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A recent study has demonstrated a new configuration of centrifugal pendulum vibration
absorbers (CPVAs) that is very effective at reducing torsional vibration levels in rotating
systems that are subjected to harmonic external torques. This system is composed of a pair
of absorber masses riding on epicycloidal paths that are tuned to one-half order relative
to the frequency of the applied torque. In the desired response, the two absorbers move
in direct opposition to one another in a second-order subharmonic manner. The basic
analysis of this subharmonic vibration absorber system assumes that the paths for the
absorber masses can be perfectly manufactured and are exactly tuned as desired. The
primary goal of this study is to explore the effects that imperfections and intentional
mistuning of the absorber paths have on performance of the system. The results obtained
allow one to select certain features of the path in order to achieve the desired performance,
even in the face of uncertainties. To this aim, the equations of motion are first derived for
a simplified model, consisting of two absorber masses and a rigid rotor. This system is
shown to possess a one-to-one internal resonance subjected to two-to-one resonant external
excitation. By making use of some scaling assumptions on the system parameters, the
method of averaging is applied in order to obtain approximate solutions of the equations
of motion. These are used to evaluate the absorber performance in terms of two
performance measures: the magnitude of the rotor acceleration and the range of the
disturbing torque over which the absorbers operate effectively. The results obtained are
distilled into design guidelines in terms of how one should choose certain mistuning
parameters for the absorber paths in order to achieve satisfactory system performance. In
summary, it is determined that one should keep the two absorber paths as identical as
possible, but that a small level of identical overtuning in each path will provide a certain
level of robustness. In addition, it is also shown that this mistuning can be used to adjust
a tradeoff between torsional vibration levels and the operating torque range for the system.
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1. INTRODUCTION

Torsional vibrations in rotating systems are induced primarily by torques transmitted to
a rotor from forces applied to attached components. For example, in IC engines, cylinder
gas pressure and the inertia of slider-crank components cause these torques, while in
helicopter rotors aerodynamic loads on blades are their primary source. These torsional
vibrations can propagate through the system and cause fatigue and NVH difficulties. A
centrifugal pendulum vibration absorber (CPVA) is a device used for reducing these
torsional vibrations. It consists essentially of a mass that is restricted to move along a
prescribed path relative to the base rotating system. The absorber is driven by the
centrifugal field generated by rotation, and its motion provides a restoring torque which
is designed to reduce torsional vibrations of the rotating system. An important feature of
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the CPVA is that it can be tuned to a given multiple of the mean rotation rate, V. In this
way, by proper geometric design of the absorber path, it can be tuned to counteract torques
of frequency nV, where n is referred to as the order of the disturbing torque.

CPVAs were invented for use in internal combustion engines several decades ago [1] and
have been successfully employed to suppress torsional vibrations in light aircraft engines
[2]. Previous analytical works [3, 4] have concentrated on analyzing the dynamics of
CPVAs which use easily-manufactured circular paths for the absorber motion. By
intentionally mistuning the absorber at small absorber amplitudes and/or by accounting
for the system’s nonlinear dynamic behavior over the entire amplitude range, improved
behavior can be achieved over a larger operating envelope [5–10]. It should be noted that
these absorber designs are capable of only partially counteracting the torsional vibrations
that arise from a harmonic torque, even in an ideal setting [10–14]. This is due to residual
vibrations generated by higher harmonics through nonlinear effects.

Recently, Lee et al. [15] proposed a novel absorber configuration which consists of a
pair of identical absorbers riding on special paths tuned to one-half the order of the
disturbing torque. Such a configuration is referred to as the subharmonic absorber system.
It was shown in reference [15] that the torque generated by the periodic response of an
ideal, perfectly tuned, undamped pair of subharmonic absorbers is exactly a pure harmonic
over a wide range of amplitudes. This has significant advantages over conventional designs
since it generates no higher-order harmonic torques, even when accounting for
large-amplitude, nonlinear effects. Furthermore, it was also shown in reference [15] that
this response is dynamically stable and still very effective when small amounts of system
damping are included in the model.

The aforementioned results are based on the assumption that the absorber paths are
perfectly tuned and are manufactured exactly as desired. In practice, however, due to
manufacturing tolerances, wear, thermal effects, etc., the absorber paths are never perfect.
The present work is an effort aimed at determining the sensitivity of the system response
to such imperfections. In order to account for these effects and to predict the corresponding
performance of the absorber system, an extensive analysis is conducted herein that includes
various types of imperfections in the mathematical system model. Imperfections of two
types are considered: uncertain (uncontrollable) and built-in (controllable). Our main goal
will be to provide some guidelines regarding the use of built-in imperfections to insure good
performance in the face of the uncertainties.

An evaluation of absorber performance is accomplished by evaluating two performance
measures: the angular acceleration of the rotor and the range of the applied torque. The
former is used to quantify the level of vibration reduction, which is desired to be as small
as possible, while the latter is imposed by the size of the absorber masses, their placement,
and their limited range of travel. In order to calculate these two performance measures,
the system dynamic response is approximated using the method of averaging for a
particular scaling of the system parameters. The solutions of the averaged equations are
derived and considered in light of the system performance goals. Bifurcation diagrams are
used to evaluate absorber performance and to distill some guidelines for the design of
absorber paths.

The paper is organized as follows. In section 2 the mathematical model is derived and
the imperfections are defined. In section 3 the equations of motion are massaged into a
form amenable to asymptotic analysis. In section 4 averaging is performed. In section 5
approximate steady-state solutions of the averaged equations are derived based on some
assumptions about the types and magnitudes of various types of imperfections. The range
of validity for each type of solution is also discussed, as many solutions found from the
mathematical model are nonphysical due to the limits of the absorbers’ motions. In section
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6 the desired solution is described, the attendant absorber performance is assessed, and
some design guidelines are offered. Results of a simulation study are also presented in order
to verify the analysis. In section 7 some conclusions and directions for future work are
given.

2. THE MATHEMATICAL MODEL

2.1. 

The equations of motion are derived for an idealized model that consists of a rigid rotor
spinning about a fixed axis, subjected to an applied torque, and fitted with N general-path
point-mass absorbers. The system is shown schematically by the cross sectional view of
the rotor in Figure 1. This dynamical system consists of a rotor of moment of inertia Id

with respect to the center of rotation, denoted by O, and N absorbers moving freely on
prescribed paths relative to the rotor. Each individual absorber, denoted by subscript i for
the ith absorber, is considered to be a point mass with mass mi .† The path for each
absorber is specified by the function Ri =Ri (Si ), where Ri is the distance from the C.G.
of the absorber to point O, and Si is an arc-length variable along the path defined relative
to the frame of reference that rotates with the rotor. The origin of each Si is the point where
Ri reaches its maximum value, denoted by Ri0 =Ri (0). The nominal moment of inertia with
respect to O for each absorber is defined by Ii =miR2

i0. Typical paths are designed to be
symmetric with respect to Si =0; i.e. Ri (Si )=Ri (−Si ). The resistance between the ith
absorber and the rotor is modelled as an equivalent viscous damping with coefficient cai .
Similarly, resistance between the rotor and ground is also modelled as equivalent linear
viscous damping with coefficient c0.

Figure 1. Cross-sectional schematic diagram of the rotor and absorbers: Id =moment of inertia of rotor,
m2 =absorber mass, Si =arc variable.

† It is assumed that the absorbers are physically suspended in a bifilar arrangement [2]. In this case one can
account for the moments of inertia of the absorbers about their respective C.G.s by simply including them in Id ,
since they rotate identically with the rotor. However, the rollers used in such configurations do not follow the rotor,
an effect considered in reference [7], but not accounted for in the present study.
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Let u denote the angular displacement of the rotor. The net applied torque (including
load torques) is assumed to be a nominal constant, T0, plus a disturbing torque Tu (u) which
is periodic in u. These torques arise from a variety of sources and are generally periodic
with several harmonics. They may also depend on u� and u� . Here a simple, single harmonic
model for the applied torque is considered, as there is typically a dominant harmonic and
the absorber system will be designed to address it. Thus, the disturbing torque is assumed
to be of order n, as follows, Tu (u)=T
 u sin (nu), where T
 u q 0. (This leaves open the
potentionally large issue of nonlinear resonances that may arise from other harmonics in
the excitation. This is left for future work, but see reference [12] for some results along
such lines.)

2.2.   

With these assumptions, the overall system kinetic energy can be formulated. Assuming
that gravitational effects are small compared to rotational effects and that the
corresponding potential energy is negligible, the governing equations of motion are
determined by applying Lagrange’s method to the kinetic energy and including the
generalized forces associated with the damping forces and the applied torque. A
nondimensionalization and a change of independent variable are performed on the
equations of motion for simplification. To facilitate this process, the nominal steady-state
rotational speed of the rotor, V, is taken to be the speed at which the constant torque T0

balances the mean component of the torque which arises from rotational damping and
load; thus,

V=T0/c0. (1)

Also, a new dimensionless dependent variable y, representing the rotor speed, is introduced
as

y0 u� /V. (2)

Then, assuming that u is a smooth and invertible function of t, the resulting equations of
motion can be transformed into a set of periodically forced, non-autonomous equations
with the independent variable u replacing t. This step transforms the nonlinearity,
T
 u sin (nu), into a periodic forcing term.

The resulting dynamical system that describes the dynamics of the N absorbers and the
rotor is

ys0i +[s'i + gi (si )]y'−
1
2

dxi

dsi
(si )y=−m̂ais'i , 1E iEN, (3a)

s
N

i=1

bi$dxi

dsi
s'i y2 + xi (si )yy'+ gi (si )s'i yy'+ gi (si )s0i y2 +

dgi (si )
dsi

s'2i y2%
+ yy'= s

N

i=1

bim̂aigi (si )s'i y− m̂0y+G0 +G
 u sin (nu), (3b)

where ( · )' denotes d( · )/du, si =Si /Ri0, bi = Ii /Id , m̂ai = cai /miV, m̂0 = c0/IdV, G0 =T0/IdV
2,

G
 u =T
 u /IdV
2, and

xi (si )=
R2

i (Ri0si )
R2

i0
and gi (si )=Xxi (si )−

1
4 0dxi

dsi
(si )1

2

(4)
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are functions set by the path of the absorber C.G. Note that in terms of these dimensionless
quantities the steady rotation condition (1) becomes

G0 = m̂0. (5)

2.3.    

2.3.1. The perfectly-tuned absorber system
The subharmonic absorber system proposed by Lee et al. [15] is composed of a pair of

identical absorbers with individual masses mi =m0/2 and identical damping coefficients
m̂ai = m̂a , i=1, 2. These absorbers ride on identical paths specified by

x2
i (si )=1−0n21

2

s2
i , i=1, 2 (6)

which is equivalent to Ri (Si )=zR2
0 − (n/2)2S2

i . This path can be shown to be a particular
epicycloid [7], resulting in absorbers whose frequency of oscillation in the constant rotation
rate case is nV/2, i.e. one-half that of the applied torque. Furthermore, this frequency
exactly maintains for all amplitudes up to a maximum level (described in detail below).

The equations of motion (3a) and (3b) for N=2 and the identical paths given by
equation (6) have an exact solution when the absorber damping is zero, m̂a =0, and
condition (5) is satisfied. It is given by

y(u)=1, s1(u)=−s2(u)=2
2
nX2G
 u

nn
cos 0n2 u1 , (7a, b)

where n=(m0R2
0 )/Id is the ratio of the total nominal moment inertia of both absorbers

about point O to that of the rotor (typically n�1). It is seen from equations (7a) and (7b)
that in this response the rotor runs at a constant speed and the absorbers move in an
exactly out-of-phase (s1 =−s2) subharmonic response of order two relative to the
disturbing torque; hence the designation of the subharmonic absorber system. In this
response the absorbers exactly counteract the applied torque over a finite range of
amplitudes. The physics of this absorber response can be seen by observing equation (3b),
which describes the balance of the torques acting on the rotor. It can be shown that the
motions of the individual absorbers generate torque harmonics of all odd multiples of n/2
which, due to their out-of-phase nature, cancel each other in the summation. However,
each absorber also generates, through the Coriolis term (dxi /dsi )s'i y2, an even-order torque
consisting of a single harmonic of order n. In the summation these torques add together,
resulting in a total absorber torque that exactly cancels the harmonic disturbing torque.
This results in zero net torque acting on the rotor.

This steady-state operating condition corresponds to a perfectly constant rotor speed,
which is the ultimate goal of such an absorber system. Note also that this solution, while
not absolutely global, is valid and exact over a wide range of torque amplitudes (described
in more detail below). When the system possesses small, non-zero absorber damping, it
was shown in reference [15] that this pair of subharmonic absorbers is able to limit the
rotor acceleration u� to a constant level that is of the same order as the absorber damping,
and that this acceleration saturates at a fixed, small level as the torque amplitude is
increased over a wide range.
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2.3.2. Absorber imperfections, mistuning and limitations
The dynamically favorable property described in the previous section can only be

approximated in practice. Several effects come into play that limit the ideal solution,
including tolerances in the cutting process used for generating the absorber paths, the
presence of rollers in the bifilar configuration (whose dynamics do not follow the
absorbers’ motions [7]), and deformations due to wear, elasticity and/or thermal effects.
In order to account for imperfections, the absorber path functions (6) are generalized to

xi (si , d
 ij )=1−0n21
2

s2
i − s

j

d
 ijsj
i , i=1, 2, (8)

where all d
 s are assumed to be small in magnitude in the following analysis. Note that
these variations contain both uncertain and built-in components.

From equation (4), it should be noted that the value of the function gi (si ) must be real
for feasible absorber motions. This leads to a restriction on the amplitudes of the absorber
motions. For the case when all mistunings and imperfections are small, d
 ij�1, the
aforementioned restriction is approximated by

si (u)Q smax +O(d
 ), [u and i, where smax =
4

nzn2 +4
. (9)

This restriction keeps the absorbers below the cusp points on the epicycloidal paths. This
restriction also imposes a finite operating range on the disturbing torque level G
 u . For the
case of perfect absorber paths it is given by

G
 u QG
�u,0 =
2nn

n2 +4
, (10)

over which the desired system response given in equations (7) can be maintained. This peak
torque level is modified by damping and imperfections in a manner that is quantified in
the sequel.

2.4.   

Two measures will be used to quantify the effectiveness of an absorber system. The first
is the amplitude of torsional oscillations of the rotor, here represented by its peak angular
acceleration during steady-state operation. The nondimensionalized angular acceleration
of the rotor is given by u� (t)/V2, and is represented in terms of the variable y(u) by yy'(u).
The first measure of absorber performance is given by the peak value (i.e. the infinity norm)
of yy'(u) during steady-state. This quantity is denoted by >yy'>ss . It will be convenient to
have an explicit (even if approximate) expression for this acceleration, and this is derived
in the following section.

The second performance measure is the range of the applied torque amplitude over
which the absorber can operate, denoted by G
�u . This is imposed by the cusps on
the absorber paths, as stated in condition (9) above. (It should be noted that in practice,
the geometry of the bifilar configuration commonly used when implementing these
absorbers will impose even stricter limits than those given by the cusp.)

The general aim of an absorber system is to minimize >yy'>ss over the largest possible
range, 0QG
 u QG
�u . It will be seen that these goals oppose one another, and the
information obtained from the present study can be used to make informed judgments for
the selection of path parameters. Note also that for the perfect, undamped subharmonic
absorber, >yy'>ss =0 and the corresponding torque range is given by G
�u,0 in equation (10).
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One of themain goals of this work is to determine >yy'>ss and the generalization for condition
(10) for the damped, imperfect system. These results will point out some limitations that are
imposed on the subharmonic absorber system by parameter uncertainties, but it will also
offer some flexibility in designing paths to achieve certain goals.

3. SCALING AND REDUCTION OF THE EQUATIONS OF MOTION

Approximate solutions are sought for the damped and imperfect system by making some
scaling assumptions and employing asymptotic analysis techniques. A series approxi-
mation for the equations of motion is derived below, leading to a form that is amenable
to asymptotic analysis, which is carried out in the following section.

3.1.  

In applications the total nominal moment of inertia of all absorbers about point O is
much smaller than that of the entire rotating system. This motivates the definition of the
small parameter.

o0 n, (11)

the ratio of absorber inertia to rotor inertia, which is used for the asymptotic analysis. With
this definition, many of the system parameters can be scaled such that the desired system
behavior can be captured by asymptotic analysis. The imperfections are handled first, after
which the dissipation and forcing terms are treated.

The path imperfections are scaled by

d
 ij = od	 ij [j , and i=1, 2. (12)

Note that typical values of the d	 ij s are Q1%, whereas n may range from 1 to 10%. This
scaling is a conservative assumption, and it is done simply in order to incorporate the
effects of imperfections in the first-order analysis. It is further assumed that the
nondimensional damping and excitation parameters, m̂a , m̂0, G
 0 and G
 u , are also small, such
that they can be scaled as

m̂a = om̃a , m̂0 = om̃a , F
 0 = oG	 0, and G
 u = oG	 u . (13)

The unperturbed system dynamics for this scaling are determined by considering
equation (3b) with o=0, i.e. n=0, which yields y=1. Using this in equation (3a) with
m̂a =0 yields a linear oscillator with frequency n/2 for the absorber motion. Thus, the
steady-state solution of the unperturbed system is simply a constant rotor speed, y=1,
and the absorber motion is harmonic with frequency n/2 and arbitrary amplitude and
phase. This limiting case can be imagined as that with a very large flywheel attached to
the rotor, in which the absorbers move in a harmonic manner but have no effect on the
rotor, since they are essentially massless. (This is a trivial version of the ideal subharmonic
absorber response wherein the absorber masses and the applied torque are both zero.) The
expansions in o capture the first-order effects of the absorber mass, imperfections, damping
and applied torque in a consistent manner.

Since the rotor speed will change smoothly as the absorber mass, the applied torque,
the absorber damping and the various imperfections are increased from zero, y will be
smooth in o and can be expanded as,

y(u)=1+ oy (u)+O(o2), (14)

where y1 captures the speed fluctuations induced by the net interaction of the O(o) effects.
Note that condition (5) is assumed to maintain as o is increased from zero, thereby keeping
the mean rotational rate very close to y=1.
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3.2.    

As mentioned above, it is convenient to have an explicit expression for the rotor
acceleration, since it is a measure of the torsional vibration amplitude. This can be derived
by first noting that since o�1 and y1 is bounded, y(u) oscillates about unity and is never
zero. Therefore, equation (3a) can be divided through by y in order to obtain an expression
for s0i in terms of si , s'i and y. Substitution of this expression into equation (3b) and
utilization of equation (4) gives an exact expression for yy'(u). Utilizing the definition
o0 n, the scalings in equation (13) and (12), the expansion in equation (14), and condition
(5), a series approximation for yy' in terms of o can be obtained as follows:

yy'(u)=−o612 s
2

j=1 0−n2

2
sjs'j −0n21

2

g0(sj )sj +
dg0(sj )

dsj
s'2j 1−G	 u sin (nu)7+O(o2), (15)

where

g0(si )= gi (si ; d
 ij =0)=X1−04n2 + n4

16 1s2
i , i=1, 2.

The above equation, which expresses the angular acceleration in terms of the absorber
motions and the applied torque, shows that the nondimensionalized rotor acceleration is
of order o, a result consistent with the known limiting case as o:0.

3.3.   

The method of averaging is used in the next section to obtain approximate solutions
for the dynamic response for 0Q o�1. Some modifications of the equations of motion are
carried out in order to obtain equations in the correct form for the application of
averaging. First, based on the expansions in equations (14) and (15), one can see that y'/y
is the same as yy' to leading order in o. Then by dividing equation (3a) through by y, a
modified equation describing the absorber dynamics is obtained, into which the o-series
approximation of y'/y is substituted. Expanding the result in terms of o yields a set of
weakly coupled, weakly nonlinear oscillators for the absorber dyamics. These oscillators,
in which the dynamics of the rotor has been eliminated to first order, are

s0i +0n21
2

si = ofi (s1, s2, s'1 , s'2 , u)+O(o2), i=1, 2, (16)

where

fi (s1, s2, s'1 , s'2 , u)=−m̃as'i − hi (si )

+[s'i + g0(si )]$12 s
2

j=1 0−n2

2
sjs'j −0n21

2

g0(sj )sj +
dg0(sj )

dsj
s'2j 1−G	 u sin (nu)% ,

hi (si )=
1
2

s
j

jd	 ijsj−1
i .
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3.4. 

W These equations are weakly coupled. The weak coupling arises due to the fact that
the absorbers are not directly coupled in a physical sense, but only indirectly so
through the rotor, and each absorber has only a small effect on the rotor due to its
small relative inertia.

W The equations of motion are also weakly nonlinear, even though the amplitude of
motion of the absorbers is not restricted to be small. The weakness of the nonlinearity
is due to the epicycloidal path used for the absorbers, which renders a linear equation
of motion valid for all feasible absorber amplitudes when the rotor speed is constant,
and to the scaling assumptions. Again, due to the smallness of the absorbers’ inertias,
the rotor speed is nearly constant [cf. equations (14)], rendering nearly linear
equations of motion.

W This system has two degrees of freedom with a 1:1 internal resonance. In addition,
the excitation is in a 2:1 resonance with respect to the absorbers, and it contains both
parametric and direct components. In this regard, the system has some similarity to
the vibrations of nearly-square plates as considered by Yang and Sethna [16].

W The effects of the path imperfections are present in the functions hi , which results
from the term 1/2(dxi /dsi )y in the equation of motion (3a).

4. THE AVERAGED EQUATIONS

In this section some standard coordinate changes are first carried out which put the
equations in the desired form. Averaging is then applied, and this followed by a discussion
of the system parameters which appear in the averaged equations, and by a presentation
of a modified form of the equations for a special scaling of the imperfections. With these
forms of the averaged equations in hand, the search for approximate steady-state solutions
is carried out in the following sections, the results of which are used for performance
evaluation.

4.1.    

A linear coordinate transformation between absorber displacements is first used to
simplify the ensuing analysis. This transformation splits the leading order system dynamics
into two invariant subspaces, representing the unison motion and its complement. A
subsequent transformation to amplitude/phase coordinates will render the desired form.

The first transformation is given by

j=
s1 + s2

2
and h=

s1 − s2

2
. (17)

Substituting transformation (17) into equations (16) yields the following transformed
equations of motion:

j0+0n21
2

j= of
 j (j, j', h, h', u)+O(o2),

h0+0n21
2

h= of
 h (j, j', h, h', u)+O(o2), (18)
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where

f
 j (j, j', h, h', u)=−m̃aj'− 1
2h1(j+ h)− 1

2h2(j− h)

+ [j'+ 1
2g

0(j+ h)+ 1
2g

0(j− h)]Y(j+ h, j− h, u), (19a)

f
 h (j, j', h, h', u)=−m̃ah'− 1
2h1(j+ h)+ 1

2h2(j− h)

+ [h'+ 1
2g

0(j+ h)− 1
2g

0(j− h)]Y(j+ h, j− h, u), (19b)

Y(s1, s2, u)+
1
2

s
2

j=1 0−n2

2
sjs'j −0n21

2

g0(sj )sj +
dg0(sj )

dsj
s'2j 1−G	 u sin (nu). (19c)

Next, the coordinate transformation to polar coordinates given by

j= rj cos 08j −
nu

2 1 , j'= nrj sin 08j −
nu

2 1 ,

h= rh cos 08h −
nu

2 1 , h'= nrh sin 08h −
nu

2 1 , (20)

is applied. Substituting the above transformations into equations (18) yields a set of
first-order differential equations which describe the dynamics of rj , 8j , rh and 8h in the
periodic standard form [17], as follows:

r'j =
2o

n
F
 j (rj , 8j , rh , 8h , u) sin 08j −

nu

2 1+O(o2), (21a)

rj8'j =
2o

n
F
 j (rj , 8j , rh , 8h , u) cos 08j −

nu

2 1+O(o2), (21b)

r'h =
2o

n
F
 h (rj , 8j , rh , 8h , u) sin 08h −

nu

2 1+O(o2), (21c)

rh8'h =
2o

n
F
 h (rj , 8j , rh , 8h , u) cos 08h −

nu

2 1+O(o2), (21d)

where the functions F
 j and F
 h are simply f
 j and f
 h expressd, respectively, in terms of
coordinates rj , 8j , rh and 8h , as obtained by incorporating transformation (20) into f
 j and
f
 h . Equations (21a)–(21d) are in the required form for the application of the method of
averaging.

4.2.   

Considering only the first order terms in o in equations (21), averaging is performed in
u over one period of the excitation, 4p/n. The resulting averaged equations are expressed
in terms of the first-order averaged variables r̄j , 8̄j , r̄h and 8̄h . Due to the complicated
nature of the system, this process results in many terms in the form of integrals which do
not yield closed-form expressions.
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In order to obtain simplified, approximate estimates of the rotor acceleration and the
operating torque range, it is assumed that the oscillation amplitudes of the absorbers, i.e.
r̄j and r̄h , are small and of the same order, denoted by O(r̄). The averaged equations are
then expanded in terms of r̄j and r̄h . This yields to the following set of truncated, averaged
equations, where each has been expanded to the desired order, O(r̄3):

dr̄j

du

=

−1
2

m̃ar̄j −0d	 h2 r̄h

n
+

3d	 h4 r̄3
h

2n
+

3d	 h4 r̄2
j r̄h

2n 1 sin (8̄j − 8̄h )+
1
4

G	 u r̄j sin 28̄j

+ cn1 r̄j r̄2
h sin (28̄j −28̄h )+O(r̄5), (22a)

r̄j

d8̄j

du

=0−d	 j2

n
−

n
41 r̄j −0d	 h2 r̄h

n
+

3d	 h4 r̄3
h

2n
+

9d	 h4 r̄2
j r̄h

2n 1 cos (8̄j − 8̄h )

+
1
4

G	 u r̄j cos 28̄j + cn1 r̄j r̄2
h cos (28̄j −28̄h )+ cn2 r̄3

j + cn3 r̄j r̄2
h +O(r̄5), (22b)

dr̄h

du

=

−1
2

m̃ar̄h −0d	 h2 r̄j

n
+

3d	 h4 r̄3
j

2n
+

3d	 h4 r̄2
h r̄j

2n 1 sin (8̄h − 8̄j )+
1
4

G	 u r̄h sin 28̄h

+ cn1 r̄h r̄2
j sin (28̄h −28̄j )+O(r̄5), (22c)

r̄h

d8̄h

du

=−

d	 j2

n
r̄h −0d	 h2 r̄j

n
+

3d	 h4 r̄3
j

2n
+

9d	 h4 r̄2
h r̄j

2n 1 cos (8̄h − 8̄j )+
1
4

G	 u r̄h cos 28̄h

+ cn1 r̄h r̄2
j cos (28̄h −28̄j )− cn4 r̄3

h + cn3 r̄h r̄2
j +O(r̄5), (22d)

where

u
 0 ou, d	 j2 =
d	 12 + d	 22

2
, d	 h2 =

d	 12 − d	 22

2
, d	 j4 =

d	 14 + d	 24

2
, d	 h4 =

d	 14 − d	 24

2
,

cn1 =
4n3 − n5

256
−

3d	 j4

2n
, cn2 =

n5

128
−

3d	 j4

2n
, cn3 =

4n3 + n5

128
−

3d	 j4

2n

and cn4 =
n3

32
+

3d	 j4

2n
. (23)

These equations contain the essential dynamics that arise from the resonant structure
of this system. The stationary solutions of equations (22) represent the amplitudes and
phases of the periodic steady-state responses of the absorbers, as represented by the unison
and opposition modal coordinates. Non-stationary steady-state solutions are represented
by amplitude and phase modulated oscillations of the averaged equations.

The averaged equations (22) as derived using these polar coordinates are singular when
either j of h is zero. Therefore, they cannot be used for determining the stability of any
trivial solutions that may exist. When faced with this situation, the following
transformation is employed:

Aj = r̄j cos 8̄j , Bj = r̄j sin 8̄j , Ah = r̄h cos 8̄h , and Bh = r̄h sin 8̄h , (24)

which yields an equivalent set of truncated, averaged equations expressed in Cartesian
coordinates. These are given in Appendix A.
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4.3.  

The averaged equations (22) depend on seven dimensionless parameters: m̃a , G	 u , n, d	 j2,
d	 n2, d	 j4 and d	 h4.

Note that the effects of imperfections are present in the truncated averaged equations
only through the second and fourth order terms as they are defined in terms of the path
formulations given in equation (8). The coefficients of odd powers of s in the path
formulation, that is, d
 j1, d
 h1, d
 j3 and d
 h3, do not appear in the averaged equations (22). Thus,
the analysis indicates that such terms, which measure the deviation of the paths’ symmetry
about their vertices, have an insignificant effect on the resonant responses. As defined in
equation (23), the parameters d	 j2 and d	 h2 are the sum and difference of d	 12 and d	 22,
respectively, and these result from the net effects of linear frequency imperfections in the
dynamics of each absorber. The parameters d	 j4 and d	 h4 result from fourth-order
imperfections in the absorber path realization, i.e. they capture the leading-order nonlinear
imperfections that are symmetric about the path vertex.

Of the other system parameters, m̃a is the absorber damping which, in practice, is
designed to be small and will be regarded as fixed in the following bifurcation analysis.
G	 u is the amplitude of the disturbing torque, and this is used as the primary bifurcation
parameter. Since the absorber motions are prevented from reaching the cusps on their
paths, the applicable range for G	 u is finite for each steady-state solution branch of the
averaged equations (22). The value of n is fixed by the loading condition (e.g. in an
N-cylinder, four-stroke internal combustion engine, n=N/2). Note that the value of n
affects the signs of the cns, and can even render them zero if d	 j4 =0. These differences can
result in qualitatively different bifurcation diagrams, as shown below.

The term −nr̄j /4 in equation (22b), which results from expansion of the term (n/2)2g(si )si

in the o-order function Y in equation (19c), is of particular interest. This term characterizes
the difference between the linear frequencies of the two modes, i.e. −nr̄j /4 plays the role
of internal mistuning on the system dynamics. When this term is nonzero, the perturbed
system dynamics are not invariant under the exchange of the two modes. It is subsequently
shown that this term plays a key role in obtaining the desired performance of the
subharmonic absorber system.

4.4.       

In order to evaluate absorber performance in terms of the two performance measures
defined above, the steady-state solutions of the truncated averaged equations (22) must be
determined. However, due to the complexity of the expanded averaged equations (22), it
is impossible to find (even approximate) steady-state solutions in closed form. A certain
class of approximate solutions can be found by employing the following, additional scaling
assumption on the mistuning parameters: it is assumed that the absorbers are designed in
such a manner that they are nearly identical. The motivation behind such an assumption
is that one can intentionally add such imperfections in the manufacturing process in a
controlled manner so that these dominate the smaller, uncontrollable imperfections, and
such variations will be identical to both absorber paths.

This assumption leads to the following scaling of the imperfection parameters:

d	 hi

d	 ji

=O(o) for i=1, 2, . . . . (25)

Note that these imperfections include an intentional mistuning of the absorbers’ natural
frequency relative to the order of the applied torque. With scaling (25) adopted, the terms
involving the d	 h s in the averaged equations in equations (22) are pushed out to O(o2), and
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thus have no influence on the dynamics at this level of approximation. This scaling
assumption will be revisited near the end of the paper.

The resulting modified, truncated averaged equations are given by

dr̄j

du

=

−1
2

m̃ar̄j +
1
4

G	 u r̄j sin 28̄j − cn1 r̄j r̄2
h sin (28̄j −28̄h ), (26a)

r̄j

d8̄j

du

=0−d	 j2

n
−

n
41 r̄j +

1
4

G	 u r̄j cos 28̄j + cn1 r̄j r̄2
h cos (28̄j −28̄h )+ cn2 r̄3

j + cn3 r̄j r̄2
h ,

(26b)

dr̄h

du

=

−1
2

m̃ar̄h +
1
4

G	 u r̄h sin 28̄h − cn1 r̄h r̄2
j sin (28̄h −28̄j ), (26c)

r̄h

d8̄h

du

=

−d	 j2

n
r̄h +

1
4

G	 u r̄h cos 28̄h + cn1 r̄h r̄2
j cos (28̄h −28̄j )− cn4 r̄3

h + cn3 r̄h r̄2
j , (26d)

where u
 , cn1, cn2, cn3 and cn4 are the same as defined in equations (23). Utilizing
transformation (24), the corresponding averaged equations (26) in term of Cartesian
coordinates are determined, and these are given by equations (A2a)–(A2d) in Appendix
A.

It is seen from equations (26) that in this case G	 u , n, d	 j2 and d	 j4 are the important
parameters to be considered in the bifurcation analysis. d	 j2 enters the averaged equations
as a linear frequency detuning, while d	 j4 affects the coefficients of the first-order nonlinear
terms. If d	 j4 is very small, the value of n will dictate the coefficients of the nonlinear terms,
thus fixing the nature of the bifurcation diagram.

It is interesting to point out that the truncated, averaged equations (26) have the same
structure as those analyzed by Yang and Sethna [16] in a study of the flexural vibrations
of nearly square plates subjected to parametric in-plane excitation. In that study, two
detuning parameters with respect to the natural frequencies of each individual oscillator
were considered as the primary bifurcation parameters. Here, in addition to the
imperfection and mistuning parameters, the disturbing torque level G	 u is considered as a
primary bifurcation parameter in order to evaluate the system performance under various
levels of the disturbing torque. For other related works on bifurcation analysis for
dynamical systems composed of weakly-coupled oscillators and subject to internal and/or
external resonances, see Bajaj et al. [18], and Ariaratnam and Sri Namachchivaya [19].

5. APPROXIMATE STEADY-STATE SOLUTIONS

This section begins with a brief discussion of the various types of steady-state responses
that can occur, followed by a detailed analysis of each. Of particular interest are the
existence, stability, and range of validity for these responses. The results obtained are used
for the performance evaluation that follows in the next section.

5.1.  

With assumption (25) adopted, it is evident from the averaged equations (26) that for
any given system parameters there exists a trivial solution which leads to no motion of
the absorbers; i.e. r̄j = r̄h =0. Also, there are solutions with r̄j =0, r̄h $ 0 and with r̄h =0,
r̄j $ 0. These are single-mode solutions and are denoted by ‘‘SM’’ in the following.
Solutions with r̄j $ 0 and r̄h =0 are unison mode solutions, and these synchronized
motions of the two absorbers are denoted as ‘‘SM1’’. Solutions with r̄j =0 and r̄h $ 0
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Figure 2. The bifurcation diagram for n=2, m̃a =0·05, d	 j2 =0·06 and d	 j4 =0. The solid lines represent stable
solutions and the dashed lines represent unstable solutions; (a) amplitudes of j, (b) amplitudes of h.

correspond to motions in which the two absorbers undergo oscillations with the same
amplitude but are p out-of-phase, and these are denoted by ‘‘SM2’’. In addition, there exist
coupled-mode solutions with r̄j and r̄h both non-zero, denoted by ‘‘CM’’. Note that for
certain values of the system parameters, periodic solutions arising from Hopf bifurcations
may exist for the averaged equations, representing amplitude and phase modulated
oscillations of the absorbers. However, it will be shown that such motions are not
physically possible for this system, due to the finite physical limits of the absorber paths.

As each solution type is considered, results are presented in the form of bifurcation
diagrams depicted by plotting the amplitudes of the two modes versus the torque amplitude
G	 u . For this study the value of the absorber damping m̃a is fixed, whereas several possible
values for n, d	 j2 and d	 j4 are considered. The solution branches are represented in closed
form whenever possible, and are otherwise determined using numerical tools such as
AUTO [20] and/or the Newton–Raphson method. Figure 2 shows a representative
bifurcation diagram for the system with n=2, m̃a =0·05, d	 j2 =0·06 and d	 j4 =0. This
diagram is typical and depicts the general features that appear in the following analysis.

5.2.   

It is evident from the averaged equations (26) that the zero solution; i.e. r̄j = r̄h =0,
exists for any set of system parameters. Its stability can be determined by the eigenvalues
of the corresponding Jacobian matrix of equations (A2a)–(A2d) evaluated at the origin.
It is found that this matrix has the form

J4×4 =$A2×2

O2×2

O2×2

B2×2% , (27)
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where O2×2 represents the two-by-two zero matrix. The eigenvalues of J thus coincide with
the eigenvalues of A and B, which are

l1,2 =
−m̃a

2
2

1
4n

z−16d	 2j2 +G	 2
un2, l3,4 =

−m̃a

2
2

1
4n

z−(n2 +4d	 j2)2 +G	 2
un2.

(28a, b)

Based on these eigenvalues, it is easy to show that for nonzero damping (m̃a $ 0) there are
no Hopf bifurcations from the zero solution. The bifurcation sets on which an eigenvalue
becomes zero are shown in Figure 3, which is depicted for the system parameters, n=2
and m̃a =0·05. In this figure, the zero solution is stable under the curve AOB and unstable
above AOB. Note that a double zero eigenvalue condition holds at the point labelled O.
All bifurcations from the zero solution are pitchfork bifurcations; super- and subcritical
cases both occur, depending on the values of the system parameters.

Of course, this solution is not affected by the limitations imposed on absorber motion.

5.3. - 

5.3.1. Solution branches
There exist two types of single-mode solutions, defined above and labelled SM1 and

SM2. For SM1, the synchronous responses, the solutions with r̄j $ 0 are determined by
equations (26a) and (26b), yielding

r̄2
j+ =

1
4cn2 04d	 j2

n
+ n+zG	 2

u −4m̃2
a1 , r̄2

j− =
1

4cn2 04d	 j2

n
+ n−zG	 2

u −4m̃2
a1 , (29)

tan 28̄j+ =
2m̃a

zG	 2
u −4m̃2

a

, tan 28̄j− =
−2m̃a

zG	 2
u −4m̃2

a

. (30)

Figure 3. The bifurcation set of the zero solution for d	 h2 = d	 h4 =0 and m̃a =0·05.
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The solution branches with r̄j+ and r̄j− on SM1 are denoted by SM1+ and SM1−,
respectively.

Utilizing the same procedure and notation, the solutions for SM2, the out-of-phase
responses, are found to be

r̄2
h+ =

1
4cn4 0−4d	 j2

n
+zG	 2

u −4m̃2
a1 , r̄2

h− =
1

4cn4 0−4d	 j2

n
−zG	 2

u −4m̃2
a1 , (31)

tan 28̄h+ =
2m̃a

zG	 2
u −4m̃2

a

, tan 28̄h− =
−2m̃a

zG	 2
u −4m̃2

a

. (32)

The existence of SM1− and SM2− depend on the signs of [(4d	 j2/n)+ n] and [−4d	 j2/n],
respectively. Since =d	 j2=�1, it follows that =4d	 j2/n \�n, and therefore SM1− always exists
for the parameter ranges of interest. However, the existence of SM2− depends critically
on the sign of d	 j2. When SM1− and SM2− exist, they arise from the zero solution via
pitchfork bifurcations and then merge with SM1+ and SM2+, respectively, in saddle-node
bifurcations. If SM2− does not exist, SM2+ arises directly from the zero solution through
a pitchfork bifurcation. Note that the internal mistuning plays an important role in
determining the nature of these single-mode solutions.

5.3.2. Stability
With these solutions in hand, a stability analysis is conducted by evaluating the

attendant Jacobian matrix for the various single-mode solutions. It is found, as in the case
for the zero solution, that the Jacobian matrix possesses the structure given in equation
(27). Hence, the eigenvalues of this Jacobian matrix satisfy two second-order polynomials
of the form

l2 + m̃al+DA =0, l2 + m̃al+DB =0, (33)

derived from the block matrices A and B, respectively, in equation (27). Since m̃a q 0, the
stability of the SM1 and SM2 solutions can be determined entirely by the signs of DA and
DB . Furthermore, due to the fact that m̃a q 0 no Hopf bifurcations occur from SM1 or
SM2. The stability for each branch on SM1 and SM2 is now determined.

Utilizing transformations (24) at zero amplitudes, DA and DB can be derived. For SM1,

DA12 =2cn2 r̄2
j2 zG	 2

u −4m̃2
a . (34)

Since DA1− is negative on the branch SM1−, this leads to one positive eigenvalue, and thus
SM1− is always unstable. For the branch SM1+, DA1+ is positive and this leads to negative
eigenvalues. Thus, the stability of SM1+ must be determined by the sign of DB1+, which
is given in Appendix B. It can be shown that for d	 j small, DB1+ is positive. Hence, the
branch SM1+ is stable.

For SM2,

DB22 =2cn4 r̄2
h2 zG	 2

u −4m̃2
a . (35)

Applying the same approach as that used for SM1 yields the following results: The branch
SM2− is always unstable and the stability of the branch SM2+ is determined by the sign
of DA2+, which is given in Appendix C. It can be shown that for d	 j small, DA2+ becomes
negative at a level of G	 u denoted by G	 *u , at which point a secondary bifurcation occurs.
An example of this is shown in Figure 2, where SM2+ is unstable for G	 u qG	 *u .
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5.3.3. Range of validity
Based on condition (9), only a finite torque range is valid for each branch. (Only stable

solution branches are considered here, since these will dictate the steady-state behavior.)
For SM1+, using equations (29) a condition can be determined such that point A in Figure
2 is above the cusp amplitude, thus violating condition (9). This condition is given by

d	 j2 q 2ncn2 − (n2/4), (36)

which, if satisfied, implies that no stable SM1 solutions are valid. For the case with n=2
and small d	 j4, the right-hand side of the above equation is approximately −3/4, and thus
the condition is satisfied for any realistic value of d	 j2. The same argument sustains for
different values of n, and it is thus concluded that for small d	 ji (i=2, 4), the stable solutions
on the branch SM1 do not correspond to legitimate steady-state responses for the
equations of motion (3). Note that this result is largely due to the internal mistuning
mentioned in section 4.2, since the term ‘‘−n2/4’’ in the right-hand side of inequality (36)
arises from the effect of internal mistuning.

On the other hand, it is seen from equations (31), representing the SM2 single-mode
solutions, that internal mistuning has no effect (to leading order) on the out-of-phase
responses. This allows the stable solution SM2+ to be valid up to a torque level denoted
by F	�u , at which the absorbers hit the cusps. (Note that F	�u , is a rescaled version of F	�u as
defined in equation (10); i.e. F	�u = eF	�u .) Based on the solutions given in equations (31) and
the restriction on the absorber motions given by the approximation in equation (9), F	�u can
be approximated by

F	�u 2$0 2n
n2 +4

+
96d	 j4

n3(n2 +4)
+

4d	 j2

n 1
2

+4m̃2
a%

1/2

. (37)

This limit is now compared against the secondary bifurcation torque amplitude, G	 *u ,
described in the previous section, in order to determine which event comes first, the
secondary bifurcation or the absorbers reaching the cusps. Utilizing the information given
in Appendix C, the limit torque can be numerically computed and compared with equation
(37). It is determined that G	 *u qF	�u over the following ranges of the mistuning parameters:
d
 j2$ [−0·03, 0·03] and d
 j4$ [0·03, 0·03]. Therefore, the important conclusion is reached that
for small imperfections the SM2+ responses are stable all the way out to the cusp
amplitude, and no secondary bifurcations occur. This stable SM2+ branch is central to
the effectiveness of the subharmonic vibration absorber system, as described in section 6.1
below.

5.4. - 

The existence, stability and range of validity of the coupled-mode solutions are now
considered.

5.4.1. Solution branches and their stability
Observing the averaged equations (26), one can first classify all possible steady-state

solutions into two distinct groups: the first satisfies sin (28̄j −28̄h )=0 and the other does
not. Solutions that satisfy sin (28̄j −28̄h )=0 are sought first. This property implies
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cos (28̄j −28̄h )=21, which enables one to solve the averaged equations (26) for
steady-state solutions. As a result, eight steady-state solutions are found, given by

r̄2
j15 =$ cn4

4(cn2cn4 + (cn3 2 cn1)2)%$n+
4d	 j2

n
+

4(cn3 2 cn1)
cn4n

d	 j2

+0−cn3 3 cn1

cn4
+11(G	 2

u −4m̃2
a )1/2% , (38a)

r̄2
h15 =$ cn2

4(cn2cn4 + (cn3 2 cn1)2)%$−4d	 j2

n
+

(cn3 2 cn1)
cn2 0n+

4d	 j2

n 1
+0cn3 2 cn1

cn2
+11(G	 2

u −4m̃2
a )1/2% , (38b)

r̄2
j26 =$ cn4

4(cn2cn4 + (cn3 2 cn1)2)%$n+
4d	 j2

n
+

4(cn3 2 cn1)
cn4n

d	 j2

+0cn3 2 cn1

cn4
+11(G	 2

u −4m̃2
a )1/2% , (38c)

r̄2
h26 =$ cn2

4(cn2cn4 + (cn3 2 cn1)2)%$−4d	 j2

n
+

(cn3 2 cn1)
cn2 0n+

4d	 j2

n 1
+0cn3 2 cn1

cn2
−11(G	 2

u −4m̃2
a )1/2% , (38d)

r̄2
j37 =$ cn4

4(cn2cn4 + (cn3 2 cn1)2)%$n+
4d	 j2

n
+

4(cn3 2 cn1)
cn4n

d	 j2

+0−cn3 3 cn1

cn4
−11(G	 2

u −4m̃2
a )1/2% , (38e)

r̄2
h37 =$ cn2

4(cn2cn4 + (cn3 2 cn1)2)%$−4d	 j
n

+
(cn3 2 cn1)

cn2 0n+
4d	 j2

n 1
+0−cn3 3 cn1

cn2
+11(G	 2

u −4m̃2
a )1/2% , (38f)
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r̄2
j48 =$ cn4

4(cn2cn4 + (cn3 2 cn1)2)%$n+
4d	 j2

n
+

4(cn3 2 cn1)
cn4n

d	 j2

+0cn3 2 cn1

cn4
−11(G	 2

u −4m̃2
a )1/2% , (38g)

r̄2
h48 =$ cn2

4(cn2cn4 + (cn3 2 cn1)2)%$−4d	 j2

n
+

(cn3 2 cn1)
cn2 0n+

4d	 j2

n 1
+0−cn3 3 cn1

cn2
−11(G	 2

u −4m̃2
a )1/2% , (38h)

with phases given by
sin (28̄ji )= sin (28̄hi )=2m̃a /G	 u , 1E iE 8. (39)

The stability of these coupled-mode solutions can be determined by evaluating the
appropriate Jacobian matrix on the corresponding solution branches and examining their
eigenvalues. In this case, the characteristic equation is fourth order. Due to the complexity
involved in the expressions for the stability criteria, explicit results are not given here.

The solutions in the other group, which satisfy sin (28̄j −28̄h )$ 0, are obtained by
utilizing the computational algorithm outlined in Appendix D. The corresponding stability
is then determined by numerically evaluating the Jacobian matrix on the solution branches.

By comparing the single-mode and coupled solutions (denoted CM1–CM4), one finds
that all coupled-mode solutions bifurcate from single-mode solution through pitchfork
bifurcations. Also, no isolated coupled-mode solution branches are found to exist.

5.4.2. Range of validity
It is of practical importance to identify the set of stable coupled-mode solutions which

satisfy condition (9), i.e. those that are physically possible. It turns out that no such
solutions are valid, and this is shown by a simple argument, and backed up by detailed
calculations.

First, it is known that all coupled-mode solutions bifurcate from single-mode solutions.
Furthermore, in section 5.3.3. it was determined that all single-mode branches are beyond
their range of validity when they undergo secondary bifurcations to coupled-mode
solutions. Therefore, no coupled-mode solutions are valid for the range of parameters of
interest.

A more detailed calculation follows that allows one to directly check condition (9) for
all coupled-mode solutions at once over a range of parameters. To facilitate the method,
a relationship between the two modal amplitudes, r̄j and r̄h , is first derived. Setting the
right-hand side of the averaged equations (26) equal to zero yields

0=−2m̃a +G	 u sin 28̄j −4cn1 r̄2
h sin (28̄j −28̄h ), (40a)

0=0−4d	 j2

n
− n1+G	 u cos 28̄j +4cn1 r̄2

h cos (28̄j −28̄h )+4cn2 r̄2
j +4cn3 r̄2

h , (40b)
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Figure 4. The relationship between r̄h and r̄j in coupled-mode solutions for n=2, d	 j2 =0·05 and d	 j4 =0.

0=−2m̃a +G	 u sin 28̄h −4cn1 r̄2
j sin (28̄h −28̄j ), (40c)

0=
−4d	 j2

n
+G	 u cos 28̄h +4cn1 r̄2

j cos (28̄h −28̄j )−4cn4 r̄2
h +4cn3 r̄2

j . (40d)

Elimination of the term cos (28̄h −28̄j ) from equations (40b) and (40d) gives

0−4d	 j2

n
− n1 r̄2

j +
4d	 j2

n
r̄2

h −G	 u (r̄2
h cos 28̄h − r̄2

j cos 28̄j )+4cn2 r̄4
j +4cn4 r̄4

h =0. (41)

Next, incorporating equations (40a) and (40c) into equations (40b) and (40d), respectively,
one can represent cos 28̄j and cos 28̄h as functions of G	 u , m̃a , d	 j2, n, r̄2

j and r̄2
h , as follows:

cos 28̄j =
−1

8cn1G	 u r̄2
j $G	 2

u +16c2
n1 r̄4

j −4m̃2
a −04d	 j2

n
+4cn4 r̄2

h −4cn3 r̄2
j1

2

% , (42a)

cos 28̄h =
−1

8cn1G	 u r̄2
h $G	 2

u +16c2
n1 r̄4

h −4m̃2
a −04d	 j2

n
+ n−4cn2 r̄2

j −4cn3 r̄2
h1

2

% . (42b)

Substituting the above equations into equation (41) yields the following fourth-order
polynomial which governs the relationship between the two modal amplitudes on any
coupled-mode, periodic, steady-state response:

a1 r̄4
j + a2 r̄4

h + a3 r̄2
j r̄2

h + a4 r̄2
j + a5 r̄2

h + a6 =0, (43)



   1085

where

a1 =2cn1cn2 − c2
n1 − c2

n2 + c2
n3, a2 =2cn1cn4 + c2

n1 − c2
n3 + c2

n4,

a3 =−2(cn2cn3 + cn4cn3), a4 = (cn2 − cn1)02d	 j2

n
+

n
21−

2d	 j2

n
cn3,

a5 =2(cn1 + cn3 + cn4)0d	 j2

n 1+
ncn3

2
and a6 =

d	 2j2

n2 −0d	 j2

n
+

n
41

2

. (44)

Note that this polynomial does not depend on the torque amplitudeG	 u . Thus, for fixed values
of n and the system parameters, this constraint represents two curves in the r̄j–r̄h plane. An
example for n=2, d	 j2 =0·05 and d	 j4 =0 is shown in Figure 4. Also shown in this figure is
the set of amplitudes that satisfy condition (9), represented by the interior of the triangle
OAB. It is seen that all points on the two curves generated by the polynomial (43) are outside
the triangle OAB. Thus, no coupled-mode solutions are physically possible for this set of
parameters. One can generate such graphical information for any values of n, d	 j2 and d	 j4 in
order to check the feasibility of the coupled-mode solutions.

5.5. 

Bifurcation diagrams showing the periodic steady-state responses and their stabilities
can now be generated. Figure 2 shows a typical bifurcation diagram for d	 j2 =0·06, d	 j4 =0
and n=2. However, as shown above, many of the solution branches are nonphysical.

AUTO [20] was utilized to confirm the results obtained above, and consistency was
found in every case checked. In addition, AUTO also found some nonphysical periodic
solutions to equations (26), all of which arise from the coupled-mode solutions via Hopf
bifurcations.

Based on the results obtained in this section, the followng conclusion is drawn. For
reasonable ranges of the system parameters, the only viable (i.e. stable) steady-state system
responses are the trivial solution and those on the branch SM2+. To ensure this conclusion
for a given system, one can use the criterion in equation (36) and the method provided
in section 5.4.2 to confirm that SM2+ is the only nontrivial, stable solution that satisfies
condition (9).

When the system is undamped and the paths are perfect, the solution SM2+ reduces to
the idealized subharmonic absorber system response given in equations (7a) and (7b).
Therefore, it is not too surprising that this solution will persist in the face of imperfections,
and that it will offer good performance as a torsional vibration absorber. The details of
this performance are considered next.

6. ABSORBER PERFORMANCE AND DESIGN GUIDELINES

This section contains the main results of the paper, which describe the effectiveness of
the absorber system in terms of the steady-state response derived above. Considered in turn
are the following: some general features of the response, mathematical expressions for the
two measures of system performance, detailed descriptions of the effects of the various
types of imperfections (including those ignored in the analysis) on the system response,
a summary of the results in the form of design guidelines, and verification by simulations.
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Figure 5. The response bifurcation diagram for SM2 with n=2, d
 j4 =0, m̂a =0·0083 and various d
 j2. (a) r̄h

for positive d
 j2s where d
 j2 =0·03, 0·02, 0·01, 0·00 in curves A, B, C, D, respectively; (b) rotor accelerations; (c)
r̄h for negative d
 j2s where d
 j2 =0·00, −0·01, −0·02, −0·03 in curves D, E, F, G, respectively; (d) rotor
accelerations.
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Figure 6. The response bifurcation diagram for SM2 with n=2, d
 j2 =0·02, m̂a =0·0083 and various d
 j4. (a)
r̄h for where d
 j4 =0·03, 0·02, 0·01, 0·00, −0·01, −0·02, −0·03 in curves A, B, C, D, E, F, G, respectively; (b)
rotor accelerations.

6.1.     

In this section it is shown that the stable branch SM2+ is very favorable in terms of
meeting the two goals outlined in section 2.4.

For a given disturbing torque level G
 u , the absorber dynamics can converge to any stable
steady-state solution, depending on initial conditions. Utilizing the expression for the
angular acceleration yy' provided in equation (15) and the solution branches obtained by
the averaged equations, one can compute the rotor acceleration on each branch. The main
conclusion of these results is the following: for various values of n, small d	 js and zero d	 h ,
among all branches, the SM2 branches lead to the smallest >yy'>ss over the feasible range
of the disturbing torque.

This result can be explained in terms of the harmonics contained in yy', as follows:
it is observed that the steady-state response of each absorber si (u) (i=1, 2) is dominated
by a harmonic term of order n/2 (since they are nearly linear). From this it can be
determined that the net rotor acceleration yy' is generally composed of all odd
harmonics, but only one even harmonic, which comes from the term −2n2sis'j in the
summation. Now, suppose there is a non-zero r̄j for the steady-state solution. In
equation (15) it renders the summation of odd harmonics nonzero. Thus, these
harmonics will be amplified, leading to a large value of >yy'>ss . Contrarily, if r̄j =0 for
a steady-state solution, i.e. if the two absorbers simply move in an out-of-phase manner
with the sample amplitude, the odd harmonics resulting from the motion of the two
absorbers cancel each other in the summation, and only the even harmonic term survives.
In fact, it is very close to a pure harmonic of order n, and it is precisely this effect which
is used to counteract the harmonic disturbing torque, resulting in a small net angular
acceleration.
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Since the solution branch SM2+ is desirable in terms of the rotor acceleration, it is useful
to ensure that it is the only possible stable steady-state response. For a given set or range
of parameters, one can employ the criterion given by equation (36) and the method
provided in section 5.4.2. to verify that the other potential solutions are not viable. Based
on this, one can be quite certain that the absorber performance predicted in the following
section can be achieved.

6.2.    SM2+

The peak rotor acceleration >yy'>ss is first derived. On SM2+, the absorber motions are
represented by the single-mode solution given in equations (31) and (32). These solutions
are incorporated in expression (15) for the rotor acceleration, the scalings in equations (12)
and (13) are employed, and terms up to O(o) are retained, yielding

>yy'>ss 2$(2m̂a )2 +04d	 j2

n
+

6d
 j4 r̄2
h+

n 1
2

%
1/2

on SM2+, (45)

where r̄2
h+ is given by equation (31). Note that this reduces to zero in the undamped,

perfectly tuned case.
The applied torque range F
�u is simply set by the upper torque limit at which the

absorbers hit the cusps on the SM2+ branch, given by equation (37). Utilizing the scaling
assumptions (11)–(13), one can obtain F
�u by scaling equation (37), resulting in

F
�u 2$0 2nn

n2 +4
+

96d
 j4

n3(n2 +4)
+

4d
 j2

n 1
2

+4m̂2
a%

1/2

. (46)

Figure 7. The response bifurcation diagram for n=2, m̃a =0·05, d
 j2 =0·01, d
 h2 =0·01, d
 j4 =0 and d
 h4 =0.
The solid lines represent stable solutions and the dashed lines represent unstable solutions; (a) amplitudes of j;
(b) amplitudes of h.
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Figure 8. The response bifurcation diagram of SM2 for n=2, m̂a =0·0083, d
 j2 =0·02 and d
 j4 =0·01, d
 h4 =0
and various d
 h2. (a) Amplitudes of j, where d
 h2 =0·0, 0·01, 0·02 in curves A, B, C, respectively; (b) amplitudes
of h; (c) rotor accelerations.

This is the generalization of the result given in equation (10) for the ideal system,
accounting for the effects of absorber damping, mistuning and imperfections. Note that
this result assumes that the cusp is reached before a secondary bifurcation takes place, and
this can be checked for each case by the procedure outlined in section 5.3.3.

6.3.    

The effects of d
 j2, d
 j4, d
 h2 and d
 h4 are considered in turn in this section. Recall that these
scaled parameters capture the effects of mistunings and imperfections associated with the
second and fourth order coefficients in the path function (8).

Observing the solutions for SM2+ given by equation (31), one sees that a small non-zero
value of d
 j4 does not qualitatively change system behavior since it only affects the
magnitude of the coefficient cn4. Based on this fact, the effects of d
 j2 on absorber
performance are first considered for the case when d
 j4 is zero.

It is seen from equation (45) that for d
 j4 =0, >yy'>ss depends on the parameters m̂a , n,
and d
 j2 (for d
 j4 =0), but it is independent of the disturbing torque level and independent
of the absorbers’ amplitudes. This indicates that the rotor acceleration saturates after the
bifurcation point, a result that is valid until G
 u reaches F
�u . The results for this case are
shown in bifurcation diagrams for various values of d
 j2 with n=2, m̂a =0·0083 (m̃a =0·05)
and d
 j4 =0 and are now described. (Recall that the parameter d
 j2 controls the linear
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of the absorbers.) Figures 5(a) and 5(c) show the response of r̄h for positive and negative
values of d
 j2, respectively (recall that r̄j =0 on the branch being considered). Figure 5(b)
and 5(d) show the corresponding rotor accelerations up to the torque level F	�u , where the
absorber motions hit the cusps. It can be seen from these figures that the level of rotor
acceleration is smallest for zero mistuning, case D (as expected). However, the largest
torque range is obtained for the largest positive value of mistuning considered here, case
A. It is also observed that the amplitudes of the absorber motions are much larger for
negative values of d
 j2 than for positive values. Furthermore, for negative values of d
 j2, a
highly undesirable subcritical bifurcation takes the system to the desired subharmonic
solution as the torque level is increased. Therefore, in order to ensure a large torque range,
to avoid jump behaviors, and to keep >yy'>ss small, it is suggested that the absorber paths
be designed such that d
 j2 is very small and positive. The selection of a specific value for
d
 j2 will depend on the criteria at hand, as tradeoffs between the torque range and torsional
vibration amplitudes can be made, as well as on the level of uncertainties in the paths due
to uncontrollable effects.

The effects of nonzero d
 j4 on absorber performance are considered next. Throughout
this discussion it is assumed that d
 j2 is positive and small. Utilizing equations (45) and (46),
bifurcation diagrams are generated for various values of d
 j4. An example for n=2,
m̂a =0·0083 and d
 j2 =0·02 is shown in Figure 6. By comparing the responses with positive
and negative values of d
 j4, it is seen that negative values offer better performance in terms

Figure 9. The simulated and analytical responses of SM2 for n=2, m̂a =0·0083, d
 j2 =0·02, d
 j4 =0·01,
d
 h2 =0·005 and d
 h4 =0·005. (a) Amplitudes of j; (b) amplitudes of h; (c) rotor accelerations.
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of the rotor acceleration, but they also reduce the applied torque range. On the other hand,
although positive values of d
 j4 lead to a larger torque range, they cause an increase in the
level of rotor acceleration.

The results given above are based on scaling assumption (25), which says that the
differences between the two absorber paths are smaller than the general level of
imperfections. This condition is now relaxed in order to consider the effects of nonzero,
small d
 h s. Due to the complexity of the resulting averaged equations, bifurcation diagrams
can only be generated numerically, in this case using AUTO. The effects of the
imperfection parameter d
 h2 are considered first. Figure 7 shows the bifurcation diagram
with the same system parameters used in Figure 2, but with d
 h2 =0·01 and d
 h4 =0.
Comparing Figures 2 and 7, it is seen that they are qualitatively the same, except that the
zero amplitude parts of the solutions in the two single-mode responses are replaced by
nonzero, but very small, amplitudes. (Note that the solutions denoted by SM1+, SM1−

and SM2+ in the figure are labelled so for convenience and for comparison purposes only,
since they are in fact coupled-mode solutions in this case.) Figure 8 shows the solutions
for r̄j , r̄h , and the corresponding rotor accelerations on the branch SM2+ for d
 j2 =0·02,
d
 j4 =0·01, d
 h4 =0 and various values of d
 h2. It is seen that the existence of a nonzero
component of r̄j decreases the applicable torque range and increases the rotor acceleration
as the magnitude of d
 h2 becomes larger. Both effects deteriorate absorber performance. In
addition, the parameter d
 h4 is found to have the same detrimental effects on the system
behavior as d
 h2. Therefore, both of these parameters should be kept as small as possible.

6.4.  

In summary, the above results indicate that the following general guidelines be followed
when designing the paths for a subharmonic absorber system:

, The absorber paths should be kept as identical as possible.
, The nonlinear imperfection parameter d
 j4 should be made as small as possible.
, The linear mistuning parameter d
 j2 should be selected to be small and positive, at a

level that will dominate other imperfection uncertainties.

In summary, identical, half-order epicycloidal paths that are very slightly overtuned should
be used in order to achieve robust performance.

6.5.  

Numerical simulations for the equations of motion (3) are carried out in order to verify
the system dynamics as predicted by the averaged equations. The system parameters used
throughout this section are n=0·166 and n=2, values taked from the study of a 2·5-liter,
in-line, four stroke, four cylinder engine by Denman [7]. The damping coefficients are taken
to be m̂0 =0·05 and m̂a =0·0083 (m̃a =0·05). The following truncated absorber path
formulation, expressed in terms of the d
 s, is employed; equation (8) given by

xi (si ; d
 ij )=1− d
 i1si −$0n21
2

+ d
 i2%s2
i − d
 i3s3

i − d
 i4s4
i , i=1, 2. (47)

Higher-order imperfections are not included here, since it is evident that they will not
contribute to the first-order nonlinear resonant responses. In all cases the coefficients of
odd powers of s, d
 j1, d
 h1, d
 j3 and d
 h3 are assumed to be small. The simulations show that
these d
 s have virtually no effect on the system response, as predicted by the analysis.
Overall, excellent consistency is found between the analytical results derived from the
non-truncated averaged equations (22) and the simulations.
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A representative case is chosen to demonstrate the simulation results and their
comparison with the analysis. Imperfection parameters for this case are taken to be

d
 j1 =0·01, d
 h1 =0·01, d
 j2 =0·02, d
 h2 =0·005,

d
 j3 =0·01, d
 h3 =0·01, d
 j4 =0·01, d
 h4 =0·005. (48)

Here the linear frequency mistuning for the two absorbers is 2% (for n=2) with a
deviation between absorbers of 0·5% represented by d
 h2 =0·005. A small, positive
d
 j4 =0·01 is chosen, which enlarges the range of the disturbing torque but also increases
rotor acceleration amplitudes. In order to demonstrate the influence of different nonlinear
characteristics between the two paths, a small deviation represented by d
 h4 =0·005 is
chosen. The bifurcation diagram using this set of values is shown in Figure 9. The solid
lines represent the absorber amplitude solutions, as computed by AUTO using the
non-truncated averaged equations (22), and the corresponding rotor acceleration, which
is calculated by the O(o) term of yy'(u) given in equation (15). The circles are the results
obtained from simulations, after allowing the system to settle into its steady-state response.
It is seen from this figure that the averaged equations (22) offer a very satisfactory
prediction of the system dynamics, even for this moderate value of the perturbation
parameter, o=0·166.

Fig. 10. Caption on p. 1094
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Fig. 10. Caption on p. 1094.

Figure 10 shows the system responses and the angular accelerations of the rotor at points
A, B, C, and D indicated in Figure 9. Solid lines represent the simulated responses while
the dashed lines represent the responses predicted by the nontruncated averaged equations
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Figure 10. The absorber responses and rotor accelerations for G
 u =0·038, 0·055, 0·085, 0·11, in cases A, B,
C, D respectively. These cases correspond to points A, B, C and D in Figure 9. (a, d, g, j) Amplitudes of j;
(b, e, h, k) amplitudes of h; (c, f, i, l) rotor accelerations.

(22). Note that the scale used to depict the j(u) response in Figure 10(a, d, g, j) is expanded
for greater clarity. It is seen from subfigures (b, c, e, f, h, i, k, l) that the approximations
obtained from averaging for the crucial response variables yy'(u) and h(u) are very
accurate.

At point A, the simulations show that the absorber motions are dictated by the
non-resonant responses, i.e. the absorbers respond in a synchronized manner at the
frequency of the disturbing torque (essentially, the linear system response). For this case
the averaged equations predict zero resonant responses for both j(u) and h(u). At point
B, as predicted by the averaged equations, a subharmonic resonant response with a
frequency half that of the disturbing torque has appeared. This response possesses a
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non-zero response in the difference coordinate h(u) and a very small response in the sum
coordinate j(u). Figure 10(d, e) shows that the simulated h(u) matches well with the
analysis, while the simulated j(u) is approximately a superposition of the non-resonant
response shown in Figure 10(a) (which is not predicted by the analysis) and the resonant
response (which is predicted). In this case, the absorber motions are dominated by the
out-of-phase component h(u). From (g) to (j), as G
 u is increased, the response of j(u) grows
and begins to influence the rotor acceleration. In addition, higher harmonics begin to have
a more significant effect on the response.

Using the simulations, one also finds consistency between the predicted and simulated
torque ranges. This follows since h(u) is well approximated by the analytical results, and
in the range of large torque amplitudes the absorber motion is dominated by this
component.

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The performance of a pair of subharmonic absorbers as proposed by reference [15] has
been re-assessed by incorporating imperfections into the absorber paths. Based onk
approximate solutions obtained by a particular scaling of the sytem parameters and
applying the method of averaging, it is found that the imperfections entering the path
function at even orders of the path variable s have a strong effect on the desired resonant
responses of the system. It is also found that differences between the two paths of the
absorbers have a generally deleterious effect on system performance. On the other hand,
imperfections that are identical to the two paths can be used to trade off between the
operating range of the system and the level of torsional vibration and, more importantly,
it may be possible to use these to intentionally dominate the potentially detrimental effects
of uncertainties in the absorber path.

This work only considered a rotating system with a single pair of subharmonic
absorbers. In practice, one may need to station several absorber masses along and around
the axis of rotation. These multi-mass arrangements are also used for balancing and/or
due to restricted space around the rotor. In many cases, these absorbers are of identical
mass and have identical path tuning. Recent studies in which the absorber paths are tuned
to the order of the disturbing torque (the usual, linear tuning) have shown that
multi-absorber systems can exhibit a qualitatively different absorber performance than
their idealized counterparts composed of a single mass [13, 14]. This discrepancy arises due
to a dynamic bifurcation of the system response that depends on the number of absorber
masses employed. In a similar investigation, the authors have shown that the design
guidelines presented here will also ensure that systems of identical, multiple, subharmonic
absorber pairs will behave as predicted, and as desired [21]. Detailed results from that study
will be presented in a forthcoming paper.
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APPENDIX A: AVERAGED EQUATIONS IN CARTESIAN COORDINATES

The truncated, averaged equations in Cartesian coordinates are given by

dAj

du

=

−1
2

m̃aAj +0d	 j2

n
+

n
41Bj +

d	 h2

n
Bh +

1
4

G	 uBj

− cn2Bj (A2
j +B2

j )+ cn5AjAhBh − cn6BjA2
h + cn7BjB2

h

+
3d	 h4

2n
(A2

hBh +A2
jBh +3BhB2

j +B3
h +2AhAjBj ), (A1a)
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dBj

du

=−1

2 m̃aBj −0d	 j2

n + n
41Aj −

d	 h2

n Ah +
1
4 G	 uAj

+ cn2Aj (A2
j +B2

j )− cn5BjAhBh + cn6AjB2
h − cn7AjA2

h ,

−3d	 h4

2n (B2
hAh +B2

jAh +3AhA2
j +A3

h +2BhAjBj ), (A1b)

dAh

du

=−1

2 m̃aAh +
d	 j2

n Bh +
d	 h2

n Bj +
1
4 G	 uBh

+ cn4Bh (A2
h +B2

h )+ cn5AhAjBj − cn6BhA2
j + cn7BhB2

j ,

+3d	 h4

2n (A2
jBj +A2

hBj +3BjB2
h +B3

j +2AjBhAh ), (A1c)

dBh

du

=−1

2 m̃aBh −
d	 h2

n Aj −
d	 j2

n Ah +
1
4 G	 uAh

− cn4Ah (A2
h +B2

h )− cn5AjBjBh + cn6AhB2
j − cn7AhA2

j

−3d	 h4

2n (B2
jAj +B2

hAj +3AjA2
h +A3

j +2BjAhBh ). (A1d)

where

cn5 =
4n3 − n5

128
+

3d	 j4

n
, cn6 =

12n3 + n5

256
−

3d	 j4

2n
and cn7 =

−4n3 −3n5

256
+

3d	 j4

2n
.

Applying the assumption (25), the above equations become

dAj

du

=

−1
2

m̃aAj +0d	 j2

n
+

n
41Bj +

1
4

G	 uBj − cn2Bj (A2
j +B2

j )

+ cn5AjAhBh − cn6BjA2
h + cn7BjB2

h , (A2a)

dBj

du

=

−1
2

m̃aBj −0d	 j2

n
+

n
41Aj +

1
4

G	 uAj + cn2Aj (A2
j +B2

j )

− cn5BjAhBh + cn6AjB2
h − cn7AjA2

h , (A2b)

dAh

du

=

−1
2

m̃aAh +
d	 j2

n
Bh +

1
4

G	 uBh + cn4Bh (A2
h +B2

h )

+ cn5AhAjBj − cn6BhA2
j + cn7BhB2

j , (A2c)

dBh

du

=

−1
2

m̃aBh −
d	 j2

n
Ah +

1
4

G	 uAh − cn4Ah (A2
h +B2

h )

− cn5AjBjBh + cn6AhB2
j − cn7AhA2

j . (A2d)
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APPENDIX B: STABILITY OF SOLUTIONS ON SM1+

Incorporating the SM1+ solutions given by equation (31) into the sub-block matrix B
in the corresponding Jacobian, one can obtain the determinant of B, DB1+. It is given by

DB1+ =−
G	 2

u

16
+

m̃2
a

4
+

d	 2j2

n2

−0cn6 + cn7

16cn2 1(G	 2
u −4m̃2

a )1/2 $(G	 2
u −4m̃2

a )1/2 +
4d	 j2

n
+ n%

+0c2
n6 −6cn6cn7 + c2

n7 − c2
n5

128c2
n2 1$(G	 2

u −4m̃2
a )1/2 +

4d	 j2

n
+ n%

2

+0c2
n5 − c2

n6 −2cn6cn7 − c2
n7

128c2
n2 101−

8m̃a

G	 2
u 1$(G	 2

u −4m̃2
a )1/2 +

4d	 j2

n
+ n%

2

−$(cn6 − cn7)d	 j2

4cn2n %$(G	 2
u −4m̃2

a )1/2 +
4d	 j2

n
+ n% .

APPENDIX C: STABILITY OF SOLUTIONS ON SM2+

Incorporating the SM2+ solutions given by equation (32) into the sub-block matrix A
in the corresponding Jacobian, one can obtain the determinant of A, DA2+. It is given by

DA2+ =
d	 j2

2
−

G	 2
u

16
+

m̃2
a

4
+

d	 2j2

n2 +
n2

16
+0cn6 + cn7

16cn4 1(G	 2
u −4m̃2

a )1/2 $(G	 2
u −4m̃2

a )1/2 −
4d	 j2

n %
+0c2

n6 −6cn6cn7 + c2
n7 − c2

n5

128c2
n4 1$(G	 2

u −4m̃2
a )1/2 −

4d	 j2

n %
2

+0c2
n5 − c2

n6 −2cn6cn7 − c2
n7

128c2
n4 101−

8m̃a

G	 2
u 1$(G	 2

u −4m̃2
a )1/2 −

4d	 j2

n %
2

−0cn6 − cn7

4cn4 10d	 j2

n
+

n
41$(G	 2

u −4m̃2
a )1/2 −

4d	 j2

n % .

APPENDIX D: THE NUMERICAL ALGORITHM FOR COUPLED-MODE SOLUTIONS

The coupled-mode solutions are numerically computed by the following steps.

(1) Compute the possible sets of solutions for r̄j and r̄h using the polynomial (43)
(2) For each set of solutions for r̄j and r̄h , calculate the corresponding applied torque

amplitude by combining equations (40a) and (40c), which yields

2m̃a (r̄2
h + r̄2

j )+G	 u (r̄2
h sin 28̄h + r̄2

j sin 28̄j )=0. (D1)
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The dependence of equation (D1) on 8̄h and 8̄j is then eliminated by using equations
(42a) and (42b). This results in a nonlinear algebraic equation which can be used to solve
for G	 u for given values of r̄j and r̄h . Thus, one can find the values of r̄j and r̄h for a given
G	 u in a reverse manner. Using equations (42a) and (42b) again, one can determine the
corresponding values of 8̄j and 8̄h .


