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1. INTRODUCTION

The use of structural elements of anisotropic characteristics is quite common in several
fields of technology: from aerospace applications to the design of ocean structures, deep
sumersibles, etc., passing through printed circuit boards (PCBs) used in electronic
equipments [1]. In a great majority of circumstances these elements are used in dynamic
environments and the design engineer confronts the challenge of finding their dynamic
parameters: natural frequencies, mode shapes, etc. The present study deals with free
vibrations of simply supported, rectangular, anisotropic plates.

The displacement amplitude is expressed in terms of a truncated double Fourier series
and the four lower natural frequency coefficients are determined using the classical
Rayleigh—Ritz method.

The present study undertakes two tasks: (1) it presents a series of numerical experiments
whereby the convergence of the procedure is studied as the number of terms utilized is
increased, when considering bare rectangular anisotropic plates. It is believed that the
question of convergence is of basic mathematical and mechanics interest since the
co-ordinate functions do not satisfy the natural conditions at the edges*[2]. (2) it analyzes
the behavior of anisotropic plates carrying elastically mounted concentrated masses.

2. APPROXIMATE ANALYTICAL SOLUTION

The Rayleigh—Ritz method requires minimization of the combined functional [3]
JIW o'l = J,[W]+ J.[v], (1

where J,[W’] is the functional for the displacement amplitude of the plate and J,[v] is
the corresponding functional for the displacement amplitude of the concentrated mass (see
Figure 1). Each functional, in turn, has the general form

J=U-T, 2

U and T being the maximum strain energy and maximum kinetic energy of the plate and
mass—spring system, respectively.

* The co-ordinate functions, instead, satisfy identically the geometric and the natural boundary conditions in
the case of isotropic and orthotropic plates when the elastic axes are parallel to the boundaries of the plate.
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As is well known, see for example reference [2], in the case of rectangular plates of total
general anisotropy its functional can be written as

1 >wy W’ PPW’ oW\
J, = 2L {D”<ax’2> + 2D, ox7 0y” + Dzz( ay/2>
oW’ W’ W’
* 4|:D<6x> * D<@>:|<6x ay'>

W N L, pho? 2 g 4o .
+4D56<6X,ay,> }dx dy —2L W dx dy . (3&)

P

W’ is the true displacement amplitude of the plate; the first integral in equation (3a), taken
over the actual area of the plate surface 4,, is the (maximum) strain energy of the plate
and the second integral measures the maximum kinetic energy of the plate.

The functional for the concentrated mass—spring has the form [3]
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Figure 1. Vibrating system under consideration.
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TABLE 1

Values of the first four frequency coefficients Q, to Q, in the case of a bare anisotropic
rectangular plate as the number of terms of the approximated displacement function is
increased. Five different values of the aspect ratio bla have been depicted

Aspect Number
ratio of terms Q, Q, Q, Q,
1/2 100 39-62 69-11 113-0 124-0
225 3945 68-74 112-5 123-8
400 39-36 68-57 112:3 123-6
625 39-30 68-45 112-1 123-6
900 3926 68-38 112-0 1235
2/3 100 27-45 54-67 77-42 91-92
225 27-32 54-42 77-17 91-59
400 27-24 54-33 77-03 91-41
625 27-19 5425 76:95 91-30
900 27-16 5421 76-89 91-23
1 100 18-37 37-07 50-79 61-48
225 18-28 36:92 50-63 61-28
400 18-24 36-86 50-54 61-15
625 18-21 36-81 50-48 61-09
900 18-18 3678 50-44 61-04
32 100 13-93 23-60 3723 43-87
225 13-89 23-50 37-07 43-79
400 13-86 23-44 37-00 43-76
625 13-84 23-40 3695 43-73
900 13-83 23-38 3692 43-72
2 100 12-24 18:17 26:58 37-10
225 12:21 18-10 2646 36:92
400 12:19 18:05 2640 36-85
625 12-18 18-03 2636 36-80
900 12-18 18-01 26:33 3677

where v is the mass displacement amplitude relative to the plate; (v’ + W) is the total
displacement amplitude of the point pass; and W, is the displacement amplitude of the
plate at the concentrated mass position.

In equations (3a) above D; are the well known flexural rigidities of the (anisotropic)
plate, which, for an isotropic plate, takes the simple form

ER? (I—=w)

D, =Dzz=m; Dy, =vDy; D = 5

Dll; D]ﬁ = Dz(, = 0. (4)

If the length of the sides of the rectangular plate are ¢ and b in the x and y
directions, respectively, equations (3a) and (3b) can be cast in a non-dimensional form by
introducing

W=W//a, x=x']a, y=y'|lb, v=0va. ®)
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One gets, for the functional for the whole system of Figure 1,

g2 _ [ [(ewY  2Dp@wew 1Dy (EWY
m[—D”_ ., axz 1,]2 D11 axz ayz 1,]4 D]] ay2
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TABLE 2

Values of the first four frequency coefficients Qi to Qu in the case of an anisotropic rectangular
plate with bla = 2/3 for different positions and values of the mass—spring system (Figure 2)

Mass
co-ordinates m/M, Kda*/Dy, Q, Q, Q; Q,

x/a =050 1 3-853 27-36 54-33 77-03
y/b =050 0-1 10 11-58 28-59 54-33 77-03
o0 22-64 54-33 77-03 79-11

(a)
1 2:224 27-36 54-33 77-03
0-3 10 6-729 28-42 54-33 77-03
o0 17-50 54-33 6861 77-03
x/a =05 1 3-859 2729 54-38 77-03
y/b =050 0-1 10 11-78 27-86 54-86 77-07
0 24-55 46-62 7591 87-98

(b)
1 2-228 27-29 54-38 77-03
0-3 10 6-828 27-78 54-84 77-07
0 20-06 40-90 7474 84-89
x/a = 0-50 1 3-860 27-30 54-34 77-06
y/b =05 0-1 10 11-81 27-89 54-48 77-34
o0 24-57 50-80 67-14 91-02

(©)
1 2-229 27-30 54-34 77-06
03 10 6-843 27-80 54-48 7733
o0 20-28 45-36 61-98 90-59
x/a =075 1 3-862 27-28 54-34 77-07
y/b =05 0-1 10 11-89 27-69 54-42 77-46
o0 25-30 5142 6319 89-90

(d)
1 2:229 27-28 54-34 77-07
0-3 10 6-883 27-63 54-41 77-45

0 21-61 44-08 58:13 89-19
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TABLE 3

Values of the first four frequency coefficients Q, to Q. in the case of an anisotropic square
plate for different positions and values of the mass—spring system (Figure 2)

Mass
co-ordinates m/M, Ka*/ Dy, Q , Q; Q,

x/a = 0-50 1 3-138 18-35 3686 50-54
y/b =050 0-1 10 9-178 19-66 36-86 50-54
o0 1520 36-86 50-54 5325

(a)
1 1-812 18:35 3686 50-54
0-3 10 5-368 19-41 36-86 50-54
o0 11-80 36-86 46-47 50-54
x/a =075 1 3-147 18-29 3687 50-56
y/b =050 0-1 10 9-457 18-93 37-01 50-82
0 16-48 34-38 44-92 60-74

(b)
1 1-816 18-29 36-87 50-56
0-3 10 5-501 18-80 37-01 50-81
o0 13-66 30:69 41-96 60-28
x/a =050 1 3-145 18-29 3691 50-54
y/b =05 0-1 10 9-413 18-92 37-38 50-59
o0 16-41 31-67 49-65 5891

(©)
1 1-816 18-29 3691 50-54
0-3 10 5476 18-79 37-36 50-58
o0 13-43 27-82 48-95 57-12
x/a =05 1 3-149 18-27 36-86 50-58
y/b =05 0-1 10 9-558 1871 36:94 50-97
o0 16-97 34-89 41-94 60-08

(d)
1 1-818 18-27 36-86 50-58
0-3 10 5-548 18:62 3693 50-96
o0 14-57 29-79 39-05 59-55

where as usual, Q* = phw*a*/D,, is the non-dimensional frequency coefficient; M = m/M,,
M, being the total mass of the plate; K,, = k,,a’/D,, is the non-dimensional mass—spring
constant and 1 = b/a is the aspect ratio of the plate.

Expressing the displacement amplitude W(x, y) of the plate in an approximate way by
means of a double Fourier series [4],

W.x,y) = ZN“ f by sin (mnx) sin (nmy), (7

n=1m=1

one gets as a final expression for the functional the sum

N M N M D k2n2 D ) nZZZ
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where
N M
W= WX, yu) =Y, Y. by sin (mnx,,) sin (nmy,,). )
n=1m=1

is the amplitude displacement of the plate at the mass position, x, and y, being the
non-dimensional mass position co-ordinates. Also

Ass = L sin (knx) sin (Imy) sin (mnx) sin (nmy) dx dy, (10)
Asc = L sin (knx) cos (mnx) sin (Iry) cos (nmy) dx dy, (1D
Acc = L cos (knx) cos (Iny) cos (mmnx) cos (nmy) dx dy. (12)

TABLE 4

Values of the first four frequency coefficients Qi to Q4 in the case of an anisotropic rectangular
plate with bla = 3/2 for different positions and values of the mass—spring system (Figure 2)

Mass
co-ordinates m/M, Kda*/Dy, Q, Q, Q; Q,

x/a =050 1 2-558 13-96 23-44 37-03
y/b =050 0-1 10 7-351 15-12 23-44 37-36
o0 11-52 23-44 31-99 4376

(a)
1 1-477 13-96 23-44 37-03
0-3 10 4-316 14-87 23-44 37-35
o0 8-878 23-44 28-69 43-76
x/a =05 1 2:567 13-91 23-44 37-01
y/b =050 0-1 10 7-635 14-50 23-48 37-12
0 12-51 23-07 32:21 39:61

(b)
1 1-482 1391 23-44 37-01
0-3 10 4-453 14-36 23-48 37-11
0 10-36 2225 27-33 38-89
x/a = 0-50 1 2-563 13-91 23-50 37-02
y/b =05 0-1 10 7-520 14-45 24-08 37-19
o0 12-36 20-17 3478 43-71

(©)
1 1-480 13-91 23-50 37-02
03 10 4-389 14-33 24-03 37-19
o0 9-834 18-26 33-62 43-68
x/a =075 1 2:569 13-39 23-46 37-00
y/b =05 0-1 10 7-708 14-27 23:69 37-00
o0 12-90 21-58 35-65 37-33

(d)
1 1-483 13-89 23-46 37-00
0-3 10 4-483 14-18 23:67 37-00

0 10-96 19-35 31-21 37-10
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Figure 2. Positions of the mass—spring system on the vibrating anisotropic simply supported plate.

In order to minimize the functional one has to take its partial derivatives with respect to
the coefficients b; and v in expression (8) and equate these derivatives to zero. That is to
say,

aoJ oJ aoJ o

b= =" =" B0

This yields an (M x N + 1) homogeneous linear system of equations in the b;’s and the
v. A secular determinant in the natural frequency coefficients of the system results from
the non-triviality condition.

The present study is concerned with the determination of the first four frequency
coefficients, Q, to €,, in the case of anisotropic rectangular plates carrying elastically
mounted concentrated masses.

3. NUMERICAL RESULTS

Tables 1 to 4 depict calculations performed for anisotropic simply supported rectangular
plates of uniform thickness, with varying aspect ratios, and for several different positions
of the mass—spring system, taking D,/Dy; = 0:3, D»/Dy; = 0-5 = D¢s/D11, and Dis/Dyy = 1/
3 = Dx/Dy;. Table 1 shows the first four frequency coefficients for a bare anisotropic
rectangular plate with five different values of its aspect ratio. As the depicted values show,
the convergence in the Q;’s is quite satisfactory as the number of terms in the displacement
function is increased from 100 (i.e., M = 10 = N) to 900 terms. As usual, special care has
been taken to manipulate such large determinants and 80 bit floating point variables
(IEEE-standard temporary reals) have been used in order to obtain accurate results.

Tables 2-4, on the other hand, show the same frequency coefficients for the case of an
anisotropic simply supported rectangular plate of uniform thickness when coupled to a
mass—spring system. Four different and representative positions of the mass—spring system
have been taken into account.

In this last case, M = 20 = N have been used in the Fourier series approach, that is to
say a secular determinant of order 401 was posed for all the situations at hand.

Table 2 shows fundamental frequency coefficients in the case of a square plate while
Tables 1 and 3 illustrate the case of rectangular plates with aspect ratios b/a = 2/3 and
3/2, respectively.

The present approach can be extended in a straightforward fashion to the case of plates
of non-uniform thickness, presence of orifices, etc. In the case of other kinds of boundary
conditions, one would use the corresponding combinations of ““beam functions’ popularly
used when dealing with isotropic and orthotropic structural elements [5].
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