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Interest in vibration control in systems employing rolling element bearings, ranging from
rotor systems used in energy conversion/transmission to high-precision, multi-degree-of-
freedom optical positioning systems, has focused attention on the modelling of bearing
dynamic stiffness properties. While modelling a rolling element bearing either as an ideal
boundary condition for a shaft or as a simple translational element may suffice in
understanding basic rotor system dynamics, such simple models are inadequate in
explaining how vibratory energy may be transmitted from, for example, transverse shaft
vibrations to perpendicular, out-of-plane casing vibrations. Recently, researchers have
begun to address this issue for conventional single row ball or cylindrical rolling element
bearings which exhibit a strong moment–coupling stiffness. The study reported in this
article focuses on double row spherical (self-aligning) rolling element bearings where
moment stiffnesses are negligible, but translational cross-coupling stiffnesses between axial
and radial bearing directions are present. A new theoretical model for the direct and
cross-coupling stiffness coefficients of spherical rolling element bearings is developed and
partially validated using new experimental techniques. It is shown that the coefficient values
are complicated functions dependent on radial and axial preloads. While cross-coupling
stiffness coefficients are negligible with simple radial or axial preloads, under the combined
radial plus axial preload condition, the cross-coupling stiffness coefficient between the axial
direction and the direction of the radial preload becomes significant.
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1. INTRODUCTION

Interest in vibration control in systems employing rolling element bearings, ranging from
rotor systems used in energy conversion/transmission [1, 2] to high-precision,
multi-degree-of-freedom optical positioning systems [3], has focused attention on the
modelling of bearing dynamic stiffness properties. While modelling a rolling element
bearing either as an ideal boundary condition for a shaft or as a simple translational
stiffness element may suffice in understanding basic rotor system dynamics, such simple
models are inadequate in explaining how vibratory energy may be transmitted from, for
example, transverse shaft vibrations to perpendicular, out-of-plane casing vibrations. A
vibration model of a system similar to Figure 1, based on simple direct translational
stiffness bearing models, can predict only purely in-plane type motion on the flexible casing
plate given only the bending motion of the shaft. However, the dominant casing plate
motion is typically flexural or out-of-plane.

† Present address: Jet Propulsion Laboratory, Pasadena, CA 91109, U.S.A.

0022–460X/98/350997+18 $30.00/0 7 1998 Academic Press



. .   . 998

Figure 1. Schematic representation of the vibration transmission problem. Here the flexible shaft is subjected
to mean forces Fim and torques Tim , where i= x, y, z is the direction and subscript m implies mean. Also, u is
the angular displacement and u is the translational displacement.

In a recent series of articles by Lim and Singh [4–6], this issue was addressed for
conventional single row ball or cylindrical rolling element bearings which exhibit a strong
moment stiffness which couples the transverse shaft vibrations to the transverse casing
plate vibrations of Figure 1. The study reported in this article compliments the studies of
Lim and Singh by considering double-row spherical (self-aligning) rolling element bearings
where moment stiffnesses are negligible, but translational cross-coupling stiffnesses
between axial and radial bearing directions are present and may act as the dominant
mechanism for the transmission of vibratory energy. In this article, a new theoretical
formulation for the multi-dimensional, preload-dependent, spherical bearing stiffness
matrix is offered and new experimental techniques to measure both direct and
cross-coupling stiffness coefficients are presented and used to verify the theoretical
formulation.

2. LITERATURE REVIEW

While a wide range of theoretical models of varying complexity can be found for
conventional moment-carrying bearing stiffness properties, few studies exist specifically for
spherical bearings. A study by Kleckner [7] focuses on the tribological issues of spherical
bearing dynamic properties and actually uses the formulation of Harris [8] for calculation
of the load-dependent direct translational stiffness values. To the authors’ knowledge, only
a handful of studies on any type of rolling element bearing have noted the existence of
cross-coupling stiffness coefficients yielding a fully-populated multi-dimensional bearing
stiffness matrix with each coefficient dependent on each term of the multi-dimensional
static preloading condition. While Jones [9] did not actually define a bearing stiffness
matrix, his theoretical formulations for ball and cylindrical rolling element bearing
deformations under static loading conditions can be used to obtain fully populated stiffness
matrices for conventional moment-carrying and single row spherical raceway bearings.
Lim and Singh’s [4] fully-populated stiffness matrix formulations for conventional
moment-carrying bearings have been successfully used to model the vibratory behavior of
flexible shaft–bearing–plate assemblies [5]. In these studies, it was found that moment
stiffnesses and cross-coupling stiffness terms play a crucial role in vibration transmission.
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No comparable studies can be found for self-aligning (spherical) bearings where the
moment stiffnesses are negligible but cross-coupling stiffness coefficients may be significant.

Most experimental studies found in the literature [e.g. 10, 11] for obtaining stiffness
values focus on the simple single-degree-of-freedom situation, considering radial or axial
bearing vibrations/stiffness coefficients independently. Some studies also have considered
large deformation across the bearing and consequently, non-linearities associated with the
direct translational bearing stiffnesses [12].

3. ASSUMPTIONS AND OBJECTIVES

Conventional moment-carrying rolling element bearings can typically be placed into one
of two groups, ball- or roller-type. Ball bearings have point contact under the no-load
condition and elliptical contact under the loaded condition between the inner race, rolling
element and outer race. Roller-types are cylindrical or conical, with a portion of straight
contour on their contact dimension, with line contact under the no-load condition and
rectangular contact under the loaded condition. While the contact angle a of ball bearings
will change under load, a essentially remains unchanged under load for roller-type
bearings. For these reasons, separate formulations for the stiffness of conventional ball and
roller-type bearings are needed [4]. Spherical ball and roller type bearings, however, usually
can be treated similarly. The spherical roller-type bearing has a fully crowned contour on
its contact dimension. The radius of curvature of this contour will typically approach that
of the inner and outer raceway curvature radii but not reach them [8]. Hence, theoretically
both ball- and roller-type spherical bearings start with point/elliptical contact areas (except
under heavy loading) and the contact angle a is a function of the load condition.

The mean bearing translational displacements qm which are accompanied by mean load
values Fm as shown in Figure 2 are given by the relative rigid body motions between the
inner and outer rings. Note that angular displacements about the x and y axes need not
be considered here since, due to the self-aligning nature of the spherical bearing, they are
not opposed by moment loads. The total bearing displacement vector is given as
q= qm + qa(t), where qa(t) is the fluctuation about the mean point qm. In general, for small
preloads and/or relatively large time dependent values of qa(t), the bearing stiffness is time
dependent and non-linear. In this study, the case where qa(t) is very small relative to qm

is considered for which liearized bearing stiffness values can be employed. The basic

Figure 2. Spherical bearing kinematics and coordinate system: (a) front view, (b) enlarged side view.
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load–deflection relation for each elastic rolling element is defined by the Hertzian contact
stress theory [8], and the load experienced by each rolling element is described by its relative
location in the bearing raceway. Further, in this study it is assumed that the angular
position of each rolling element relative to one another is always maintained due to rigid
cages. Secondary effects such as centrifugal forces and gyroscopic moments on the bearing
due to extremely high rotational speeds are ignored. (Spherical bearings typically cannot
be used in extremely high rotational speed applications, anyway [7].) Finally, tribological
issues are beyond the scope of this study and hence in the present analysis the bearings
are assumed to be unlubricated.

The specific objectives of this study are as follows: (1) to develop a new bearing
stiffness matrix which is suitable for the analysis of vibration transmission through
either ball or roller-type spherical bearings; (2) to develop an experimental technique to
measure spherical bearing direct and cross-coupling stiffness coefficients as a function of
axial and radial mean loads (preloads); (3) to verify the proposed stiffness model by
comparing its predictions with experimental measurements; and (4) to relate the stiffness
matrix values to various kinematic and design parameters, specifically unloaded contact
angle and radial clearance, through parametric studies using the bearing stiffness matrix
model.

4. THEORY

Consider the self-aligning double-row rolling element bearing shown in Figure 2. The
relationships between the mean forces Fm = {Fxm, Fym, Fzm}T transmitted through the
bearing and the resulting mean bearing displacements qm = {qxm, qym, qzm}T will be derived.
From the bearing displacements the resultant elastic deformation d(Ci

j ) of the jth rolling

Figure 3. Elastic deformation of rolling element for non-constant contact angle ai
j .
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element of the ith row located at angle Ci
j from the x-axis can be determined. Assuming

the outer ring is fixed, in Figure 3 one has:

d(Ci
j )=6A(Ci

j )−A0

0
A(Ci

j )qA0

A(Ci
j )EA07 , A(Ci

j )=z(di
zj )2 + (di

rj )2 ,

di
zj =A0 sin (ai

0)+ qzm −Pe , di
rj =A0 cos (ai

0)+ qxm cos (Ci
j )+ qym sin (Ci

j )− rL .

(1a–d)

Here, A0 and A are the unloaded and loaded relative distances between the inner (ain ) and
outer (aout ) raceway groove curvature centers. Note that A0 = ri , the radius of the locus
of inner raceway groove curvature centers. The unloaded contact angle is denoted by ai

0

and radial clearance and axial endplay are denoted by rL and Pe , respectively. Axial
endplay for a spherical bearing is related to radial clearance, rL , as follows [8]:

Pe =4r0(sin (bi)− sin (ai
0))+4rL sin (ai

0), b=cos−1 {(1− rL /r0) cos (ai
0)}.

(2a–b)

Equations (1, 2) in conjunction with the Hertzian contact stress principle stated as follows
yield the load deflection relationships for a single rolling element:

Qi
j =Kn (d(Ci

j ))n. (3)

Here Qi
j is the resultant normal load on the rolling element and Kn is the effective stiffness

constant for the inner race–rolling element–outer race contacts and is a function of the
bearing geometry and material properties. The exponent n will range from 3/2 to 10/9
depending on type of contact, going from point/elliptical to line/rectangular. The loaded
contact angle ai

j is given by

tan (ai
j )= di

zj /di
rj . (4)

The bearing stiffness matrix is a global representation of the bearing kinematic and elastic
characteristics as it combines the effects of 2z number of loaded rolling element stiffnesses
in parallel. Through vectoral sums Qi

j (i=1, 2, j= x, y, z) in equation (3) for all of the
loaded rolling elements one can relate the resultant bearing mean load vector Fm to the
displacement vector qm:

8Fxm

Fym

Fzm9= s
2

i=1

s
z

j=1

Qi
j8cos (ai

j ) cos (ci
j )

cos (ai
j ) sin (ci

j )
sin (ai

j ) 9=Kn s
2

i=1

s
z

j=1

{d(ci
j )}n

A(ci
j ) 8d

i
rj cos (ci

j )
di

rj sin (ci
j )

di
zj 9. (5)

Often, approximate integral forms of equation (5) are used instead of the summation forms
to eliminate explicit dependence on Ci

j . The summation form is retained here.
Now one defines a symmetric bearing stiffness matrix Ksb of dimension three from

equation (5) and by assuming that qa�qm; i.e., the alternating component of the relative
deflection across the bearing is much less than the mean component:

Ksb =[1Fpm /1qsm ], p, s= x, y, z. (6)
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Here, each stiffness coefficient must be evaluated at the mean point qm. Note that Ksb is
symmetric, i.e., kps = ksp and it may be fully populated:

Ksb = &kxx

kyx

kzx

kxy

kyy

kzy

kxz

kyz

kzz'. (7)

Using equation (7) the coefficients kps can be directly computed given the mean bearing
displacement vector qm. However, usually it is the preload vector Fm which is known, not
the resulting mean displacement vector. If this is the case, coupled non-linear equations
(5) may be numerically solved beforehand to find qm for a given Fm. A very suitable
approach is to use a Newton–Raphson methhod. This can be done by rearranging equation
(5) as

8H1

H2

H39= 8Fxm

Fym

Fzm9− s
2

i=1

s
z

j=1

Qi
j8cos (ai

j ) cos (ci
j )

cos (ai
j ) sin (ci

j )
sin (ai

j ) 9=0, (8)

where H= {H1 H2 H3}T are the determining functions to be minimized. By using Taylor’s
series, H may be expanded about a solution vector qm by neglecting higher order terms:

H(qm + dqm)1H(qm)+ J&qm, (9)

where J is the Jacobian:

J=Ksb =[1Fpm /1qsm ], p, s= x, y, z. (10)

The solution for qm can be obtained by setting H(qm + dqm)= 0 per equations (8–10) which
yields a set of linear algebraic equations. The vector dqm is added to the previously
computed vector qm for the next iteration until the convergence criterion, say =H(qm)=Q o

where o is very small, is satisfied.
Note that the above formulation for the stiffness matrix is valid independently of angular

misalignment about the x- and y-axis as defined in Figures 2 and 3 since the spherical
bearing does not produce moment loads. The stiffness matrix is effectively defined with
respect to a reference frame oriented with the unloaded inner raceway.

5. METHOD OF EXPERIMENTAL VALIDATION

In order to examine the validity of the theoretically developed bearing stiffness model,
an experimental test has been devised. Consider using the bearing to connect two rigid
bodies as denoted in Figure 4. Here, r1 =[r1x r1y r1z u1x u1y ]T and r2 =[r2x r2y r2z u2x u2y ]T

denote the displacement of each rigid body form the static equilibrium position. Rotation
about the z-axis for both rigid bodies is not considered as these axes are collocated with
the bearing axial direction. The origin of the bearing co-ordinate system in both rigid body
reference frames is given by s1 =[0 0 L1 0 0]T and s2 =[0 0 −L2 0 0]T, respectively.
Neglecting rotational motion of each rigid body about the z-axis, the entire system has
10 degrees of freedom. Five of these degrees represent system rigid body modes. Equations
for the system are

Mr̈+Kr=F,
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Figure 4. Experimental test set-up. (a) Self-aligning bearing with rigid masses of known inertia properties; (b)
axial excitation; (c) radial excitation. Parameter values: m1 =3·366 kg, I1xx =0·0114 kg m2, I1yy =0·0114 kg m2,
L1 =0·0298 m, m2 =3·133 kg, I2xx =0·0113 kg m2, I2yy =0·0113 kg m2, L2 =0·0364 m.
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The external dynamic excitation force F may be applied to individual degrees of freedom
or to combinations of degrees of freedom. Static preload forces are also applied in the axial
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or radial x or y directions. Cases will be considered where the cross moments of inertia
for the rigid bodies are zero, e.g.: Iixy = Iiyx =0, i=1, 2.

First consider a preload applied only in the axial (z) or one of the radial (x or y)
directions of the bearing. According to the developed theory, the off-diagonal terms of the
stiffness matrix are zero. For harmonic excitation of frequency v the following decoupled
sets of equations are obtained:
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Each set of coupled equations can be solved for its natural frequencies, all of which are
zero (unconstrained rigid body motion) except for one in each case, regardless of stiffness
coefficient values. The one non-zero natural frequency in each case, a, b, and c, is directly
proportional to the corresponding stiffness coefficient, kxx , kyy , and kzz , respectively. Hence,
by appropriate excitation and measurement of system natural frequencies corresponding
to the appropriate modes, values for the three diagonal terms of the bearing stiffness
matrix, as a function of axial or radial preload, can be obtained experimentally.

Now consider a preload applied simultaneously in one of the radial (say x) and axial
(z) directions. For this case, according to the developed theory, the stiffness coefficient



   1005

kxz = kzx is the only non-zero off-diagonal term. Hence, equations (12a) and (12c) are
replaced with a coupled set:
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m1 0 r1z F1z

0
0 m2 r2z F2z

This system of equations has four zero natural frequencies (eigenvalues) which are
independent of the three stiffness coefficients and again represent unconstrained rigid body
motion. For kxz =0, of course the two remaining values are those of the decoupled
equation sets for kxx and kzz in equations (12a, c). But for kxz $ 0, the equation sets are
coupled and different natural frequency values with coupled mode vectors will satisfy the
eigenvalue/eigenvector problem.

Using the above formulation, an iterative approach to the experimental identification
problem is to assume that reasonably good estimates of kxx and kzz are already available.
These may be based on prior experimental measurements with simplified preload
conditions or on the theoretical model, itself, under complex preload conditions but which
has only been experimentally validated under simple preload conditions. The approach is
iterative in that these estimates for kxx and kzz may need to be refined based on the approach
predictions. Estimates for kxx and kzz along with measured natural frequencies and mode
shapes of the eigenvalue problem of equation (13) may be used to solve for kxz directly
as follows:

det 6[BB]− (kxz )2$$ 1
−1

−L1

L1

−1
1

−L2

L2%[AA]−1$ 1
−1

−L1

L1

−1
1

L2

L2%
T

%7=0,

(14)

where [AA] and [BB] are the left-hand arguments of equations (12a) and (12c), respectively.
However, unless kxz is significantly larger in value than the diagonal stiffness terms kxx and
kzz , numerical difficulties will be encountered, particularly due to the inverse of [AA]. But,
if kxz q (kxxkzz )1/2, then one of the non-zero eigenvalues of equation (13) will become
negative, which physically is not possible if the equations represent a stable system. In fact,
for the typical bearing, the theoretical formulation predicts that kxz will be an order of
magnitude less than the values kxx and kzz . As an alternative iterative approach, given
estimated values of kxx and kzz , the effect of kxz on the coupled nondegenerate mode shapes
of equation (13) can be utilized to estimate its value based on comparison with
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Figure 5. Linearized axial stiffness coefficient kzz of bearing as a function of axial z and radial x preload
conditions based on theory of section 4. Mesh displacement resolution: axial 2·9×10−6 m (0–8·41×10−5 m
shown), radial 5·5×10−7 m (0–1·595×10−5 m shown).

experimental modal analysis of the test system. Details of an example case are given in
section 6.

Calculation of kyz in the presence of a y direction radial load plus an axial z direction
load is identical to the procedure discussed above for kxz . More generally, since the radial
co-ordinate pair, x and y, can always be defined such that the resultant radial preload is
oriented in the positive x direction, once values of kxx , kyy , kzz and kxz are obtained in this
co-ordinate frame, a simple linear transformation can be used to obtain values for all six
of the potentially non-zero stiffness and cross-coupling stiffness coefficients kxx , kyy , kzz ,
kxz , kxy and kyz for any other co-ordinate orientation.

6. EXAMPLE CASE RESULTS: EXPERIMENTAL VERIFICATION OF THEORY

An example study was undertaken using the system depicted in Figure 4. It was verified
beforehand that the test masses are indeed rigid for the frequency range of interest.
However, the rigidity of the bearing interface fixture relative to the bearing, particularly
the inner stub, is an issue. The test setup is flexibly suspended and axial and/or radial
preloads are applied across the bearing, again using flexible couplings with stiffness
coefficients several orders of magnitude below those of the bearing. Note that the preloads
must consist of equal forces of opposite direction applied along vectors which pass through
the bearing pivot point to maintain static stability. An electrodynamic shaker with random
excitation was used to excite the setup in the axial or radial direction. The frequency
response is recorded and a polynomial curve fit of it is conducted in the vicinity of the
resonance peak(s) to obtain the natural frequency(ies) and mode shape(s). Given system
parameter values and ranges of axial (z) and radial (x and y) preload conditions, bearing
stiffness coefficients are calculated based on the experimentally measured natural
frequencies.

The self-aligning bearings which were tested were off-the-shelf items manufactured by
SKF, Inc. Relevant dimensions of the bearing are provided in Table 1. Two rows of roller
ball bearings are mounted on a fairly standard inner race and on an outer race with a center
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T 1

Parameter values for spherical bearing used in experimental study

a0 =12·7 deg.—undeformed contact angle d0 =42·67 mm—outer raceway diameter
rL =0·0015 mm—radial clearance [Harris, 1984] ri =3·75 mm—inner raceway groove
z=15—number of balls per row curvature radius

D=7·131 mm—ball diameter d*=0·6355—dimensionless contact
di =27·8 mm—inner raceway diameter deformation [8]

of curvature coincident with bearing geometric center. Hence, rotational orientation of the
inner race with respect to the outer race is unrestrained about all three axes.

Theoretical calculations of the linearized bearing stiffness and cross-stiffness coefficients
as a function of axial z and radial x preloads are shown in Figures 5–8. There are three
direct stiffness and three-cross-coupling stiffness coefficients. Under simple radial or axial
preloading conditions alone, all cross-stiffness coefficients are negligible. In other words,
the matrix of equation (7) is diagonal. Under combined axial z and radial x preloading,
the cross-stiffness coefficient kxz becomes non-zero, as shown in Figure 8. The other two
cross-stiffness coefficients, kxy and kyz , remain negligible and hence are not shown
graphically. Mesh displacement resolution in the figure captions refers to the incremental
bearing displacements, axial and radial, which were used to generate the three dimensional
contour plot. In other words, from these plots, one can obtain the corresponding stiffness
coefficient value as a function of radial and axial preloads as well as radial and axial
bearing deformations. Mesh lines of constant axial displacement are roughly perpendicular
to the direction of changing axial preload and mesh lines of constant radial displacement
are roughly perpendicular to the direction of changing radial preload.

Experimental calculations of the linearized bearing stiffness coefficients under simple
preload conditions (axial or radial) are shown in Figure 9. Theoretical stiffness coefficient
values are estimated using the method described in section 5 under the assumption that
cross-stiffness coefficient values are negligible. Experiment and theory compare favorably
for axial stiffness, kzz , predictions. However, radial stiffness kxx predictions and experiment

Figure 6. Linearized radial stiffness coefficient kxx of bearing as a function of axial z and radial x preload
conditions based on theory of section 4. Mesh displacement resolution: axial 2·9×10−6 m (0–8·41×10−5 m
shown), radial 5·5×10−7 m (0–1·595×10−5 m shown).
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Figure 7. Linearized radial stiffness coefficient kyy of bearing as a function of axial z and radial x preload
conditions based on theory of section 4. Mesh displacement resolution: axial 2·9×10−6 m (0–8·41×10−5 m
shown), radial 5·5×10−7 m (0–1·595×10−5 m shown).

show discrepancy. It is believed that at least some of this discrepancy is due to the
compliance of the bearing fixture, particularly the inner stub. As a first approximation,
the inner stub may be modelled as a uniformly loaded cantilever beam as shown in
Figure 10. Based on static theory, its effective lateral stiffness, kst , representing the ratio
between the applied force and deflection at the midpoint which is aligned with the bearing
center is given as [13]

kst =(4/17)96EI/L3, (15)

Figure 8. Linearized radial–axial cross-coupling stiffness coefficient kxz of bearing as a function of axial z and
radial x preload conditions based on theory of section 4. Mesh displacement resolution: axial 2·9×10−6 m
(0–8·41×10−5 m shown), radial 5·5×10−7 m (0–1·595×10−5 m shown).
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Figure 9. Linearized bearing stiffness coefficients. Comparison of theory and experiment for simple preload
conditions. (a) Radial stiffness kxx /radial preload x; (b) axial stiffness kzz /radial preload x; (c) radial stiffness
kxx /axial preload z; (d) axial stiffness kzz /axial preload z. Key: ——, theoretical calculations based on section
4 (······ , with theoretically calculated bearing fixture compliance; ----- , with empirically added fixture
compliance); × × × ×, experimental calculations based on section 5.

where variables are defined in Figure 10. For the experimental test rig, kst =7·5×108 N/m.
If this is considered in series with the bearing radial stiffness term in the theoretical
prediction of the net radial stiffness, theory follows experiment more closely as shown in

Figure 10. Cantilever stiffness approximation for inner stub of bearing fixture. Here E=1·9×1011 N/m2

(stainless steel), I= p/64(d4
0 − d4

i ), L=0·0257 m, d0 =0·01585 m, di =0·0071 m.
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Figure 11. Experimental test setup parameter values as a function of cross-coupling stiffness coefficient kxz .
Axial preload=200 N; radial preload=160 N; kxx =1·23×108 N/m; kzz =1·27×107 N/m (based on theory of
section 4). Key: (a) ––, Lower non-degenerate natural frequency of test setup (equation (13)); (b) ———,
associated mode shape ratio r1x /r1z (equation (13)); ·····, experimentally measured mode shape ratio; - - - - ,
theoretically predicted value for kxz .

Figure 9. By empirically adding additional radial compliance in the bearing fixture
(kst =2×108 N/m), perhaps from the outer ring or the inner stub, theory and experiment
can be brought to a closer match as shown in the figure.

Given estimates for the direct radial and axial stiffness coefficients, the cross-stiffness
coefficient, kxz , can be estimated under the combined radial plus axial preload condition
as proposed in section 5 by comparing theoretical and experimental calculations of the
coupled mode shapes. In Figure 11(a), the first non-zero natural frequency of the

Figure 12. Typical test fixture mode shapes and natural frequencies for different preload conditions. (a) Simple
preloading (axial or radial); (b) composite preloading (axial plus radial). Key: ––, undeformed shape (W, center
of gravity); - - - - , deformed shape (w, center of gravity). Left column fn1 = s (450 Hz); right column fn2 = s
(1300 Hz).
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Figure 13. Stiffness coefficients for different unloaded contact angles, a0. (a) a0 =0°, mesh displacement
resolution: axial 7×10−6 m (0–1·19×10−4 m shown), radial 5×10−8 m (0–1×10−6 m shown). (b) a0 =45°,
mesh displacement resolution: axial 7×10−7 m (0–1·68×10−5 m shown), radial 9×10−7 m (0–2·34×10−5 m
shown).

experimental test system is shown as a function of kxz given values of kxx and kzz which
are based on the theoretical model for the given axial plus radial preload condition. Note
that the change in natural frequency as a function of kxz is non-linear with a very minimal
slope at the lower stiffness values and a value approaching zero as kxz approaches
(kxxkzz )1/2 =3·95×107 N/m. In Figure 11(b), the ratio of the radial motion r1x over the axial
motion r1z of the center of gravity of the first rigid body in the test setup is shown as a
function of kxz . Note that this ratio is a linear function of kxz and hence, provides more
uniform and better resolution at lower kxz stiffness values. Also plotted in Figure 11(b) is
the experimentally measured mode shape ratio of r1x to r1z and the theoretically predicted
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value of kxz for the particular axial plus radial preload condition. The experimental mode
shape ratio and the theoretical value for kxz both intersect the r1x /r1z versus kxz curve at
nearly the same location. Hence the theoretical estimate of kxz for this preload condition
is reasonably accurate since using it results in a theoretical mode shape ratio r1x /r1z that
is very similar to the experimentally measured ratio. This same comparison of theory and
experiment was carried out for several other complex preload conditions with similar
favorable results. In Figure 12, the non-degenerate mode shapes for the simple and
composite preload conditions are shown. For the simple preload conditions, axial and
radial motion of the centers of gravity of the test setup masses are decoupled. For the

Figure 14. Stiffness coefficients for different radial clearances, rL . (a) rL =0 mm, mesh displacement resolution:
axial 2×10−6 m (0–4·8×10−5 m shown), radial 2·5×10−7 m (0–7×10−6 m shown). (b) rL =0·005 mm, mesh
displacement resolution: axial 7×10−6 m (0–1·61×10−4 m shown), radial 1·3×10−6 m (0–3·51×10−5 m
shown).
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composite preload condition, coupling occurs. Additionally, this degree of coupling is
dependent on the composite preload level. In terms of a typical shaft–bearing–plate system,
such as shown in Figure 1, this coupling condition implies that transverse excitation of
the shaft in the x direction will result in out-of-plane transverse vibration of the flexible
casing in the z direction.

7. PARAMETRIC STUDIES

The nature of the spherical bearing stiffness matrix as a function of system parameters
is briefly investigated further by varying the unloaded contact angle, a0, and the radial
clearance, rL . The stiffness coefficients for two different contact angles, one greater than
and one less than that of the base case (Figures 5–8), are shown in Figure 13. Note that
for a0 =0, the variation in stiffness coefficient values is much less over the shown range
of preload levels. Hence, the applicability of a linear stiffness matrix to represent the
bearing may be valid over a wider dynamic force operating range. The stiffness coefficients
for two different radial clearance levels, one greater than and one less than that of the base
case (Figures 5–8), are shown in Figure 14. Here, as in Figures 5–8 and 13, bearing relative
displacement is depicted by the mesh resolution in the three-dimensional contour plot. The
mesh resolution value is given in the figure caption. If one takes into account the differences
in mesh resolution between Figures 14(a) and 14(b), it is seen that the radial clearance has
a relatively minimal effect on the shape of the stiffness coefficient contours but a significant
effect on the resulting relative displacement across the bearing with respect to a given
preload.

8. CONCLUSION

A new theoretical model for the direct and cross-coupling stiffness coefficients of
self-aligning (spherical) rolling element bearings has been developed and partially validated
using new experimental techniques. The validation is partial in that only a finite number
of preload conditions, both simple and complex, have been considered. Additionally, there
is ambiguity in some of the experimental results due to unquantified dynamics in the test
fixture. Nonetheless, the theoretical and experimental results show that stiffness coefficient
values are complex functions of radial and axial preloads. While cross-coupling stiffness
coefficients are negligible with simple radial or axial preloads, under the combined radial
plus axial preload condition, the cross-coupling stiffness coefficient between the axial
direction and the direction of the radial preload becomes significant. This cross-coupling
parameter may play a significant role in the transmission of vibratory energy in the typical
shaft–bearing–plate application coupling transverse shaft vibrations to transverse plate
vibrations. Armed with the spherical bearing model of this study and comparable models
of other researchers for conventional moment carrying bearings, comparative studies of
vibratory energy transmission in typical compliant shaft–bearing–plate systems using the
alternative types of bearings are in progress and will be reported in a future article.
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