
Journal of Sound and Vibration (1998) 216(1), 159–185
Article No. sv981708

IMPLEMENTATION AND EXPERIMENTAL
VALIDATION OF A NEW VISCOTHERMAL

ACOUSTIC FINITE ELEMENT FOR
ACOUSTO-ELASTIC PROBLEMS

W. M. B, P. J. M.   H, R. M. E. J. S

 H. T

University of Twente, Faculty of Mechanical Engineering, P.O. Box 217,
7500 AE Enschede, The Netherlands

(Received 18 June 1997, and in final form 23 April 1998)

The propagation of sound waves in thin gas or fluid layers can be significantly affected
by viscothermal phenomena. In this paper, a new viscothermal acoustic finite element is
presented. The element includes the effects on inertia, viscosity, compressibility and thermal
conductivity. The acoustic element can be coupled to flexible structural elements. This
enables fully coupled acousto-elastic calculations to be made for complex geometries. The
model is experimentally validated with measurements on a rigid airtight box with a flexible
coverplate. Eigenfrequencies, damping and mode shapes of the plate were measured and
compared with numerical results for a number of gas layer thicknesses. The agreement
between measurements and calculations is good. The results indicate that there can be large
shifts in eigenfrequency as a function of the layer thickness. In addition, for small layer
thicknesses a high damping value is found, which can be attributed to viscous effects in
the layer.
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1. INTRODUCTION

This paper deals with a numerical and experimental study on the interaction between a
thin layer of gas (in most cases air) and a vibrating structure. Because the air layer is thin,
effects of viscosity and thermal conductivity can play an important role. Furthermore, the
acousto-elastic coupling can be very strong for this situation. To the authors’ knowledge,
no general method is available for calculations.

In a previous paper a model was presented which describes the propagation of sound
waves in a thin layer [1]. However, the model for the air layer was applied only to rigid
surfaces. Results from analytical calculations and experiments were compared for an
oscillating, rigid solar panel. In the present paper the model is extended to flexible surfaces,
including the acousto-elastic interaction. For this purpose, a new viscothermal acoustic
finite element is presented which is based on the thin layer model. This element can be
coupled with structural finite elements, enabling fully coupled calculations for complex
geometries.

Due to its multidisciplinary character, this type of problem inspired researchers from
various fields. In tribology, the main interest was the calculation of squeeze film damping
between rotating or oscillating machine parts [2–6]. Several authors focused on the
importance of the inertial terms in the layer model. They showed that one has to pay
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serious attention to the assumptions on which the Reynolds equation is based. For high
values of a modified Reynolds number, the inertial effects have to be taken into account.
For these situations, for instance at high speeds or frequencies, the so-called creeping flow
assumption of the Reynolds equation breaks down.

In the field of fluid mechanics a number of models were presented; see, e.g., reference
[7]. In most cases the research was aimed at the calculation of the so-called steady
streaming. Consider for instance a rigid plate, located parallel to a fixed surface and
performing an oscillation normal to the surface. In a linearized model, the force acting
on the plate due to the pressure distribution is purely oscillatory with a frequency
corresponding to the driving frequency. When the second order terms are taken into
account, a steady force acting on the plate is obtained. This force, caused by the steady
streaming, has been described in several papers [8, 9]
In acoustics the higher order terms are usually neglected. The first papers on thin film
theory in the field of acoustics were presented by Maidanik [10] and Ungar and Carbonell
[11]. Since then a number of models were developed; see e.g., the book by Pierce [12]. Most
of them incorporate the effects of viscosity, inertia and thermal conductivity in the air
layer. Some also incorporate compressibility and bulk viscosity. Key words in the
characterization of the different models are: pressure gradient across layer thickness,
acousto-elastic coupling and ability to model complex geometries. Based on these key
words, the layer models in acoustics can be divided into three groups.

The first group concerns models which assume a constant pressure across the layer
thickness. This leads to a straightforward, yet practical very useful, description. This
approach was successfully described and used by Fox and Whitton [13], Önsay [14, 15].
They used a fully coupled approach to determine the interaction between a vibrating plate
a thin layer of air. However, the practical use of their models is limited to simple geometries
like strips.

The second group incorporates a pressure gradient across the layer thickness. Some extra
terms of the Navier Stokes equations are taken into account for this purpose. However,
in most cases the acousto-elastic coupling is not accounted for. In the paper of Trochidis
[16], the free vibration modes of infinite plates are imposed as boundary conditions for
the layer model. The resulting pressure distribution was used to calculate the loss factor
of the system. This lack of coupling results in a serious limitation of the model, as will
be shown later in the present paper. Möser [17] extended the Trochidis model with
compressibility effects. He calculated the eigenfrequencies and damping values of a coupled
plate–layer system. His analysis was limited to infinite plates where the displacement is a
function of one co-ordinate only. Chow and Pinnington [18, 19] investigated practical
methods for the squeeze film damping mechanism with air and liquids. In their analysis
they used an impedance formulation for the layer, which was based on an extended version
of the Trochidis model.

The third group concerns the most extensive model for the air layer. It is based on a
solution of the full set of linearized basic equations, e.g., the Navier Stokes equations,
including the bulk viscosity of the air. Actually this results in an extended version of the
equation developed by Kirchhoff, which was also described by Rayleigh [20]. In
comparison to the other models this leads to a very complicated model, as described in
papers by Bruneau et al. [21, 22], and Plantier and Bruneau [23]. This type of model was
developed to calculate the interaction between a vibrating membrane and a rigid backing
electrode in miniaturized transducers. The membrane and the backing electrode are
separated by a thin layer of air. For these applications the frequency range is very wide,
e.g., up to 20 kHz. Therefore, it was argued that one had to include all the terms in the
Navier Stokes equations.
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Figure 1. Solar array in deployment and in folded position

The interaction between the air layer and the membrane is usually accounted for.
Recently, Karra, et al. [24] presented a numerical formulation for this model. Their
formulation, however, is limited to geometries with rotatory symmetry.

The new finite element presented in this paper is based on the model with a constant
pressure across the layer thickness (first group). However, because the formulation is
written in terms of dimensionless parameters, one can determine the validity of the model
in a very easy way. Furthermore, the finite element model can be used to model complex
geometries and it includes the full acousto-elastic coupling.

The finite element model can be used to analyze, for instance, the damping capabilities
of double wall panels. It offers an efficient tool for the designer when optimizing the
damping due to the squeeze film mechanism in the layer. It can also be used to calculate
the interaction between a vibrating membrane and the rigid backing electrode in
miniaturized transducers. In a preliminary phase the model was applied to analyze the
pressure distribution between solar panels in an array (see Figure 1) [25].

During launch the panels are folded against the body of the satellite, thus entrapping
a thin layer of air. The solar panels are relatively large and light. The layer of air now
has a substantial influence on the dynamical behaviour of the system. With the new finite
element model the wave propagation in the layer can be described accurately. It also
includes the acousto-elastic interaction, which is essential for a good description of the
behaviour of the system.

2. FORMULATION OF THE PROBLEM

A flexible plate is located parallel to a fixed surface (see Figure 2). The plate has
dimensions 2lx ×2ly . A layer of air with mean thickness h0 is trapped between the plate
and the fixed surface. The ends of the layer can be open or closed.

Dimensionless co-ordinates are introduced according to

x= x̄/lx , y= ȳ/ly , z= z̄/h0. (1)

Figure 2. Flexible plate and thin air layer.
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The distance between the plate and the fixed surface can be written as the real part of

h�(x, y, t)= h0[1+ h(x, y) eivt], (2)

where v denotes the angular frequency, t represents time, h0 is the mean gap width, h(x, y)
is the dimensionless amplitude of oscillation of the plate and i is the imaginary unit. The
plate performs a small harmonic oscillation with frequency v and amplitude h0 h(x, y)
around the equilibrium position h0. (A list of symbols is given in Appendix D.)

3. BASIC THEORY

In this section, the basic equations governing the motion of the plate and the pressure
distribution in the air layer are derived. These equations are all written in a dimensionless
form. The resulting dimensionless parameters can be used to identify, for instance, different
flow regimes in the air layer. Furthermore, the parameters are a useful tool in expressing
the range of validity.

3.1.   

The pressure distribution in the air layer is governed by the following basic equations:
the Navier Stokes equations, the equation of continuity, the equation of state for an ideal
gas and the energy equation. In the absence of mean flow, dimensionless quantities are
introduced [1]:

ū= c0u(x, y, z) eivt, p̄= p0[1+ p(x, y, z) eivt],

v̄= c0v(x, y, z) eivt, r̄= r0[1+ r(x, y, z) eivt],

w̄= c0w(x, y, z) eivt, T� =T0[1+T(x, y, z) eivt]. (3)

Here u, v and w are the dimensionless amplitudes of the velocities in the x, y and z
directions, respectively.

The dimensionless amplitudes of the perturbations in pressure, density and temperature
are denoted by p, r and T, respectively. The mean conditions are characterized by an
undisturbed speed of sound c0, a pressure p0, a density r0 and a temperature T0. These
definitions are used to rewrite the basic equations in a linearized, non-dimensional form.
As a result the following dimensionless parameters appear in these equations:

s= h0zr0v/m, shear wave number, g=Cp /Cv , ratio of specific heats,

s=zmCp /l, root of Prandtl number, g= h0/lx , narrowness of the gap,

k=vh0/c0, reduced frequency, a= ly /lx , aspect ratio of the panel. (4)

Here m is the viscosity, l is the thermal conductivity, Cp is the specific heat at constant
pressure and Cv is the specific heat at constant volume.

The shear wave number is a measure for the ratio between the inertial forces and viscous
forces. For low shear wave numbers the viscous effects dominate, whereas for high shear
wave numbers the inertial effects dominate. In physical terms it represents the ratio
between the gap width and the boundary layer thickness. The reduced frequency is a
measure for the ratio between the gap width and the acoustic wavelength.

Next, the walls are assumed isothermal and a no-slip condition is imposed on the upper
and lower surfaces. When the in-plane velocities are large in comparison with the velocity
in the z direction and the gap width is small in comparison with the acoustic wavelength
(one can verify that the conditions k�1 and k/s�1 have to hold), the set of basic equations
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can be rewritten to one equation in terms of the pressure perturbation (see Appendix A)
[1, 25, 26]:

12p
1x2 +$1a%

2
12p
1y2 +

k2g

g2n(ss)B(s)
p=−

k2g

g2B(s)
h. (5)

Here

B(s)=2$1−cosh (szi)
szi sinh (szi)%+1, n(ss)=$1−$g−1

g %B(ss)%
−1

. (6)

Note that, due to the assumptions, the pressure is constant across the gap width. This
explains the fact that equation (5) does not contain partial derivatives with respect to z.
The function B(s) accounts for the viscous effects in the air layer. For large values of the
shear wave number this function reduces to 1; for low shear wave numbers it can be written
as is2/12.

The function n(ss) solely accounts for the thermal effects in the layer, since the quantity
ss does not depend on the viscosity m. It can be interpreted as a polytropic constant that
relates density and pressure according to a polytropic law. For low values of ss the
quantity n reduces to 1, corresponding to isothermal conditions. For high values of ss it
reduces to g, corresponding to adiabatic conditions. The value of s is constant for a given
medium, e.g., air. These considerations imply that for low shear wave numbers the narrow
gap equations reduces to a linearized version of the Reynolds equation. For high shear
wave numbers a modified version of the wave equation is obtained. The modification is
due to the fact that the pressure is assumed constant across the layer.

The dimensionless equation for general values of s can be rewritten in a dimensional
form as

12p̄
1x̄2 +

12p̄
1ȳ2 +

v2

ceff (s)2 p̄=−
r0v

2

B(s)
h, (7)

where

ceff (s)= c0Xn(ss)
g

B(s). (8)

Equation (7) resembles the classical wave equation. A source term is present on the
right-hand side due to the squeeze motion of the plate. The quantity ceff (s) can be
interpreted as an effective speed of sound. Its value is affected by viscous effects, accounted
for in B(s), and thermal effects accounted for in n(ss). Notice that the effective speed of
sound is shear wave number, e.g., frequency, dependent. For high values it reduces to the
undisturbed speed of sound c0.

3.2.  

The Kirchhoff equation is used to describe the deformation of the plate. In a
non-dimensional form this equation is

14h
1x4 +2$1a%

2
14h

1x2 1y2 +$1a%
4
14h
1y4 −V2h=

V2o

k2g
p, (9)
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where the following two dimensionless parameters are introduced:

V=vzl4xrptp /Dp , dimensionless frequency

o= r0h0/rptp , ratio of mass per unit area between plate and air layer. (10)

Here tp and rp are the thickness and the density of the plate. Dp represents the bending
stiffness of the plate according to

Dp =Ept3
p /12(1− n2

p ), (11)

where Ep and np are Young’s modulus and Poisson’s ratio of the plate material. The
parameter o is a coupling parameter. It indicates that the ratio between the mass per unit
area of the plate and the medium is a factor which affects the amount of coupling.

3.3. - 

The acousto-elastic interaction is established by demanding continuity of velocity across
the interface. One therefore has to solve the narrow gap equation (5) and the plate equation
(9) simultaneously. Generally speaking, it is possible to solve these equations analytically
only for simple geometries and simple boundary conditions. In order to be able to model
more realistic situations, a new finite element model will be presented in the next section.

4. FINITE ELEMENT FORMULATION

4.1.  

The basic equation for the new acoustic finite element is the narrow gap equation. In
dimensional form, this equation is

12p̄
1x̄2 +

12p̄
1ȳ2 +

v2

ceff (s)2 p̄=−
r0v

2

B(s)
h. (12)

The equation resembles the standard wave equation. Therefore, in an entirely similar way
a finite element formulation can be derived. The only differences with standard acoustic
elements are the following.

It is a 2-dimensional element because equation (12) was obtained by integration across
the layer thickness. Only in-plane pressure gradients exist.

An excitation term is present due to the squeeze motion of the surfaces. The differential
equation (12) was obtained by integration, resulting in the source term due to the squeeze
motion.

The undisturbed speed of sound, c0, is replaced by the effective speed of sound, ceff (s).
If one takes into account these considerations this leads to the following set of equations

(see Appendix B):

−v2[Ma(s)]{P}+[Ka]{P}=v2[Mc(s)]{U}. (13)

Here [Ma(s)] denotes the acoustic mass matrix, [Ka] is the acoustic stiffness matrix, {P} is
the vector of the nodal pressure degrees of freedom, {U} is the vector of the nodal
structural degrees of freedom and [Mc(s)] is the coupling matrix.

Because the effective speed of sound is complex and depends on the shear wave number,
the acoustic mass matrix is also complex and shear wave number, e.g., frequency,
dependent. In fact, the mass matrix is equal to the corresponding standard acoustic mass
matrix, but it is premultiplied by 1/ceff (s)2 instead of 1/c2

0 . A linear 4-noded (Q4.VISC) and
a quadratic 8-noded element (Q8.VISC) were implemented in the finite element package
B2000 [27]. This is a transparent finite element package in which one’s own developments
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and elements can be implemented in an easy way. The viscothermal elements are equipped
with a number of key options which can be used to activate or deactivate for instance
viscosity or thermal conductivity. The elements can thus degenerate to modified wave
equation elements or elements for the linearized Reynolds equation. The elements will be
validated by comparing the results with analytical results in section 4.5 for an oscillating
rigid panel.

4.2.  

The finite element model for the structure, in the absence of structural damping, can
be written in the following standard formulation (see Appendix B):

−v2[Ms]{U}+[Ks]{U}=[Kc]{P}+ {Fext}. (14)

Here [Ms] denotes the structural mass matrix, [Ks] is the stiffness matrix, {U} is the vector
with the nodal degrees of freedom, [Kc] is the coupling matrix resulting from the pressure
on the interface and {Fext} is the external nodal force vector.

4.3. - 

The acousto-elastic interaction is established by demanding continuity of normal
velocity across the interface. This leads to the following coupled system of equations (see
Appendix B):

−v2$ [Ms]
[M(s)a]

[0]
[Ma(s)]%6{U}

{P}7+$[Ks]
[0]

−[Kc]
[Ka]%6{U}

{P}7=6{Fext}
{0} 7. (15)

This system contains the mass matrices and the stiffness matrices of the structural part and
the acoustic part. The coupling is established by the two coupling matrices, [Mc(s)] and
[Kc], which are related by

[M(s)c]= (r0/h0B(s)) [Kc]T. (16)

The coupling matric [Kc] is equal to the standard acoustic coupling matrix for this
situation. The matrix [Mc(s)] differs from the standard coupling matrix only due to the
premultiplication factor given in equation (16).

4.4.  

The system of equations (15) is complex and asymmetric. Furthermore some of the
matrices involved are shear wave number, e.g., frequency, dependent. Because an
eigenvalue solver for complex, asymmetric and frequency dependent matrices was not
available yet, an iterative approach was adopted [28]. The iterative process starts with a
first estimate of the expected eigenfrequency. The acoustic matrices are calculated and the
coupled system is assembled. For this system of equations, the eigenfrequencies are
calculated. A solver for complex, asymmetric eigenvalue problems is used in this step. The
eigenfrequency closest to the expected frequency (in an absolute sense since they are
complex numbers) is then used to construct the matrices for the second iteration step. This
process is repeated until the frequency has converged. Convergence is obtained if the
frequency value that was used to construct the acoustic matrices is within a specified
tolerance of the resulting calculated eigenfrequency.

In order for the process to converge, a good first estimate is required. In the present
paper the acousto-elastic coupling is investigated by varying the gap width (see sections
5 and 6). The first calculation was carried out for a large gap width. For this gap width
the damping is very low and the eigenfrequencies can be estimated by simple wave equation
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and plate models. Successive calculations were carried out for decreasing gap widths. The
values that were already obtained for a large gap width were used to estimate the
eigenfrequency. In this way a good first estimate of the complex eigenfrequency could be
provided.

4.5.        

Consider a rigid plate, located parallel to a fixed surface and performing a small normal
oscillation. For this situation the displacement amplitudes for all the points on the panel
are equal: h(x, y)= h. When the end of the layer are open, i.e., a p=0 condition is
imposed for x=21 and y=21, one obtains the following pressure distribution (see, e.g.,
reference [1]):

p(x, y)=
4k2gha2

pg3B(s)
s

q=1,3,. .

(−1)q−1/2

qD2 $1−
cosh (Dy)
cosh (D) % cos $qp

2
x%. (17)

Here:

D=X$qp

2
a%

2

−
k2a2g

g2n(ss)B(s)
. (18)

The pressure distribution was also calculated with linear 4-noded and quadratic 8-noded
viscothermal finite elements. The number of elements was varied in order to investigate
if the numerical results converge to the analytical values. The properties of the air in the
gap under standard atmospheric conditions, the dimensions of the plate, the thickness of
the air layer and the frequency of interest are as follows:

m=18·2×10−6 Ns/m2, l=25·6×10−3 W/mK, r0 =1·2 kg/m3, T0 =293 K,

c0 =340 m/s, Cp =1004 J/kgK, Cv =716 J/kgK,

lx =0·5 m, ly =0·5 m, h0 =1 mm, f=50 Hz. (19)

The shear wave number for this problem is 4·5. Therefore, both the effects of inertia and
viscosity are important. The value of the reduced frequency is approximately 10−3: the
wave length is large compared to the layer thickness. It can be concluded that these
conditions are suited for a proper test of the new viscothermal finite element.

In Table 1 the results are listed. In this table nex and ney represent the number of
elements in the x and the y directions, respectively. For each calculation, the maximum
difference between the numerical and analytical results in the center node, divided by the
maximum absolute value of the pressure from the analytical expression is given. The results
indicate that the numerical results converge to the analytical values. It can be concluded
that the viscothermal finite element gives good results.

T 1

Maximum relative error for Q4.VISC and Q8.VISC elements

nex ney Q4.VISC Q8.VISC

4 4 0·051270 0·0100847
8 8 0·011867 0·0002707

16 16 0·002948 0·0000138
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Figure 3. Airtight box with flexible coverplate; dimensions in mm.

5. EXPERIMENTS

5.1.  -

To validate the viscothermal model including acousto-elastic interaction, experiments
were carried out on an airtight box with a flexible coverplate (see Figure 3). This
experiment was described in a paper by Dowell et al. [29]. Their analysis, however, was
limited to large gap widths and did not include viscothermal effects. The set-up is very
simple, yet very useful, to illustrate the different mechanisms at work.

The plate is an aluminium plate, 0·49×0·245 m, with a thickness of 1 mm. The plate
is clamped at the edges. The box itself is also made of aluminium to avoid unwanted effects
due to differences in thermal expansion of the materials. The walls of the box are 50 mm
thick. The gap width, h0, can be varied between 1 and 50 mm by displacement of the
bottom. The material and geometrical properties of the aluminium plate are

Ep =70×109 N/m2, rp =2710 kg/m3, vp =0·3, tp =1×10−3 m. (20)

The properties of the air in the gap under standard atmospheric conditions were given in
equation (19). The plate is excited by an electrodynamic shaker (Brüel & Kjær 4810) with
a random signal in the frequency range up to 512 Hz (see Figure 4). The point of excitation
was chosen in such a way that it did not coincide with a node of one of the eigenmodes
in this frequency range. The input force was measured with a force transducer (Brüel &
Kjær 8203). One accelerometer was mounted on the bottom and a number of
accelerometers (Brüel & Kjær 4374) were mounted on the plate to measure the response
of the system. All signals were amplified (Brüel & Kjær 2626 and 2650) and fed to a front
end (HP 3565). The data was transferred to a workstation where a modal analysis was
conducted: eigenfrequencies, damping and the mode shapes were determined for a number
of gap widths (LMS CADA-X package).

5.2.    

5.2.1. Eigenfrequencies in absence of the bottom
As a first check of the model, the eigenfrequencies of the plate in the absence of the

bottom were measured. In this case one measures the eigenfrequencies of a clamped
rectangular plate in an infinite air domain. The structural modes, i.e., the modes of the
plate in vacuum, can be calculated analytically. In order to account for the influence of
the surrounding air, an added mass was calculated according to the formula given by
Blevins [39]. This small amount of added mass causes a small decrease in eigenfrequency.
The calculated (in air and vacuum) and measured frequencies are listed in Table 2. In this
table ‘‘qr’’ represents the number of half wave lengths in the x and the y directions,
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T 2

Eigenfrequencies of clamped plate in infinite air domain

Eigenfrequency (Hz)
Mode ZXXXXXXXXXXXXCXXXXXXXXXXXXV

qr Measurements Analytical (air) Analytical (vacuum)

11 9·62 95·9 100·6
21 130·1 130·4 130·4
31 181·8 182·6 183·4
12 247·4 261·7 261·7
41 253·8 259·7 259·7
22 280·8 291·2 291·2
32 322·6 341·0 341·0

respectively. There is fair agreement between the calculations and the experiments. A
further discussion on the structural modes will be presented in section 6.1.

5.2.2. Damping in the absence of bottom plate
The damping of the plate in the absence of the bottom plate was measured and found

to be in the order of magnitude of 0·7% for the first seven modes. This damping is relatively
high and is mainly caused by the damping due to the clamping of the thin plate. In order
to support this statement, the amount of radiation damping was estimated with the
boundary element package SYSNOISE [31]. In the calculations, the structural mesh
consisted of 20×20 shell elements. The first eigenfrequency of the plate in vacuum for
this mesh was 100·9 Hz. For an estimation of the radiation damping, a frequency response
calculation was carried out. The structural mesh was coupled to a mesh of 20×20
boundary elements. An indirect variational approach was used. The plate was excited by
a point force and the resulting displacements were calculated. Eigenfrequency and damping

Figure 4. Schematic view of the experimental set-up.
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were extracted from the frequency response results. The eigenfrequency in an infinite air
domain was found to be 97·4 Hz, while the amount of radiation damping was less than
0·1%. This supports the assumption that the damping due to acoustic radiation can be
neglected compared to the other damping mechanisms.

5.2.3. Boundary conditions
Careful attention has to be paid to the clamping conditions of the plate. The

experimental results in section 5.2.1 showed fair agreement with the calculations. In the
experiments the bolts were fastened with the torque of 60 Nm. In order to determine the
influence of the torque, measurements were carried out for variations in this torque. No
variations in frequencies were observed due to a change in applied torque.

5.2.4. Linearity
In the experiments the plate is excited with a constant force. In order to check if the

system behaves linearly, experiments were carried out with different excitation levels. The
eigenfrequencies and the damping values were not affected by the amplitude of excitation.
This justifies the use of linear theory.

5.2.5. Motion of the bottom plate
In the calculations it is assumed that the box and the bottom plate are rigid and fixed.

Since the gap width is a very important parameter in the model, the motion of the bottom
plate was measured with accelerometers for a number of gap widths. In all cases the
amplitude of the bottom plate was very low, i.e., less than 3%, compared to the amplitude
of the flexible coverplate. The bottom plate can therefore be regarded as rigid and fixed.

5.2.6. Variation of the gap width
In the experiments the gap width is varied from 1 to 50 mm. Due to the fact that the

thick bottom plate is not able to tilt inside the box, the variation in the gap width is small.
This variation is estimated to be 20·1 mm.

6. RESULTS FOR THE EXPERIMENTAL SET-UP

In this section the results for the airtight box with the flexible coverplate are presented.
As a check on the accuracy of the finite element model for the experimental set-up, the
uncoupled modes for the plate and the air layer are calculated and compared to analytical
solutions in sections 6.1 and 6.2, respectively. An additional reason for calculating the
uncoupled modes is that one has a reference, from which the importance of coupling can
be demonstrated. Finally, in section 6.3 the finite element results for the acousto-elastic
system are compared with experimental results.

6.1.  

The eigenfrequencies of the plate in vacuum were calculated with a mesh of 20×20
linear plate elements and compared with analytical results [29]. The results are listed in
Table 3. The table shows fair agreement between the numerical results and the analytical
results. For the higher modes the results start to be less accurate due to the small number
of elements. The first seven mode shapes for the plate in vacuum are given in Figure 5
because they serve as a reference when the mode shapes change as a function of the gap
width.
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T 3

Eigenfrequencies of clamped plate in vacuum

Eigenfrequency (Hz)
Mode ZXXXXXXXXCXXXXXXXXV

qr Analytical (vacuum) Finite elements

11 100·6 100·9
21 130·4 131·1
31 183·4 186·9
12 261·7 266·1
41 259·7 270·8
22 291·2 295·2
32 341·0 346·8

6.2.  

The acoustic modes are the modes of the air layer when the plate is assumed rigid and
fixed (zero velocity). The acoustic modes can therefore be obtained from the narrow gap
equation (see section 3.2) by omitting the squeeze term:

12p̄
1x̄2 +

12p̄
1ȳ2 +

v2

ceff (s)2 p̄=0. (21)

The edges of the air layer are closed. The corresponding boundary condition is that the
particle velocity is zero. The narrow gap model gives the following boundary condition
in terms of the pressure:

1p̄
1n̄

=0 for x̄=2lx and ȳ=2ly . (22)

Figure 5. Mode shapes in vacuum.
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T 4

Eigenfrequencies of air layer (h0 =1 mm)

Eigenfrequency (Hz)
ZXXXXXXXCXXXXXXXV

Mode qr Analytical Finite elements

1 10 317·1+32·3 i 317·4+32·4 i
2 01 651·4+44·8 i 652·1+44·8 i
3 20 651·4+44·8 i 654·1+45·0 i
4 11 730·9+47·2 i 731·6+47·3 i

Here n̄ is the outward normal. Straightforward separation of variables gives an equation
for the acoustic eigenfrequencies:

v=
pceff (s)

2 X$q
lx%

2

+$r
ly%

2

, q=0, 1, 2, . . . , r=0, 1, 2, . . . . (23)

Since the effective speed of sound is a function of the shear wave number, the right-hand
side of equation (23) depends on the frequency and the gap width. The complex
eigenfrequencies can now be obtained from this equation by a simple iterative solving
procedure. As starting values, the eigenfrequencies for the inviscid, adiabatic case are used:
ceff (s)= c0. In Table 4, the analytical results and the results from finite element calculations
are listed for a gap width of 1 mm. The calculations were carried out with 20×20 linear
viscous acoustic finite elements. The table shows good agreement between the analytical
results and the finite element results. The first acoustic mode without viscous or thermal
effects is 347 Hz. For low shear wave numbers the viscous and thermal effects therefore
have a strong influence on the propagation of waves in the air layer.

6.3. - :    

In the case of a thin plate backed by a cavity with air, the acousto-elastic coupling can
be very strong. In this section this phenomenon will be demonstrated. For this purpose
the first seven eigenfrequencies of the plate will be calculated as a function of the gap width.
The eigenfrequency, damping and mode shapes are traced in the calculations for gap
widths from 300 down to 1 mm. For gaps below 50 mm a comparison is made with the
experimental results.

The mode shapes and the eigenfrequencies for a gap width of 300 mm are very close
to the mode shapes and the eigenfrequencies in vacuum. When the gap width is decreased,
eigenfrequencies and mode shapes are strongly affected. By tracing the modes from 300
down to 1 mm, the complete evolution of the different modes can be visualized.

The choice of the first seven modes is based on the fact that these modes remain isolated.
This means that these modes may show a shift in frequency or even mutual cross-overs,
but they remain isolate from the higher (i.e., eighth and higher) modes. Note that the first
acoustic eigenfrequency in the absence of viscous or thermal effects is 347 Hz. Due to the
viscous effects this frequency will decrease (see section 6.2). The first seven modes of
interest, however, are all structurally dominated modes.

In order to trace the modes from 300 down to 1 mm two types of calculations were
carried out.

The first type of calculation uses standard acoustic finite elements without viscous or
thermal effects. These elements were used for the calculations for gap widths between 50
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and 300 mm. For these gap widths the shear wave number is very large in the frequency
range of interest, so viscous and thermal effects can be neglected. Furthermore, the
assumption of constant pressure across the gap width breaks down for large reduced
frequencies. Note that the damping for these elements is always zero. A mesh consisting
of 20×20 plate elements, 20×20 linear interface elements and 20×20×6 acoustic finite
elements was used.

The second type of calculation is based on the use of viscous acoustic finite elements.
These elements are used for gap widths below 50 mm. A mesh consisting of 20×20 linear
plate elements, 20×20 linear interface elements and 20×20 linear viscous acoustic finite
elements was used to perform these calculations.

The influence of the air on the upper side of the plate is not taken into account in the
calculations. In section 5.2.1 it was demonstrated that the air on the upper side of the panel
causes a slight decrease in eigenfrequency. For low gap widths, however, this effect can
be neglected compared to the shift in frequency due to the air in the layer. The air on the
upper side introduces an energy loss due to radiation damping. However, in section 5.2.2
it was shown that the radiation damping can be neglected compared to the other damping
mechanisms (see also section 6.3.2).

6.3.1. Eigenfrequency
In Figure 6 the eigenfrequency is depicted versus the gap width. The labels for the

different modes are based on the original modes in vacuum (see Table 2). The experimental
results and the finite element results show fair agreement. For the lower modes the results
are very good. For the higer modes the finite element results start to be less accurate due
to the amount of elements. This can mainly be attributed to the behaviour of the plate
elements, as can be seen in the results for the structural modes. But on the whole the
agreement is satisfying for all modes under consideration.

Figure 6. Calculated and measured eigenfrequencies. Experimental: e, 32; q, 22; w, 41; R, 12; +, 31; Q,
21; E, 11.
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At a gap width of 50 mm the transition from the results with standard acoustic elements
to the results with viscous finite elements is very good. There seems to be a slight bend
in the curve, but the difference in frequency between both calculations is less than 0·7%
for this gap width.

The figure shows a very large shift in eigenfrequency for the different modes. The
coupled eigenfrequencies differ a great deal from the uncoupled structural eigenfrequen-
cies. This shows that in the case of narrow gaps it is essential to take into account the
acousto-elastic coupling.

Different kinds of behaviour can be observed in this figure. The second mode for
instance shows a steady decrease with decreasing gap width. The first mode however first
increases and then decreases with decreasing gap width. At a gap width of about 100 mm
the eigenfrequencies cross. In order to analyze this in more detail, several calculations were
carried out in this region. The results clearly indicate that indeed there is a cross-over. The
31-mode also exhibits cross-over behaviour with other modes. Note that cross-overs only
occur between symmetric and asymmetric modes. There are two symmetric modes, the
12-mode and the 41-mode, that are very close in frequency. As the gap width decreases,
the two frequency values approach. However, when the gap width is further decreased,
the difference increases. In Appendix C a simple representative mechanical system is
presented which illustrates that cross-overs are not unusual for this type of system.

6.3.2. Damping
In Figure 7 the dimensionless damping coefficient is depicted versus the gap width for

the first and the second mode. For small gaps the damping increases up to 25%. This high
level of damping can be attributed to the viscous effects in the air layer. The damping is
high for the second mode. This is an asymmetric mode that induces a strong pumping of
air in the layer. The corresponding high rate of shear results in significant viscous losses.
Thermal effects have a very small influence on the damping, as was already demonstrated
by Fox and Whitton [13]. The damping due to acoustic radiation is low compared to the
other damping mechanisms for small gap widths. The figure shows fair agreement between

Figure 7. Dimensionless damping coefficient versus gap width: Q, 21; E, 11.
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calculations and experiments. This indicates that the energy dissipation in the layer is
correctly described with the new finite element model.

6.3.3. Mode shapes
The mode shapes were calculated and measured for a number of gap widths. In

Figure 8 the calculated mode shapes are depicted for gap widths of 300, 50 and 10 mm.
The labels of the modes in this figure are based on the corresponding mode shapes in
vacuum.

The mode shapes are almost real: the phase differences between the points are very small.
The figures indicate that the shape of the asymmetric modes is not affected by the gap
width. The symmetric modes however show a dramatic change in shape. For small gaps,
the 11-mode starts to resemble the 31-mode. A physical interpretation for these phenomena
will be given in the next section.

Figure 8. Mode shapes as a function of gap width.
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Figure 9. Pumping effect of second mode.

7. PHYSICAL INTERPRETATION

The shifts in eigenfrequency and the changes in mode shape can be explained in terms
of (generalized) added mass and (generalized) added stiffness. In section 7.3 an analysis
of the dimensionless parameters is given. In Appendix C a very simple mechanical system
will be presented which incorporates cross-over effects and changes in mode shapes.

7.1.  

Due to the squeeze motion of the plate the air is put into motion. This motion of the
air is experienced by the plate as an added mass. For the closed cavity, the motion of the
air is related to the pumping mechanism. For asymmetric modes, the air is pumped back
and forth very efficiently (see Figure 9). This pumping effect increases as the gap width
decreases. Therefore, the added mass increases and the frequency decreases with decreasing
gap width.

7.2.  

The increase in frequency that was observed for some modes can be attributed to an
added stiffness effect. For the symmetric modes, the deformation of the coverplate is
accompanied by a significant change in cavity volume (see Figure 10). This change in
volume causes a pressure disturbance in the cavity. In the frequency range of interest, the
acoustic wavelength is large compared to the cavity dimensions. Since the pressure
disturbance acts in phase with the motion of the plate, the plate experiences an added
stiffness effect. As the pressure disturbance increases with decreasing gap width, the
eigenfrequency will increase. Asymmetric modes do not induce a change in cavity volume:
they do not experience an added stiffness effect. Due to the stiffness effect the shape of
the symmetric modes also changes. The general trend is that mode shapes tend to a shape

Figure 10. Change in cavity volume for the first and the second mode.
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for narrow gaps for which the net volume change is zero (see Figure 8). This means that
the added stiffness effect will vanish, and the added mass effect takes over (see Figure 6).
This explains the shape of the curves of the eigenfrequencies versus the gap width.

7.3.  

The parameters are a function of the geometry, the material properties and the
frequency. In the experimental set-up the gap width is varied from 50 down to 1 mm, while
the frequency varies between 50 and 350 Hz.

7.3.1. Viscous effects
The ratio between the inertial forces and the viscous forces is given by the shear wave

number. For the experimental set-up, the shear wave number varies from 4·5 to 600. This
means that for small gap widths and low frequencies the effects of viscosity have to be
taken into account. In the frequency range of interest, the effects of viscosity can be
neglected for gap widths larger than 50 mm. The use of standard acoustic elements is
therefore justified for these larger gap widths.

7.3.2. Thermal effects
For low values of the shear wave number, as s is a constant for air, the thermal

conductivity can play an important role. For the experimental set-up these thermal effects
are relatively small. However, one has to be careful not to generalize this statement. For
very small gap widths or other materials, for instance, the effects can be very significant.
Then the process in the layer has to be regarded as isothermal, rather than isentropic. With
the dimensionless parameters one can make a quick estimation for the situation of interest.

7.3.3. Validity of the narrow gap assumptions
In the narrow gap theory, two conditions have to hold: kS1 and k/sS1. In physical terms

this means that the acoustic wavelength has to be large compared to both the gap width
and the boundary layer thickness. For the experimental set-up both conditions are
satisfied: kS0·3 and k/sS10−3. This means that the use of the narrow gap model is justified.
If these conditions are not satisfied, one has to resort to the more extensive models, as
presented by Kirchhoff, see reference [20] and Bruneau et al. [23].

8. CONCLUSIONS

Based on the research presented in this paper, the following conclusions can be drawn.
The viscothermal acoustic finite element gives a good description of the propagation of

sound waves in thin layers. It includes the effects of inertia, viscosity, compressibility and
thermal conductivity. The element can be used when the acoustic wavelength is large
compared to the gap width and the boundary layer thickness.

The acousto-elastic interaction between a thin layer of air and a vibrating flexible surface
is correctly described with the finite element model. The behaviour of the system is strongly
affected by the presence of the closed layer. It is important to include the acousto-elastic
coupling for these situations.

For low shear wave numbers the effects of viscosity have to be taken into account. A
significant amount of energy can be dissipated in the layer by means of viscous shear. This
may result in substantial damping values for an adjacent structure. The amount of
damping is related to the pumping effect in the layer in the low frequency region.

The new finite element model offers an efficient tool for the designer for analyzing
complex structures and optimizing the squeeze film damping mechanism.
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APPENDIX A: BASIC EQUATIONS

The basic equations are:
(a) the Navier Stokes equations, for a constant value of the viscosity, m:

r̄$1ū
1t

+ ū
1ū
1x̄

+ v̄
1ū
1ȳ

+ w̄
1ū
1z̄%=−

1p̄
1x̄

+ m $12ū
1x̄2 +

12ū
1ȳ2 +

12ū
1z̄2%+

1
3

m
1

1x̄$1ū
1x̄

+
1v̄
1ȳ

+
1w̄
1z̄%,

(A1)

r̄$1v̄
1t

+ ū
1v̄
1x̄

+ v̄
1v̄
1ȳ

+ w̄
1v̄
1z̄%=−

1p̄
1ȳ

+ m $12v̄
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1ȳ2 +
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1
3

m
1

1ȳ$1ū
1x̄

+
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1ȳ

+
1w̄
1z̄%,

(A2)

r̄$1w̄
1t

+ ū
1w̄
1x̄

+ v̄
1w̄
1ȳ

+ w̄
1w̄
1z̄%=−

1p̄
1z̄

+ m $12w̄
1x̄2 +

12w̄
1ȳ2 +

12w̄
1z̄2%+

1
3

m
1

1z̄$1ū
1x̄

+
1v̄
1ȳ

+
1w̄
1z̄%,
(A3)

(b) The equation of continuity:

1r̄

1t
+

1(r̄ū)
1x̄

+
1(r̄v̄)
1ȳ

+
1(r̄w̄)

1z̄
=0; (A4)

(c) the equation of state for an ideal gas:

p̄= r̄R0T�, (A5)

where R0 can be written as:

R0 =p0/r0T0; (A6)
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(d) the energy equation, for a constant value of the thermal conductivity l and no internal
heat generation

r0Cp$1T�
1t

+ ū
1T�
1x̄

+ v̄
1T�
1ȳ

+ w̄
1T�
1z�%= l$12T�

1x̄2 +
12T�
1ȳ2 +

12T�
1z̄2%

+
1p̄
1t

+ ū
1p̄
1x̄

+ v̄
1p̄
1ȳ

+ w̄
1p̄
1z̄

+ mF, (A7)

where F is the viscous dissipation function

F=2$01ū
1x̄1

2

+01v̄
1ȳ1

2

+01w̄
1z̄1

2

%−
2
3 $1ū

1x̄
+

1v̄
1ȳ

+
1w̄
1z̄%

2

+ $1ū
1ȳ

+
1v̄
1x̄%

2

+$1v̄
1z̄

+
1w̄
1ȳ%

2

+$1w̄
1x̄

+
1ū
1z̄%

2

. (A8)

Upon assuming sinusoidal motion and no mean flow one can write

ū= c0u(x̄, ȳ, z̄) eivt, p̄= p0[1+ p(x̄, ȳ, z̄) eivt],

v̄= c0v(x̄, ȳ, z̄) eivt, r̄= r0[1+ r(x̄, ȳ, z̄) eivt],

w̄= c0w(x̄, ȳ, z̄) eivt, T� =T0[1+T(x̄, ȳ, z̄) eivt], (A9)

with u, v, w, p, r, and T being small dimensionless perturbations. The mean pressure and
the mean density are related according to p0 = r0c2

0 /g.
Dimensionless co-ordinates are introduced:

x= x̄/lx , y= ȳ/ly , z= z̄/h0 (A10)

When higher order terms are neglected, the equations can be written in a linearized,
dimensionless form. The equations are
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1
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+
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iw=−
1
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1
g

1p
1z

+
1
s2 $g2 12w
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2
12w
1y2 +

12w
1z2%+

1
3

1
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1

1z $g 1u
1x

+0ga1 1v
1y

+
1w
1z%, (A13)

g
1u
1x

+0ga1 1v
1y

+
1w
1z

=−ikr, (A14)

p= r+T, (A15)
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iT=
1

s2s2 $g2 12T
1x2 +0ga1

2
12T
1y2 +

12T
1z2%+i $g−1

g %p, (A16)

where:

s= h0Xr0v

m
, shear wave number, s=XmCp

g
, square root of the Prandtl number,

k=
vh0

c0
, reduced frequency, g=

Cp

Cv
, ratio of specific heats,

g=
h0

lx
, narrowness of the gap, a=

ly
lx
, aspect ratio of the plate. (A17)

When the gap width is small in comparison with the dimensions of the plate, and the
velocity w is negligible with respect to the in-plane velocities u and v (i.e., g�1, g/s�1,
w/v�1 and w/u�1), the equations (A11)–(A16) can be simplified to

iu=−
g
k

1
g

1p
1x

+
1
s2

12u
1z2 , iv=−

g
ak

1
g

1p
1y

+
1
s2

12v
1z2 , 0=−

1
k

1
g

1p
1z

, (A18–A20)

g
1u
1x

+$ga% 1v
1y

+
1w
1z

=−ikr, p= r+T, iT=
1

s2s2

12T
1z2 + i $g−1

g %p.

(A21–A23)

The boundary conditions are

at z=0, u=0, v=0, w=0, T=0 (isothermal wall),

at z=1, u=0, v=0, w=ikh, T=0 (isothermal wall). (A24)

From equation (A20) it follows that the magnitude of the pressure perturbation, p,
depends only on the in-plane co-ordinates x and y. Because the pressure perturbation is
independent of the co-ordinate z, the solution of equation (A23) can be written as

T=$g−1
g %pA(ss, z), (A25)

where

A(ss, z)=$sinh (sszi(z−1))− sinh (ssziz)
sinh (sszi)

+1%. (A26)

Substitution of equation (A25) into equation (A22) gives

r= p61−$g−1
g % A(ss, z)7. (A27)

The solution of equation (A18) can be written in the following form:

u=i
g
k

1
g 01p

1x1 A(s, z). (A28)
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Similarly, it follows that:

v=i
g
ak

1
g 01p

1y1 A(s, z). (A29)

Finally, the equation of continuity (A21) has to be satisfied. Inserting the equations (A28),
(A29) and (A27) gives

i
g2

k
1
g 012p

1x21 A(s, z)+ i
g2

a2k
1
g 012p

1y21 A(s, z)+
1w
1z

=−ikp61−$g−1
g % A(ss, z)7.

(A30)

Integrating with respect to z gives:

i
g2

k
1
g 012p

1x21 B(s)+ i
g2

y

a2k
1
g 012p

1y21 B(s)+w1 −w0 =−ikp61−$g−1
g % B(ss)7,

(A31)

where

B(s)0g
1

z=0

A(s, z) dz=2$1−cosh (s zi)

szi sinh (szi)%+1. (A32)

Rearranging equation (A31) for the pressure perturbation p yields

g2012p
1x21+0ga1

2

012p
1y21=

kg

B(s)$−kp61−$g−1
g %B(ss)7+i{w1 −w0}%. (A33)

The dimensionless velocities w1 and w0 can be expressed as in equation (A24). Substitution
of equation (A24) into equation (A33) finally gives the equation for the pressure
perturbation p in the gap:

g2012p
1x21+0ga1

2

012p
1y21=−

k2g

B(s) $p61−$g−1
g %B(ss)7+ h%. (A34)

From equation (A34) the expression for the (complex) polytropic constant n can be
obtained (note that this constant was obtained by integrating over the layer thickness):

n(ss)=$1−$g−1
g %B(ss)%

−1

. (A35)

Substitution of equation (A35) into equation (A34) finally gives the ‘‘narrow gap’’
equation:

g2012p
1x21+0ga1

2

012p
1y21=−

k2g

B(s) $ p
n(ss)

+ h%. (A36)
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APPENDIX B: FINITE ELEMENT MODEL

As a starting point, the differential equation (12) is multiplied by a weighting function
ww and integrated over the area G:

gG

ww$92p̄+
v2

c2
eff (s)

p̄% dG=−
r0v

2

h0B(s) gG

wwn · ūs dG (B1)

where ūs is the structural displacement and n is the outward normal. Note that
n · ūs = h̄− h0. Using partial integration and Green’s theorem one has

g1G

ww 1p̄
1n

d1G−gG

9ww · 9p̄ dG+
v2

c2
eff (s) gG

wwp̄ dG=−
r0v

2

h0B(s) gG

wwn · ūs dG, (B2)

where 1G is the boundary of the domain G. The pressure in each element is expressed in
terms of the interpolation functions [Na] and the nodal pressure {P}. The structural
displacement is also written in terms of interpolation functions:

p̄(x)= [Na(x)]{P}, ūs(x)= [Ns(x)]{U}. (B3)

Following Galerkin’s approach, the weighting functions are chosen equal to the
interpolation functions. For a rigid wall, the normal derivative of the pressure is zero. In
case of a prescribed pressure the weighting function is chosen equal to zero. The first term
of equation (B2) only contributes for an impedance-like boundary condition. However,
one has to bear in mind that the pressure is constant across the gap width, while the
in-plane velocities vary.
Defining an impedance can therefore only be done in an integrated sense. This term is set
equal to zero in the present study. This finally leads to the sets of equations

−v2[Ma(s)]{P}+[Ka]{P}=v2[Mc(s)]{U}, (B4)

where [Ma(s)] denotes the acoustic mass matrix, [Ka] is the acoustic stiffness matrix, {P}
is the vector with the nodal pressure degrees of freedom, {U} is the vector with the nodal
structural degrees of freedom and [Mc(s)] is the coupling matrix. Their elements are given
by

[Ma(s)]=
1

c2
eff(s) gG

[Na]T[Na] dG, [Ka]=gG

[9Na]T · [9Na] dG,

[Mc(s)]=
r0

h0B(s) gG

[Na]T[n · Ns] dG. (B5–B7)

The finite element model for the structure, in the absence of structural damping, can be
written in the standard formulation as

−v2[Ms]{U}+[Ks]{U}=[Kc]{P}+ {Fext}, (B8)

where [Ms] denotes the structural mass matrix, [Ks] is the stiffness matrix, [Kc] is the
coupling matrix resulting from the pressure on the interface and {Fext} is the external nodal
force vector. Using the same interpolation for the pressure in the layer and the pressure



lx lx

kv(h0)
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excitation on the structure, the principle of virtual work gives the following expression for
the coupling matrix [Kc]:

[Kc]=gG

[n · Ns]T[Na] dG. (B9)

The acousto-elastic interaction is established by demanding continuity of normal velocity
across the interface. This now gives the following coupled system of equations:

−v2$ [Ms]
[Mc(s)

[0]
[Ma(s)]%6{U}

{P}7+$[Ks]
[0]

−[Kc]
[Ka]%6{U}

{P}7=6{Fext}
{0} 7. (B10)

This system contains the mass matrices and the stiffness matrices of the structural part and
the acoustic part. The coupling is established by the two coupling matrices, [Mc(s)] and
[Kc], which are related by

[M(s)c]=
r0

h0B(s)
[Kc]T. (B11)

APPENDIX C: CROSS-OVER BEHAVIOUR

In Figure C1 a simple beam model is given which is used to illustrate the cross-over
phenomenon. The beam’s properties are

Ep =210×109 N/m2, tp =1×10−3 m, lx =0·245 m, rp =2710 kg/m3. (C1)

A beam with length 2lx and thickness tp is simply supported. It is located in vacuum and
is supported by a spring in the centre. The spring represents the added stiffness effects of
the air layer. Since the spring is located in the centre, the eigenfrequencies of asymmetric
modes will not be affected by the stiffness of the spring. The eigenfrequencies of the
symmetric modes, however, will be affected, in accordance with the explanation given in
section 7.2. The stiffness of the spring depends on the value of a parameter, h0, which of
course represents the gap width. The stiffness of the spring increases with decreasing gap
width. The following expression was used in this example for the stiffness kv :

kv (h0)=2×104$1− h0

h0 %
2

. (C2)

The eigenfrequencies and the mode shapes of the plate were calculated as a function of
h0. The displacement was written in terms of the mode shapes of a simply supported beam.
The participation factors were calculated with a Rayleigh Ritz procedure. This approach
allows one to decompose the mode shape in terms of the mode shapes in vacuum, i.e.,

Figure C1. Simple mechanical model.
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Figure C2. Eigenfrequency versus gap width for beam model.

without the spring. The eigenfrequency as a function of h0 is given in Figure C2. The figure
shows the same cross-over behaviour as the results for the airtight box. Asymmetric modes
are not affected by the gap width in this example, since there is no added mass effect. The
symmetric modes, however, are affected by the added stiffness effect, which results in an
increase in frequency. Due to this phenomenon several cross-overs are present. This simple
example illustrates that crossing of frequencies is not unusual for mechanical systems.

In section 6 it was observed that for instance the first mode of the plate starts to resemble
the third mode in vacuum for small gaps. The same trend can be recognized in the results
for the beam model. The participation factor for large gap widths is almost 1 for the
11-mode. As the gap width decreases, the participation factors for other contributions
increase. The 31-mode exhibits similar behaviour. It can be concluded that this simple
mechanical model incorporates many characteristics of the acousto-elastic system.

APPENDIX D: LIST OF SYMBOLS

A function describing velocity and temperature profiles
B function accounting for viscous or thermal effects
a= ly /lx aspect ratio
Cp specific heat at constant pressure
Cv specific heat at constant volume
c0 undisturbed speed of sound
ceff effective speed of sound
Dp bending stiffness of plate
Ep Young’s modulus of plate material
f frequency
g= h0/lx dimensionless gap width
h�= h0[1+ h eivt] gap width
h0 mean gap width
h dimensionless displacement amplitude
i=z−1 imaginary unit
k=vh0/c0 reduced frequency
kv spring stiffness
lx length in the x direction
ly length in the y direction
n polytropic constant
n normal vector
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p̄= p0[1+ p eivt] pressure
p0 mean pressure
p dimensionless pressure amplitude
R0 gas constant
s= h0zr0v/m shear wave number
T̄=T0[1+Teivt] temperature
T0 mean temperature
T dimensionless temperature amplitude
t time
tp plate thickness
ū= c0u eivt velocity in the x direction
u dimensionless amplitude of the velocity in the x direction
ūs structural displacement vector
v̄= c0v eivt velocity in the y direction
v dimensionless amplitude of the velocity in the y direction
w̄= c0w eivt velocity in the z direction
w dimensionless amplitude of the velocity in the z direction
ww weighting function
x̄= lxx x co-ordinate
x dimensionless x co-ordinate
x spatial co-ordinates (vector)
ȳ= lyy y co-ordinate
y dimensionless y co-ordinate
z= h0z z co-ordinate
z dimensionless z co-ordinate
G integration domain
1G boundary of integration domain
g=Cp /Cv ratio of specific heats
o= r0h0/rptp ratio of mass per unit area
l thermal conductivity of air
m dynamic viscosity of air
j dimensionless damping coefficient
np Poisson’s ratio of plate material
r̄= r0[1+ r eivt] density of air
r0 mean density of air
r dimensionless density amplitude
rp density of plate material
s=zmCp /l square root of the Prandtl number
F viscous dissipation function
V dimensionless frequency
v angular frequency
9 gradient operator
{Fext} structural external force vector
[Ka] acoustic stiffness matrix
[Kc] coupling stiffness matrix
[Ks] structural stiffness matrix
[Ma(s)] acoustic mass matrix
[Mc(s)] coupling mass matrix
[Ms] structural mass matrix
[Na] acoustic interpolation functions
[NS] structural interpolation functions
{P} acoustic pressure degrees of freedom
{U} structural degrees of freedom


