
be affected somewhat. In this connection, see reference [16].

The non-dimensional natural frequencies of the first three modes are plotted versus the
slenderness ratio L/a in Figures 1(a)–(c), respectively. For each mode, results are included
for the two different values of a2 discussed above. As in reference [7], a Poisson’s ratio of
n=0·286 is used in all calculations. The first mode compares extremely well with the
results of reference [7]. In the limit L/a:0, which corresponds to a very thin plate, the
value of v/v* approaches 3·3. The exact value of v/v* for this in-plane mode of a thin
plate is given by v/v*= b{2/(1− n)}1/2, where b is the first non-zero root of
bJ0(b)= (1− n)J1(b). For n=0·286, v/v* approximately equals 3·4. However, for values

Figure 1. Variation of natural frequency with the slenderness ratio L/a for (a) mode 1, (b) mode 2, (c) mode
3: ——, a2 computed using first root of equation (6); –––, second root of equation (6).
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of L/aQ 2 or so, the second mode here does not predict frequencies well. As L/a:0, this
frequency should approach zero and not either value depicted in Figure 1(b). This
discrepancy can be attributed to the fact that the theory used here is one-dimensional and
cannot predict higher modes well for extremely short rods. The relatively flat portions of
the higher two modes occur at v/v*2 4, whereas in reference [7] they occur near
v/v*2 3. The plots indicate that for L/aq 4, the present results are insensitive to the
manner in which a2 is computed. However, for L/aQ 4, reasonably good results may be
obtained by using the first non-zero root b of equation (6) whereas if the second root is
chosen, the results are somewhat poor.

5. 

A detailed analysis of extensional vibrations of an elastic rod has been presented using
a theory which depends only on one independent spatial variable z. This theory has the
simplicity of being one-dimensional and yet it can capture important three-dimensional
effects through the kinematical variable d and the associated equation of motion (1b). It
is capable of generating analytical results for both infinite and finite rods of arbitrary
section. Results for a circular section have been presented in order to compare our results
with those of Rumerman and Raynor [7]. The reader is reminded that the
three-dimensional theory of elasticity can analytically only handle an infinite rod of simple
(e.g., circular) cross-section. For other rod cross-sections, the present theory is an attractive
alternative and is a powerful tool for analyzing extensional vibrations. Furthermore, for
finite rods, exact three-dimensional solutions are intractable for any cross-section and once
again the present theory may be used to predict frequencies and mode shapes.
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