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For the rolling slipping state of a main drive system, the present paper established the
nonlinear mechanical model of the main drive system and used the Krilov–Bogolubov
method to produce the solution of the nonlinear mechanical model, and ascertained the
condition of generating self-excited vibration. It also presented a method of calculating
the upper and the lower limit angular velocities between which self-excited vibration of the
main drive system occurs. A relationship of rolling force, friction coefficient between
rool and rolled piece, and rolling angular velocity was derived to judge whether
self-excited vibration happens or not. The method may provide a valuable way to
avoid self-excited vibration and thus prevent the instantaneous breakage of the system due
to the self-excited vibration.
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1. INTRODUCTION

With the development of the steel industry, the accretion of rolling mill capacity, and the
increase of electromotor number, it often occurs that the parts of a rolling mill, fasten parts
and the rotor elements of an electromotor are damaged due to torsional vibration in the
spindle system [1, 2], especially due to the self-excited torsional vibration. Once the
self-excited vibration arises, the torque amplification factor (TAF) of the system abruptly
increases to a very high value which brings about instantaneous breakage of the whole
rolling system. The destruction owing to the self-excited vibration is far more serious than
other damage. A practical way of judging whether the system will generate the self-excited
vibration in certain conditions and preventing it in the rolling process is needed for
designers and operators of the system. The present endeavor is meant to meet this need.

2. MATHEMATICAL MODEL OF MAIN DRIVE SYSTEM IN ROLLING
SLIPPING STATE

In the case of rolling slipping, the main drive system is separated into two rolling systems
from the rolled piece: an upper rolling system and a lower rolling system in a blooming
mill. The model of a spring–mass system is shown in Figure 1.

2.1.     

Due to the wear, the total backlash between two inertias is assumed as 2D. The elastic
restoring force between the ith and the i+th inertias can be expressed as:

Fi,i+1(ui − ui+1)= 80ki,i+1(ui − ui+1)− ki,i+1D

ki,i+1(ui − ui+1)+ ki,i+1D

for
−DE ui − ui+1 ED

DE ui − ui+1 Qa
−aE ui − ui+1 E−D
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Figure 1. (N) Inertia model of typical mill stand.

Fi,i+1(ui − ui+1)= ki,i+1li,i+1 − of(li,i+1)

of(li,j+1)= 8ki,i+1li,i+1

ki,i+1D

−ki,i+1D

for
−DE li,i+1D

DE li,i+1 Ea
−aE li,i+1 E−D

where

li,i+1 = ui − ui+1.

2.2.       

The friction coefficient between the roll and the rolled piece changes with the relative
slipping linear velocity, and its function can be written as: [3] u= u0 − cn+ dn3. The
parameters, u0, c and d, are determined by experiment. Since the friction torque acting on
the roll is: Mn =N× u×(D/2) in rolling slipping, we have: Mn =m0 −m1vn +m3v

3
n ,

where m0 = (1/2)NDu0, m1 = (1/4)ND2c, m3 = (1/16)ND4d, D=diameter of roll and
N=rolling force.

2.3.         

For the typical rolling system shown in Figure 1, its equation of motion is expressed
as:

[J][u� ]+ [C� ]{u}+[K]{u}= {Q} (1)

where
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3. EQUATION SOLVING

3.1.           

  

The spring–mass system without exciting forces, its natural frequencies are
0, p1, p2, . . . , pn , respectively, and its modal matrix is:

[um ]= [1 f2 f3 · · · fn ].

Decoupling equation (1) into equations set in the principal coordinates:

[Jp ]{u� }+[Cp ]{u� p}+[Kp ]{up}= {Qp}. (2)

Where [Cp ]= [um ]T[C][um ] is a tridiagonal matrix, we can consider it as an approximately
diagonal matrix and replace the off-diagonal elements with zero and

{Qp}=[um ]T{Q}, Qpi = s
n

j=1

Qjfji , Kpi = JpiP2
i , Jpi = s

n

j=1

Jjf
2
ji , Cpi =2ziPiJpi ,

zi =modal ratio of damping.
In the vibration of a multi-degree-of-freedom system with the action of exciting forces,

the internal damping existing in the system often makes the vibration of high frequency
disappear rapidly, and only the vibration of lower frequency will arise. Although there exist
vibrations of different frequencies, only one of them dominates in their action on the
system. Therefore we suppose that the self-excited vibration in rolling slipping state is the
combination of the torsional vibration of the ith frequency with the rotation of rigid body
in a certain angular velocity v. Hence, we have:

Jp1u� p1 =M0 − (m0 −m1vn +m3v
3
n ) (3)

Jpiu� pi +C'piupi +Kpiupi =M0 −fni (m0 −m1vn +m3v
3
n )+ (f2i −f3i )of(u2 − u3)

+ · · ·+ (fn−1,i −fn,i )of(un−1 − un ) (i=2, 3, . . . , n). (4)
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From un−1 − un =(fn−1,i −fn,i )upi and vn =dun /dt, we can get vn = u� pi +fniu� pi ,
substituting them in equations (3) and (4):

Jp1u� p1 =M0 − [m0 −m1(u� p1 +fniu� p1)+m3(u� pi +fniu� pi)3] (5)

Jpiu� pi + kpiupi =M0 +M0u� p1 −Cpiu� pi −fni [m0 −m1(u� p1 +fniu� pi )+m3(u� p1 +fniu� pi )3]

+(f2i −f3i )of [(f2i −f3i )upi ]+ · · ·+ (fn−1,i −fn,i )of [(fn−1,i −fn,i )upi ].

(6)

3.2.    – 

For the torsional vibration of the ith mode frequency, the first approximation of
equation (6) can be calculated: upi = a cos f, in which a and f can be determined by:

da
dt

= oA1(a)

df

dt
= pi + oB1(a)

,

substituting equation

8upi = a cos f

u� pi =−api sin f

u� p1 =v

in equation (6), and rearranging:

Jpiu� pi + kpiupi =M0 −fnim0 +fnim1v−fnim3v
3 − 3

2f
3
nim3a2p2

i v

+(Cpiapi −fnim1api +3fnim3v
2api + 3

4f
4
nim3a3p3

i ) sin f+minimal term

+{(f2i −f3i )of [(f2i −f3i )a cos f]+ · · ·+ (fn−1,i −fni )of
×[(fn−1,i −fni )a cos f]}.

Since the last term at the right-hand side of the above equation is an even function, and
the second term is an odd function, we have:

oA1(a)=−
1

2piJpi
(Cpiapi −f2

nim1api +3f2
nim3v

2api + 3
4f

4
nim3a3p3

i ) (7)

oB1(a)=−
1

2papiJpi g
2p

0

{(f2i −f3i )of [(f2i −f3i )a cos f]+ · · ·

+ (fn−1,i −fni )of [(fn−1,i −fni )a cos f]} cos f df. (8)

Let

d=
m1f

2
ni −Cpi −3f2

nim3v
2

Jpi
, k=

m1f
2
ni −Cpi −3f2

nim3v
2

3/4m3p2
i f

4
ni

and substitute them in equation (7). Then:

da
dt

= oA1(a)=
a
2

d01−
a2

k1,
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and its integration is:

a=
a0 exp[(d/2)t]

X1+
1
k

a2
0 (exp(dt)−1)

.

Let:

l=m1f
2
ni −Cpi −3f2

nim3v
2

thus:

d=
l

Jpi
, k=

l

3/4m3p2
i f

4
ni

.

From the above outcome,

if lq 0 t:a, then lim
t:a

a=zk

if lQ 0 t:a, then lim
t:a

a=0.

Therefore, that the value of l is positive or negative is the basis of judging whether the
self-excited vibration can arise or not, and its steady-state response is:

a=zk=
2

pifniXm1 −Cpi /f2
ni

3m3
−v2. (9)

Since of(ui−1 − ui ) is a piece-wise linear function, the right-hand side of equation (8) should
be a piece-wise linear function too when it is transformed into the function in the principal
coordinates:

of(um−1 − um )= 8Km−1,m (um−1 − um )
Km−1,mD

−Km−1,mD

for
−DE um−1 − um ED

DE um−1 − um Qa
−aQ um−1 − um E −D

.

Now, we use c to rewrite it and let c0 be the minimal root of D= a cos c, i.e. minimal
value of c0 =arccos (D/2); we have:

of(a cos c)= 8Km−1,m (fm−1,i −fmi )a cos c

Km−1,m (fm−1,i −fmi )a cos c0

−Km−1,m (fm−1,i −fmi )a cos c0

for
c0 EcE p−c0

0EcEc0

p−c0 EcE p

.

Substituting the above equation in equation (8) and rearranging:

oB1(a)=
−1

2papiJi g
2p

0

of(a cos c) cos c dcof(a cos c)= 8Ka cos c

Ka cos c0

−Ka cos c0

c0 EcE p−c0

0EcEc0

p−c0 EcE p

where

K= s
n

j=2

Kj,j+1(fji −fj+1,i )2.
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As F(c)= of(a cos c) cos c is an even function

oB1(a)=−
4

2papiJi 0g
c0

0

Ka cos c0 cos c dc+g
p/2

c0

Ka cos2 c dc1
=−

K
ppiJi $arcsin

D

2
+

D

a X1−0Da1
2

%.
From (df/dt)= pi + oB1(a), we know that the backlash in the main drive system makes
the frequency of self-excited vibration somewhat smaller than its natural frequency. Its
frequency is:

p'i = pi −
K

ppiJi $arcsin
D

a
+

D

aX1−0D21
2

%.

4. EXAMPLE AND ANALYSIS

Using a 1150 blooming mill as an example and applying the above results, we analyse
its dynamic characteristics in rolling slipping state. Due to the rolling slipping, the whole
main drive system is separated into an upper and a lower rolling system. Now we analyse
the upper rolling system shown in Figure 2.

4.1.    [4]         

  

J1 =0·60389 t.m.s2, J2 =0·75662 t.m.s2, J3 =0·88628 t.m.s2,

J4 =0·29208 t.m.s2, J5 =0·573 t.m.s2, k12 =46267·0918 t.m/rad,

k23 =25352·34735 t.m/rad, k34 =7356·073762 t.m/rad,

k45 =97549·1243 t.m/rad, N=694 t, D=1100 mm, D=0·008 rad.

When the linear velocity of the roll surface is in the interval n= =0·3–3 m/s, by
experiment, [3] we have: u0 =0·2–0·49, c=0·03–0·09, d=0·0015–0·0033. Then
m0 =76·34–187·03, m1 =6·30–18·89, m3 =0·095–0·2096. According to the given

Figure 2. Upper rolling system of 1150 blooming mill.
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parameters and using the QR method, we can obtain its natural frequencies and modes
of the upper rolling system. Since the ratio of damping can be shown as:

zi =
1

2pj
ln

xi

xi+ j
,

we can calculate each ratio of damping. According to

Jpi = s
5

j=1

f2
ijJj and Cpi =2zipiJpi ,

we have Jp1 =3·11196, Jp2 =4·2544, Jp3 =2·2215, Jp4 =1·54, Jp5 =7412521·029 and
Cp1 =0, Cp2 =16·938, Cp3 =19·2589, Cp4 =24·579, Cp5 =214113045·6.

4.2.     -     

With m1 =6·30–18·89, m3 =0·095–0·2096, and according to lq 0, i.e.

F(v, m1, m3)=m1 −Cpi
1
f2

5i
−3f2

5im3v
2 q 0,

we can get the relationship between m1, m3 and a certain mode self-excited vibration shown
in Figure 3. From Figure 3, we can see that the dashed area is the self-excited vibration
range of m1 and m3. To a certain mode self-excited vibration whether it can arise or not
is also determined by angular velocity of the rolling system, such as the two judging lines
L1 and L2 (shown in Figure 3) that correspond to the lower and the upper limit angular
velocities between which the self-excited vibration may arise. In other words, if the angular
velocity of the rolling system is not between the lower limit angular velocity and the upper
limit angular velocity, this mode self-excited vibration will never arise. To the system
mentioned here, its lower limit angular velocity and upper limit angular velocity of the
second mode self-excited vibration are 30·1 rpm and 77·5 rpm respectively.

Substituting u� pi =−api sin f and u� p1 =v in equation (5) and rearranging:

Jp1u� p1 =M0 −m0 −m1v−m3v
3 − 3

2m3f
2
nia2p2

i v+minimal term

+(−fnim1api +3fnim3v
2api + 3

4f
3
nim3a3p3

i ) sin f.

Since the constant term on the right-hand side of the above equation is the secular term,
we have

M0 −m0 −m1v−m3v
3 − 3

2m3f
2
nia2p2

i v=0.

Figure 3. Criterion drawing of a certain mode self-excited vibration.
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Figure 4. Mesh of m1, m3.

Substituting equation (9)

f(v, m0, m1, m3) = (M0 −m0)−0m1 −
2Cpi

fni 1v+5m3v
3 =0.

Now, we divide the dashed area (shown in Figure 3) into mesh (shown in Figure 4) so
that the range of m1 and the range of m3 are divided into 20 steps. To each node (m1, m3)
of the mesh, we use Newton iteration method to calculate v in the range of m0, divided
into 200 steps, and then under the condition of F(v, m1, m3)q 0, sift out the values
(m0, m1, m3) in which the rolling system generates self-excited vibration. The sifted results
are shown in Figure 5.

According to Figure 5, we can easily find that the greater the value of m0, the more
possible it is for the rolling system to generate the self-excited vibration. From the equation
m0 = (1/2)NDu0, we know that if the rolling system is in rolling slipping state with large
enough rolling force, it is quite possible to generate self-excited vibration. Since the TAF
due to the self-excited vibration is very large, it often causes the instantaneous breakage
of the whole main drive system.

Figure 5. m0, m1, m3 producing self-excited vibration.
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5. CONCLUSION

The present author established a universal nonlinear mechanical model for the main
drive system of a rolling mill. This paper presents a method of calculating the amplitude
and frequency of self-excited vibration in rolling slipping state and the limit angular
velocities between which the system may generate self-excited vibration. The paper also
analyses the relationship between the system parameters and the self-excited vibration.
This work may offer a method to analyse the dynamic characteristics of the nonlinear
rolling systems and serve as a basis for the prevention of self-excited vibration in rolling
production technology. Also engineers may use the method developed here as a reference
in an attempt to reduce or eliminate self-excited vibration in their design process.
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